
Sharp spectral asymptotics for reversible diffusions trapped in moving domains

Sharp spectral asymptotics for reversible diffusions trapped in
moving domains
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Setting: overdamped Langevin dynamics

We work with the SDE

dXβ
t = −∇V (Xβ

t ) dt +
√

2β−1 dWt , (1)

Assume V : Rd → R is smooth and Morse. Xβ
t is reversible and ergodic with

respect to the Gibbs measure

dµ(x) = Z−1
β e−βV (x) dx .

In computational statistical physics/molecular dynamics
Xβ

t : nuclear positions, V : interatomic potential, β = 1/(kBT ): inverse
temperature.
For smooth bounded Ω ⊂ Rd , the Dirichlet generator

Lβ = −∇V · ∇+
1

β
∆.

with domain H1
0 (Ω, µ) ∩ H2(Ω, µ) is self-adjoint on L2(Ω, µ), with compact

resolvent and spectrum:

· · · ≤ −λ2,β(Ω) < −λ1,β(Ω) < 0
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Local approach to metastability

We consider metastable domains Ω ⊂ Rd , where a local equilibrium is reached
quickly after which the exit time is large.
Notion of local equilibrium: quasistationary distributions.

Definition

Denote τΩ = inf
{
t ≥ 0

∣∣∣Xβ
t 6∈ Ω

}
. A QSD for Xβ

t on Ω is a probability

measure ν ∈ P1(Ω) such that for all A ∈ B(Ω)

Pν
(
Xβ

t ∈ A
∣∣∣τΩ > t

)
= ν(A)

Metastability of Ω is related to separation of timescales: fast relaxation
to/slow exit from the local equilibrium ν.
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Metastable exit event: link with the Dirichlet spectrum

Proposition (Le Bris, Lelièvre, Luskin, Perez 2012 [14])

Let (λ1,β , u1,β) be the principal Dirichlet eigenpair of −Lβ in Ω, i.e.

λ1,β = inf
u∈H1

0,µ(Ω)

〈−Lβu, u〉L2
µ(Ω)

‖u‖2
L2
µ(Ω)

=
1

β

∫
Ω
|∇u1,β |2e−βV∫
Ω
u2

1,βe
−βV , (2)

and choose u1,β > 0 on Ω. Then

ν(A) =

∫
A
u1,β e

−βV∫
Ω
u1,β e−βV

(3)

is the unique QSD for Xβ
t on Ω. Moreover, the exit time τΩ is exponentially

distributed from ν and independent from the exit point:

Eν
[
ϕ(Xβ

τΩ
)1τΩ>t

]
= e−λ1,βEν

[
ϕ(Xβ

τΩ
)
]
. (4)

The exit rate (slow time scale) from the QSD is given by the
principal Dirichlet eigenvalue λ1,β .
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Decorrelation inside the state

Let λ2,β be the second Dirichlet eigenvalue of −Lβ in Ω.

Theorem (Le Bris, Lelièvre, Luskin, Perez 2012 [14])

Assume dµ0
dµ
∈ L2(Ω, µ), where Xβ

0 ∼ µ0, write µt = Law
(
Xβ

t

∣∣∣τΩ > t
)

.

Then, ∃(C1,C2)(β, µ0):

‖µt − ν‖TV ≤ C1e
−(λ2,β−λ1,β )t ,

sup
‖f ‖∞≤1

∣∣∣Eµ0

[
f (Xβ

τΩ
, τΩ − t)

∣∣∣τΩ > t
]
− Eν

[
f (Xβ

τΩ
, τΩ)

]∣∣∣ ≤ C2e
−(λ2,β−λ1,β )t .

The relaxation rate to the QSD (fast time scale) is at least as large as the
spectral gap λ2,β − λ1,β of the Dirichlet generator Lβ .
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A spectral optimization problem

Question: how to make Ω as locally metastable as possible ? Maximize
separation of timescales.

Jβ(Ω) =
λ2,β(Ω)− λ1,β(Ω)

λ1,β(Ω)
.

Make exit time from the QSD � decorrelation time to the QSD.
Objective: define highly locally metastable states (Ωi )i∈N in Rd .
Motivation:

Accurate approximate state-to-state dynamics via renewal
processes [3]/jump processes.

