Sharp spectral asymptotics for reversible diffusions trapped in moving domains

Noé Blassel (joint work with Tony Lelièvre and Gabriel Stoltz)

CERMICS lab, Ecole des Ponts ParisTech - MATHERIALS team, Inria ´

June 20, 2024

MATHerials

European Research Council Established by the European Commission

Setting: overdamped Langevin dynamics

We work with the SDE

$$
dX_t^{\beta} = -\nabla V(X_t^{\beta}) dt + \sqrt{2\beta^{-1}} dW_t,
$$
\n(1)

Assume $V:\mathbb{R}^d\to\mathbb{R}$ is smooth and **Morse**. X^β_t is reversible and ergodic with respect to the Gibbs measure

$$
d\mu(x) = \mathcal{Z}_{\beta}^{-1} e^{-\beta V(x)} dx.
$$

In computational statistical physics/molecular dynamics X_t^{β} : nuclear positions, V : interatomic potential, $\beta=1/(k_{\rm B}\,T)$: inverse temperature.

For smooth bounded $\Omega \subset \mathbb{R}^d$, the Dirichlet generator

$$
\mathcal{L}_{\beta}=-\nabla V\cdot\nabla+\frac{1}{\beta}\Delta.
$$

with domain $H_0^1(\Omega,\mu)\cap H^2(\Omega,\mu)$ is self-adjoint on $L^2(\Omega,\mu)$, with compact resolvent and spectrum:

$$
\cdots \leq -\lambda_{2,\beta}(\Omega) < -\lambda_{1,\beta}(\Omega) < 0
$$

Local approach to metastability

We consider metastable domains $\Omega \subset \mathbb{R}^d$, where a **local equilibrium** is reached quickly after which the exit time is large.

Notion of local equilibrium: quasistationary distributions.

Definition

Denote $\tau_\Omega=\inf\Big\{t\geq 0\,\Big|\mathsf X_t^\beta\not\in\Omega\Big\}.$ A QSD for $\mathsf X_t^\beta$ on Ω is a probability measure $\nu \in \mathcal{P}_1(\Omega)$ such that for all $A \in \mathcal{B}(\Omega)$

$$
\mathbb{P}^{\nu}\left(X_t^{\beta}\in A\middle|\tau_{\Omega}>t\right)=\nu(A)
$$

KELK KØLK VELKEN EL 1990

Metastability of Ω is related to separation of timescales: fast relaxation to/slow exit from the local equilibrium ν .

Metastable exit event: link with the Dirichlet spectrum

Proposition (Le Bris, Lelièvre, Luskin, Perez 2012 [\[14\]](#page-25-0))

Let $(\lambda_{1,\beta}, u_{1,\beta})$ be the principal Dirichlet eigenpair of $-\mathcal{L}_{\beta}$ in Ω , i.e.

$$
\lambda_{1,\beta} = \inf_{u \in H_{0,\mu}^1(\Omega)} \frac{\langle -\mathcal{L}_{\beta}u, u \rangle_{L_{\mu}^2(\Omega)}}{\|u\|_{L_{\mu}^2(\Omega)}^2} = \frac{1}{\beta} \frac{\int_{\Omega} |\nabla u_{1,\beta}|^2 e^{-\beta V}}{\int_{\Omega} u_{1,\beta}^2 e^{-\beta V}},
$$
(2)

and choose $u_{1,\beta} > 0$ on Ω . Then

$$
\nu(A) = \frac{\int_A u_{1,\beta} e^{-\beta V}}{\int_\Omega u_{1,\beta} e^{-\beta V}}
$$
(3)

is the unique QSD for X_t^β on Ω . Moreover, the exit time τ_Ω is exponentially distributed from ν and independent from the exit point:

$$
\mathbb{E}^{\nu}\left[\varphi(X_{\tau_{\Omega}}^{\beta})\mathbb{1}_{\tau_{\Omega}>t}\right]=e^{-\lambda_{1,\beta}}\mathbb{E}^{\nu}\left[\varphi(X_{\tau_{\Omega}}^{\beta})\right].
$$
\n(4)

The exit rate (slow time scale) from the QSD is given by the principal Dirichlet eigenvalue $\lambda_{1,\beta}$. **KORKARYKERKER POLO**

Decorrelation inside the state

Let $\lambda_{2,\beta}$ be the second Dirichlet eigenvalue of $-\mathcal{L}_{\beta}$ in Ω .

Theorem (Le Bris, Lelièvre, Luskin, Perez 2012 [\[14\]](#page-25-0)) Assume $\frac{d\mu_0}{d\mu}\in L^2(\Omega,\mu)$, where $X_0^{\beta}\sim\mu_0$, write $\mu_t=\mathrm{Law}\left(X_t^{\beta}\left|\tau_\Omega>t\right.\right).$ Then, $∃(C_1, C_2)(β, μ_0)$: $\|\mu_t - \nu\|_{\text{TV}} \leq C_1 e^{-(\lambda_{2,\beta} - \lambda_{1,\beta})t},$ sup
 $||f||_{\infty} ≤1$ $\mathbb{E}^{\mu_0}\left[f(X_{\tau_{\Omega}}^{\beta},\tau_{\Omega}-t)\middle|\tau_{\Omega}>t\right]-\mathbb{E}^{\nu}\left[f(X_{\tau_{\Omega}}^{\beta},\tau_{\Omega})\right]\right|\leq C_2e^{-(\lambda_{2,\beta}-\lambda_{1,\beta})t}.$

The relaxation rate to the QSD (fast time scale) is at least as large as the spectral gap $\lambda_{2,\beta} - \lambda_{1,\beta}$ of the Dirichlet generator \mathcal{L}_{β} .

KORKAR KERKER ST VOOR

A spectral optimization problem

Question: how to make Ω as locally metastable as possible ? Maximize separation of timescales.

$$
J_{\beta}(\Omega)=\frac{\lambda_{2,\beta}(\Omega)-\lambda_{1,\beta}(\Omega)}{\lambda_{1,\beta}(\Omega)}.
$$

Make exit time from the $\text{QSD} \gg$ decorrelation time to the QSD. Objective: define highly locally metastable states $(\Omega_i)_{i\in\mathbb{N}}$ in \mathbb{R}^d . Motivation:

- Accurate approximate state-to-state dynamics via renewal processes [\[3\]](#page-23-0)/jump processes.
- **Efficient algorithms to sample long trajectories (Parallel replica** methods [\[23,](#page-27-1) [21\]](#page-26-0)).
- The case $V = 0$ has been studied in the shape optimization litterature, e.g. the Payne–Polyá–Weinberger conjecture [\[20,](#page-26-1) [4\]](#page-23-1).

KORKARYKERKER POLO

Shape gradient descent

Isolated Dirichlet eigenvalues of \mathcal{L}_{β} are **shape-differentiable**. Assume $\lambda_{k,\beta}(\Omega_0)$ is simple.

Proposition (B., Lelièvre, Stoltz, 2024 (in preparation))

The map

$$
\begin{cases} \mathcal{W}^{1,\infty}(\mathbb{R}^d;\mathbb{R}^d) \to \mathbb{R} \\ \theta \mapsto \lambda_{k,\beta}((\theta + \text{Id})\Omega) \end{cases}
$$

is continuously Fréchet-differentiable at 0, with:

$$
\mathrm{d}\lambda_{k,\beta}(\Omega_0)\xi=-\frac{1}{\beta}\int_{\partial\Omega_0}\left(\frac{\partial u_{k,\beta}(\Omega_0)}{\partial\mathbf{n}}\right)^2(\xi\cdot\mathbf{n})\,\mathrm{e}^{-\beta V}\,\mathrm{d}\sigma,\quad\forall\,\xi\in\mathcal{W}^{1,\infty}(\mathbb{R}^d;\mathbb{R}^d),
$$

where σ denotes the surface measure on $\partial\Omega_0$, and n the outward surface normal to $Ω₀$.