Efficient algorithms to sample long trajectories (Parallel replica
methods [23, 21]).

The case V = 0 has been studied in the shape optimization litterature,
e.g. the Payne–Polyá–Weinberger conjecture [20, 4].
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Shape gradient descent

Isolated Dirichlet eigenvalues of Lβ are shape-differentiable. Assume λk,β(Ω0)
is simple.

Proposition (B., Lelièvre, Stoltz, 2024 (in preparation))

The map {
W1,∞(Rd ;Rd) −→ R
θ 7→ λk,β((θ + Id)Ω)

is continuously Fréchet-differentiable at 0, with:

dλk,β(Ω0)ξ = − 1

β

∫
∂Ω0

(
∂uk,β(Ω0)

∂n

)2

(ξ · n) e−βV dσ, ∀ ξ ∈ W1,∞(Rd ;Rd),

where σ denotes the surface measure on ∂Ω0, and n the outward surface
normal to Ω0.

Proof of the case V = 0 by Henrot transfers to the L2(Ω, µ) setting.

Ω 7→ (Id+ηk∇Jβ(Ω))Ω, ∇Jβ(Ω) := −n

β

[
1

λ1,β

(
∂u2,β

∂n

)2

− λ2,β

λ2
1,β

(
∂u1,β

∂n

)2
]

(Ω)
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Local shape optimization around a potential well

Figure: Optimized domains for increasing β.
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Asymptotic optimization in the low-temperature limit

For realistic problems, d � 1, so solving −Lβu = λu is not possible.
Idea: Take a family of domains (Ωβ)β>0. The spectrum is sensitive to
a α ∈ RN with N � d as β →∞. Find asymptotically optimal α as β →∞.

Parameter: α = (α(i))0≤i<N is signed distance of critical points to the

boundary on the scale β−
1
2 :

α(i) = lim
β→∞

√
βσ(∂Ωβ , zi ) ∈ (−∞,+∞],

where (zi )0≤i<N are the critical points (assume this limit exists).
We say zi is far from the boundary if α(i) = +∞, and close to the boundary
if α(i) < +∞.
Goal: compute the spectral asymptotics of λ1(Ωβ), λ2(Ωβ) in the limit β → 0,
and optimize the asymptotic behavior of the ratio λ2(Ωβ)/λ1(Ωβ) w.r.t. α.
Problem in spectral asymptotics with moving boundary.
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Mathematical approaches to the exit problem and metastability

Large deviations: (Friedlin & Wentzell): first mathematical proof of
Ahrennius’ law [24]

Potential theory for Markov processes: first general sharp estimates of
low-lying eigenvalues (Eyring–Kramers formulæ) [6, 7]

Semiclassical analysis, Witten Laplacians:: spectral point of
view [22, 11, 12, 10]

Numerical analysis for accelerated dynamics: Hyperdynamics [18],
TAD/KMC [8, 17], rigorous Eyring–Kramers transition rates.

Recent developments: non-reversible diffusions [5, 13, 15], entropic
barriers [19, 9], non-Markovian setting [1, 2]

And many more...
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Geometric assumptions

Suppose Ωβ ⊂ K0 compact for all β > 0.
(zi )0≤i<N : critical points of V in K0

Fix (ν
(i)
j , v

(i)
j )j=1,...,d eigendecomposition of ∇2V (zi ), U(i) eigenrotation.

Assume ν
(i)
1 < 0 if Ind(zi ) = 1, and there exist δ, γ : R+ → R+ such that:

√
βδ(β)

β→∞−−−−→ +∞,

δ(β)
β→∞−−−−→ 0,√

βγ(β)
β→∞−−−−→ 0,

O−i (β) ⊆ B(zi , δ(β)) ∩ Ωβ ⊆ O+
i (β),

(5)

where

O±i (β) = zi + B(0, δ(β)) ∩ E (i)

(
α(i)

√
β
± γ(β)

)
, (6)

E (i)(α) = U(i)
[
(−∞, α)× Rd−1

]
. (7)
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Parametrization: local geometry of the boundary around critical points

∂Ωβ

zi

2γ(β)

β−
1
2α(i)v

(i)
1

δ(β)

Figure: The local geometry of Ωβ in the neighborhood of a critical point zi which is

close to the boundary. The relevant length scales are γ(β)� β−
1
2 � δ(β)� 1.