Proof of the case $V = 0$ by Henrot transfers to the $L^2(\Omega, \mu)$ setting.

$$
\Omega\mapsto (\mathrm{Id}+\eta_k\nabla J_{\beta}(\Omega))\Omega,\quad \nabla J_{\beta}(\Omega):=-\frac{n}{\beta}\left[\frac{1}{\lambda_{1,\beta}}\left(\frac{\partial u_{2,\beta}}{\partial n}\right)^2-\frac{\lambda_{2,\beta}}{\lambda_{1,\beta}^2}\left(\frac{\partial u_{1,\beta}}{\partial n}\right)^2\right](\Omega)\\ \times\mathbb{C}\left[\frac{\lambda_{2,\beta}}{\lambda_{1,\beta}}\left(\frac{\partial u_{1,\beta}}{\partial n}\right)^2\right](\Omega).
$$

Local shape optimization around a potential well

Figure: Optimized domains for increasing β .

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Asymptotic optimization in the low-temperature limit

For realistic problems, $d \gg 1$, so solving $-\mathcal{L}_{\beta}u = \lambda u$ is not possible. **Idea:** Take a family of domains $(\Omega_{\beta})_{\beta>0}$. The spectrum is sensitive to a $\alpha\in\mathbb{R}^N$ with $\mathcal{N}\ll d$ as $\beta\to\infty.$ Find asymptotically optimal α as $\beta\to\infty.$ **Parameter:** $\alpha = (\alpha^{(i)})_{0 \leq i < N}$ is signed distance of critical points to the boundary on the scale $\beta^{-\frac{1}{2}}$:

$$
\alpha^{(i)} = \lim_{\beta \to \infty} \sqrt{\beta} \sigma(\partial \Omega_{\beta}, z_i) \in (-\infty, +\infty],
$$

where $(z_i)_{0 \leq i \leq N}$ are the critical points (assume this limit exists). We say z_i is far from the boundary if $\alpha^{(i)} = +\infty$, and close to the boundary if $\alpha^{(i)} < +\infty$.

Goal: compute the spectral asymptotics of $\lambda_1(\Omega_\beta)$, $\lambda_2(\Omega_\beta)$ in the limit $\beta \to 0$, and optimize the asymptotic behavior of the ratio $\lambda_2(\Omega_\beta)/\lambda_1(\Omega_\beta)$ w.r.t. α . Problem in spectral asymptotics with moving boundary.

Mathematical approaches to the exit problem and metastability

- **Large deviations:** (Friedlin & Wentzell): first mathematical proof of Ahrennius' law [\[24\]](#page-27-2)
- **Potential theory for Markov processes:** first general sharp estimates of low-lying eigenvalues (Eyring–Kramers formulæ) [\[6,](#page-23-2) [7\]](#page-24-0)
- **Semiclassical analysis, Witten Laplacians:**: spectral point of view [\[22,](#page-27-3) [11,](#page-24-1) [12,](#page-25-1) [10\]](#page-24-2)
- **Numerical analysis for accelerated dynamics:** Hyperdynamics [\[18\]](#page-26-2), TAD/KMC [\[8,](#page-24-3) [17\]](#page-26-3), rigorous Eyring–Kramers transition rates.
- Recent developments: non-reversible diffusions [\[5,](#page-23-3) [13,](#page-25-2) [15\]](#page-25-3), entropic barriers [\[19,](#page-26-4) [9\]](#page-24-4), non-Markovian setting [\[1,](#page-23-4) [2\]](#page-23-5)

KORKARRA ERKER SAGA

And many more...

Geometric assumptions

Suppose $\Omega_{\beta} \subset \mathcal{K}_0$ compact for all $\beta > 0$. $(z_i)_{0 \leq i \leq N}$: critical points of V in \mathcal{K}_0 Fix $(\nu_j^{(i)}, \nu_j^{(i)})_{j=1,...,d}$ eigendecomposition of $\nabla^2 V(z_i)$, $U^{(i)}$ eigenrotation. Assume $\nu_1^{(i)} < 0$ if ${\rm Ind}(z_i) = 1$, and there exist $\delta, \gamma : \mathbb{R}_+ \to \mathbb{R}_+$ such that:

$$
\begin{cases}\n\sqrt{\beta}\delta(\beta) \xrightarrow{\beta \to \infty} +\infty, \\
\delta(\beta) \xrightarrow{\beta \to \infty} 0, \\
\sqrt{\beta}\gamma(\beta) \xrightarrow{\beta \to \infty} 0, \\
\mathcal{O}_i^-(\beta) \subseteq B(z_i, \delta(\beta)) \cap \Omega_\beta \subseteq \mathcal{O}_i^+(\beta),\n\end{cases}
$$
\n(5)

where

$$
\mathcal{O}_i^{\pm}(\beta) = z_i + B(0,\delta(\beta)) \cap E^{(i)}\left(\frac{\alpha^{(i)}}{\sqrt{\beta}} \pm \gamma(\beta)\right), \tag{6}
$$

$$
E^{(i)}(\alpha) = U^{(i)} \left[(-\infty, \alpha) \times \mathbb{R}^{d-1} \right]. \tag{7}
$$

4 0 > 4 4 + 4 = + 4 = + = + + 0 4 0 +

Parametrization: local geometry of the boundary around critical points

Figure: The local geometry of Ω_{β} in the neighborhood of a critical point z_i which is close to the boundary. The relevant length scales are $\gamma(\beta)\ll \beta^{-\frac{1}{2}}\ll \delta(\beta)\ll 1.$

Around saddle points close to the boundary, domains are asymptotically orthogonal to the minimum energy path.**KORKARYKERKER POLO**

Harmonic approximation of the Dirichlet spectrum

Theorem (B., Lelièvre, Stoltz 2024 (in preparation))

 ϵ

Let $k \in \mathbb{N}^*$. Then

$$
\lim_{\beta\to\infty}\lambda_{k,\beta}(\Omega_{\beta})=\lambda_{k,\alpha}^{\mathrm{H}},
$$

where $\lambda^\text{H}_{k,\alpha}$ is the k-th eigenvalue of an explicit operator $-\mathcal{L}^\text{H}_\alpha$, the harmonic approximation.

Example of a single minimum z_0 and order-one saddle points z_1, \ldots, z_{N-1} .

$$
\lambda_1(\Omega_\beta)\xrightarrow{\beta\to\infty}0,\quad \lambda_2(\Omega_\beta)\xrightarrow{\beta\to\infty}\min\left[\nu_1^{(0)},\min_{0< i< N}|\nu_1^{(i)}|\left(\mu_{0,\alpha^{(i)}\sqrt{|\nu_1^{(i)}|/2}}+\frac{1}{2}\right)\right]
$$

 $\mu_{0,\theta}$ ground-state energy of harmonic oscillator $\frac{1}{2}(x^2-\partial_x^2)$ with Dirichlet boundary conditions on $(-\infty, \theta)$.

4 0 > 4 4 + 4 = + 4 = + = + + 0 4 0 +

Idea of proof à la CFKS [\[12\]](#page-25-1): harmonic quasimodes

■ Work with Schrödinger-like Witten Laplacian, self-adjoint operator on $L^2(\Omega)$, with form domain $H_0^1(\Omega)$:

$$
H_{\beta} := -e^{-\beta V/2} \mathcal{L}_{\beta} e^{\beta V/2} = \frac{\beta}{4} |\nabla V|^2 - \frac{\Delta V}{2} - \frac{1}{\beta} \Delta,
$$

locally approximated by

$$
H_{\beta,\alpha}^{(i)} := \beta(x-z_i)^T \frac{\nabla^2 V(z_i)^2}{4}(x-z_i) - \frac{\Delta V(z_i)}{2} - \frac{1}{\beta} \Delta
$$