Around saddle points close to the boundary, domains are asymptotically
orthogonal to the minimum energy path.
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Harmonic approximation of the Dirichlet spectrum

Theorem (B., Lelièvre, Stoltz 2024 (in preparation))

Let k ∈ N∗. Then
lim
β→∞

λk,β(Ωβ) = λH
k,α,

where λH
k,α is the k-th eigenvalue of an explicit operator −LH

α , the harmonic
approximation.

Example of a single minimum z0 and order-one saddle points z1, . . . , zN−1.

λ1(Ωβ)
β→∞−−−−→ 0, λ2(Ωβ)

β→∞−−−−→ min

[
ν

(0)
1 , min

0<i<N
|ν(i)

1 |
(
µ

0,α(i)
√
|ν(i)

1 |/2
+

1

2

)]
µ0,θ ground-state energy of harmonic oscillator 1

2
(x2 − ∂2

x ) with Dirichlet
boundary conditions on (−∞, θ).
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Idea of proof à la CFKS [12]: harmonic quasimodes

1 Work with Schrödinger-like Witten Laplacian, self-adjoint operator on
L2(Ω), with form domain H1

0 (Ω):

Hβ := −e−βV/2LβeβV/2 =
β

4
|∇V |2 − ∆V

2
− 1

β
∆,

locally approximated by

H
(i)
β,α := β(x − zi )

ᵀ∇2V (zi )
2

4
(x − zi )−

∆V (zi )

2
− 1

β
∆

with Dirichlet boundary condition on zi + B(0, δ(β)) ∩ E (i)
(
α(i)
√
β
± γ(β)

)
.

Denote
(
λ

(i)
n,β,α, ψ

(i)
n,β,α

)
its n-th eigenpair. Note λ

(i)
n,β,α is constant

w.r.t. β.

2 The k-th first eigenvectors of
⊕

i H
(i)
β,α can be seen as a

family
(
ψ

(ij )

nj ,β,α

)
j=1,...,k

, with ψ
(ij )

nj ,β,α
fastly decaying away from zij .

3 Consider quasimodes
(
χ

(ij )

β ψ
(ij )

nj ,β,α

)
j=1,...,k

with 1B(zi ,
1
2
δ(β)) ≤ χ

(i)
β ≤ 1B(zi ,δ(β)) smooth.
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Idea of proof (estimates)

1 Shift boundary condition inward by ρ/
√
β > 0: for β large enough,

each ψ
(i)
n,β,α−ρ is in the form domain H1

0 (Ωβ).

2 Standard arguments and Courant–Fischer Min-Max give upper
bound λk,β(Ωβ) ≤ λH

k,α−ρ, and perturbation theory allows to take ρ→ 0.

3 Construct smooth extended domain Ωβ ⊂ Ωρβ such

that B(zi , δ(β)) ∩ Ωρβ = B(zi , δ(β)) ∩ E (i)
(
α(i)+ρ√

β

)
for each 0 ≤ i < N.

4 Take u orthogonal to each of the
(
χ

(ij )

β ψ
(ij )

nj ,β,α+ρ

)
1≤j≤k−1

in L2(Ωρβ), so

that uχ
(ij )

β is orthogonal to ψ
(ij )

nj ,β,α+ρ in L2
(
E (ij )

(
α

(ij )
+ρ√
β

))
for each j .

5 Standard arguments using IMS formula and Courant–Fischer Max-Min
give λk,β(Ωρβ) ≤ λH

k,α+ρ.

6 Domain monotonicity gives λk,β(Ωβ) ≤ λH
k,α+ρ, take ρ→ 0.
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Finer asymptotics: additional assumptions

Harmonic approximation only
says #{small eigenvalues} = #{local minima far from the boundary}.

Assume z0 is the unique local minimum of V far from the boundary in all
the Ωβ , and define its bassin of attraction:

A(z0) =
{
x0 ∈ Rd

∣∣∣ lim
t→∞

xt = z0

}
,

where x ′t = −∇V (xt).