- with Dirichlet boundary condition on $z_i+B(0,\delta(\beta))\cap E^{(i)}\left(\frac{\alpha^{(i)}}{\sqrt{\beta}}\pm\gamma(\beta)\right)$. Denote $\left(\lambda_{n,\beta,\alpha}^{(i)},\psi_{n,\beta,\alpha}^{(i)}\right)$ its *n*-th eigenpair. Note $\lambda_{n,\beta,\alpha}^{(i)}$ is constant w.r.t. β .
- $_2$ The *k*-th first eigenvectors of $\bigoplus_i H_{\beta,\alpha}^{(i)}$ can be seen as a family $\left(\psi^{(i_j)}_{\eta_j,\beta,\alpha}\right)_{j=1,...,k}$, with $\psi^{(i_j)}_{\eta_j,\beta,\alpha}$ fastly decaying away from $z_{i_j}.$ $_3$ Consider quasimodes $\left(\chi_{\beta}^{(i_j)}\psi_{\eta_j,\beta,\alpha}^{(i_j)}\right)_{j=1,...,k}$ with $\mathbb{1}_{B(z_i, \frac{1}{2}\delta(\beta))} \leq \chi_{\beta}^{(i)} \leq \mathbb{1}_{B(z_i, \delta(\beta))}$ smooth.

Idea of proof (estimates)

- \blacksquare Shift boundary condition inward by $\rho/\sqrt{\beta}>0$: for β large enough, each $\psi^{(i)}_{n,\beta,\alpha-\rho}$ is in the form domain $H^1_0(\Omega_\beta).$
- 2 Standard arguments and Courant–Fischer Min-Max give upper bound $\lambda_{k,\beta}(\Omega_\beta)\le \lambda_{k,\alpha-\rho}^{\rm H}$, and perturbation theory allows to take $\rho\to 0$.
- 3 Construct smooth extended domain $\Omega_\beta\subset\Omega_\beta^\rho$ such that $B(z_i, \delta(\beta)) \cap \Omega_{\beta}^{\rho} = B(z_i, \delta(\beta)) \cap E^{(i)}\left(\frac{\alpha^{(i)}+\rho}{\sqrt{\beta}}\right)$ for each $0 \leq i < N.$
- $\frac{4}{4}$ Take μ orthogonal to each of the $\left(\chi_{\beta}^{(i_j)}\psi_{n_j,\beta,\alpha+\rho}^{(i_j)}\right)$ $_{1\leq j\leq k-1}$ in $L^2(\Omega_{\beta}^{\rho}),$ so that $u\chi_{\beta}^{(i_j)}$ is orthogonal to $\psi_{\eta_j,\beta,\alpha+\rho}^{(i_j)}$ in $\mathcal{L}^2\left(E^{(i_j)}\left(\frac{\alpha^{(i_j)}+\rho}{\sqrt{\beta}}\right)\right)$ for each j .
- 5 Standard arguments using IMS formula and Courant–Fischer Max-Min give $\lambda_{k,\beta}(\Omega_{\beta}^{\rho}) \leq \lambda_{k,\alpha+\rho}^{\mathrm{H}}.$

ALL AND A REAGENE MORE

 δ Domain monotonicity gives $\lambda_{k,\beta}(\Omega_\beta)\leq \lambda_{k,\alpha+\rho}^{\rm H}$, take $\rho\to 0.$

Finer asymptotics: additional assumptions

Harmonic approximation only says $\#\{\text{small eigenvalues}\} = \#\{\text{local minima far from the boundary}\}.$

Assume z_0 is the unique local minimum of V far from the boundary in all the Ω_{β} , and define its bassin of attraction:

$$
\mathcal{A}(z_0)=\left\{x_0\in\mathbb{R}^d\,\Big|\,\lim_{t\to\infty}x_t=z_0\right\},\,
$$

where $x'_t = -\nabla V(x_t)$.

■ The low-lying index-one saddle points are:

$$
J_{\min} = \underset{\substack{1 \le i < N_1 \\ z_i \in \partial \mathcal{A}(z_0)}}{\text{Argmin}} V(z_i), \quad V^* = \underset{\substack{1 \le i < N_1 \\ z_i \in \partial \mathcal{A}(z_0)}}{\min} V(z_i). \tag{8}
$$

KORKARYKERKER POLO

Assume that the domains contain enough of the energy well around z_0 :

$$
\left[\mathcal{A}(z_0)\cap \{V
$$

Energy well assumption

Figure: The boundary cannot cross the shaded region.

KOKK@KKEKKEK E 1990

Finer asymptotics for $\lambda_1(\Omega_\beta)$

Modified Eyring–Kramers formula:

Theorem (B., Lelièvre, Stoltz 2024 (in preparation))

Let $0 < \epsilon < 1$. Under the previous assumptions, there exists $c > 0$ so that the following estimate holds in the limit $\beta \rightarrow +\infty$:

$$
\lambda_{1,\beta} = e^{-\beta(V^* - V(z_0))} \left[\sum_{i \in I_{\text{min}}} \frac{|\nu_1^{(i)}|}{2\pi \Phi\left(|\nu_1^{(i)}|^{\frac{1}{2}} \alpha^{(i)}\right)} \sqrt{\frac{\det \nabla^2 V(z_0)}{|\det \nabla^2 V(z_i)|}} \left(1 + \mathcal{O}(\varepsilon_i(\beta))\right) \right],\tag{9}
$$

KORKARYKERKER POLO

where $\Phi(x)=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^{x}e^{-\frac{t^2}{2}}\,\mathrm{d}t$, and $\varepsilon_i(\beta)$ decays polynomially in β .

Construction of a more precise quasimode, see [\[7,](#page-24-0) [16\]](#page-25-4)

Quasimode for $u_{1,8}$

$$
\psi_{\beta} = \frac{1}{Z_{\beta}} \left[\eta_{\beta} + \sum_{i \in I_{\text{min}}} \chi_{\beta}^{(i)} \left(\varphi_{\beta}^{(i)} - \eta_{\beta} \right) \right], \qquad (10)
$$

where $\eta_{\beta} = \eta \left(\frac{V(x)-V^*}{C_{\alpha}\delta(\beta)^2} \right)$ $\frac{\varphi(\chi)-V^*}{C_\eta\delta(\beta)^2}\Big) \, \mathbb{1}_{\mathcal{A}(z_0)}(\chi)$ is a rough energy cutoff, and, as before, $\mathbb{1}_{B(z_i, \frac{1}{2}\delta(\beta))} \leq \chi_{\beta}^{(i)} \leq \mathbb{1}_{B(z_i, \delta(\beta))}$ is smooth. L_{local} approximation:

$$
\varphi_{\beta}^{(i)}(x) = \frac{\int_{(x-z_i)^{\mathsf{T}} v_1^{(i)}}^{+\infty} e^{-\beta \frac{|v_1^{(i)}|}{2}t^2} \xi_{\beta}^{(i)}(t) dt}{\int_{-\infty}^{+\infty} e^{-\beta \frac{|v_1^{(i)}|}{2}t^2} \xi_{\beta}^{(i)}(t) dt},
$$
\n(11)

4 0 > 4 4 + 4 = + 4 = + = + + 0 4 0 +

with $\mathbb{1}_{(-\mathcal{C}_\xi\delta(\beta),\alpha^{(i)}/\sqrt{\beta}-2\gamma(\beta))}\leq \xi_\beta^{(i)}\leq \mathbb{1}_{(-2\mathcal{C}_\xi\delta(\beta),\alpha^{(i)}/\sqrt{\beta}-\gamma(\beta))}$ is smooth.

Construction near a low-energy saddle point

Figure: Construction of the quasimode close to the boundary.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Idea of proof of Eyring–Kramers formula.