The low-lying index-one saddle points are:

Imin = Argmin
1≤i<N1

zi∈∂A(z0)

V (zi ), V ∗ = min
1≤i<N1

zi∈∂A(z0)

V (zi ). (8)

Assume that the domains contain enough of the energy well around z0:[
A(z0) ∩ {V < V ∗ + CV δ(β)2}

]
\
⋃

i∈Imin

B(zi , δ(β)) ⊂ Ωβ .
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Energy well assumption

Figure: The boundary cannot cross the shaded region.
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Finer asymptotics for λ1(Ωβ)

Modified Eyring–Kramers formula:

Theorem (B., Lelièvre, Stoltz 2024 (in preparation))

Let 0 < ε < 1. Under the previous assumptions, there exists c > 0 so that the
following estimate holds in the limit β → +∞:

λ1,β = e−β(V∗−V (z0))

∑
i∈Imin

|ν(i)
1 |

2πΦ
(
|ν(i)

1 |
1
2 α(i)

)√ det∇2V (z0)

|det∇2V (zi )|
(1 +O(εi (β)))

,
(9)

where Φ(x) = 1√
2π

∫ x

−∞ e−
t2

2 dt, and εi (β) decays polynomially in β.
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Construction of a more precise quasimode, see [7, 16]

Quasimode for u1,β

ψβ =
1

Zβ

ηβ +
∑
i∈Imin

χ
(i)
β

(
ϕ

(i)
β − ηβ

) , (10)

where ηβ = η
(

V (x)−V∗

Cηδ(β)2

)
1A(z0)(x) is a rough energy cutoff, and, as before,

1B(zi ,
1
2
δ(β)) ≤ χ

(i)
β ≤ 1B(zi ,δ(β)) is smooth.

Local approximation:

ϕ
(i)
β (x) =

∫ +∞

(x−zi )
ᵀv

(i)
1

e−β
|ν(i)

1
|

2
t2

ξ
(i)
β (t) dt∫ +∞

−∞
e−β

|ν(i)
1
|

2
t2

ξ
(i)
β (t) dt

, (11)

with 1(−Cξδ(β),α(i)/
√
β−2γ(β)) ≤ ξ

(i)
β ≤ 1(−2Cξδ(β),α(i)/

√
β−γ(β)) is smooth.



Sharp spectral asymptotics for reversible diffusions trapped in moving domains

Construction near a low-energy saddle point

Figure: Construction of the quasimode close to the boundary.
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Idea of proof of Eyring–Kramers formula.

Tune Cξ,Cη to ensure ψβ ∈ H1
0 ∩ H2(Ωβ , µ) for β large enough. Project ψβ

using the spectral projector πβ associated with λ1,β .

ϕ 7→ 1

2iπ

∮
Γ

(Lβ + z)−1ϕ dz .

Easy to show, using harmonic limit to isolate λ1,β from the rest of the
spectrum, that

‖(1− πβ)ψβ‖L2
µ(Ωβ ) = O(‖Lβψβ‖L2

µ(Ωβ )),

‖∇πβψβ‖2
L2
µ(Ωβ ) = ‖∇ψβ‖2

L2
µ(Ωβ ) +O

(
‖Lβψβ‖2

L2
µ(Ωβ )

)
.

(12)

Using a Laplace method adapted to moving domains, we
estimate ‖∇ψβ‖2

L2
µ(Ωβ ), and show ‖Lβψβ‖L2

µ(Ωβ ) � ‖∇ψβ‖L2
µ(Ωβ ). Allows to

compute sharp asymptotics for

λ1,β(Ωβ) =
‖∇πβψβ‖2

L2
µ(Ωβ )

‖πβψβ‖2
L2
µ(Ωβ )

.
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Asymptotic optimization of the boundary position

Figure: Blow-up of the transition e−β(V∗−V (z0))Jβ(Ωβ) as a function of α. The
semiclassical prescription is asymptotically optimal.
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Extension to Riemannian setting / multiple wells.

Moving generalized saddle points.

More general asymptotic geometries.

Asymptotic shape optimization in the entropic case.
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