Tune $\mathcal{C}_\xi,\mathcal{C}_\eta$ to ensure $\psi_\beta\in H^1_0\cap H^2(\Omega_\beta,\mu)$ for β large enough. Project ψ_β using the spectral projector π_β associated with $\lambda_{1,\beta}$.

$$
\varphi \mapsto \frac{1}{2i\pi} \oint_{\Gamma} (\mathcal{L}_{\beta} + z)^{-1} \varphi \,dz.
$$

Easy to show, using harmonic limit to isolate $\lambda_{1,\beta}$ from the rest of the spectrum, that

$$
\begin{cases}\n\|(1-\pi_{\beta})\psi_{\beta}\|_{L_{\mu}^{2}(\Omega_{\beta})} = \mathcal{O}(\|\mathcal{L}_{\beta}\psi_{\beta}\|_{L_{\mu}^{2}(\Omega_{\beta})}),\\ \|\nabla \pi_{\beta}\psi_{\beta}\|_{L_{\mu}^{2}(\Omega_{\beta})}^{2} = \|\nabla \psi_{\beta}\|_{L_{\mu}^{2}(\Omega_{\beta})}^{2} + \mathcal{O}\left(\|\mathcal{L}_{\beta}\psi_{\beta}\|_{L_{\mu}^{2}(\Omega_{\beta})}^{2}\right).\n\end{cases}
$$
\n(12)

Using a Laplace method adapted to moving domains, we estimate $\|\nabla\psi_\beta\|^2_{L^2_\mu(\Omega_\beta)}$, and show $\|\mathcal{L}_\beta\psi_\beta\|_{L^2_\mu(\Omega_\beta)}\ll \|\nabla\psi_\beta\|_{L^2_\mu(\Omega_\beta)}.$ Allows to compute sharp asymptotics for

$$
\lambda_{1,\beta}(\Omega_{\beta})=\frac{\left\|\nabla \pi_{\beta}\psi_{\beta}\right\|^{2}_{L^{2}_{\mu}(\Omega_{\beta})}}{\left\|\pi_{\beta}\psi_{\beta}\right\|^{2}_{L^{2}_{\mu}(\Omega_{\beta})}}.
$$

4 0 > 4 4 + 4 = + 4 = + = + + 0 4 0 +

Asymptotic optimization of the boundary position

Figure: Blow-up of the transition $\mathrm{e}^{-\beta(V^* - V(z_0))} J_\beta(\Omega_\beta)$ as a function of α . The semiclassical prescription is asymptotically optimal.

KORKARYKERKER POLO

- Extension to Riemannian setting $/$ multiple wells.
- **Moving generalized saddle points.**
- **More general asymptotic geometries.**
- Asymptotic shape optimization in the entropic case.

KORK STRAIN A STRAIN A COMP

- [1] A. Aleksian, P. Del Moral, A. Kurtzmann, and J. Tugaut. On the exit-problem for self-interacting diffusions, 2022.
- [2] A. Aleksian, P. Del Moral, A. Kurtzmann, and J. Tugaut. Self-interacting diffusions: long-time behaviour and exit-problem in the convex case, 2023.
- [3] D. Aristoff, M. Johnson, and D. Perez. Arbitrarily accurate, nonparametric coarse graining with Markov renewal processes and the Mori–Zwanzig formulation.

AIP Advances, 13(9), 2023.

[4] M. Ashbaugh and R. Benguria.

A sharp bound for the ratio of the first two eigenvalues of Dirichlet Laplacians and extensions.

Annals of Mathematics, 135(3):601–628, 1992.

[5] F. Bouchet and J. Reygner.

Generalisation of the Eyring–Kramers transition rate formula to irreversible diffusion processes. Annales Henri Poincaré, 17(12):3499-3532, 2016.

KORKARYKERKER POLO

[6] A. Bovier, M. Eckhoff, V. Gayrard, and M. Klein.

Metastability in reversible diffusion processes. I: Sharp asymptotics for capacities and exit times.

Journal of the European Mathematical Society, 6(4):399–424, 2004.

[7] A. Bovier, V. Gayrard, and M. Klein. Metastability in reversible diffusion processes. II: Precise asymptotics for small eigenvalues.

Journal of the European Mathematical Society, 7(1):69-99, 2005.

[8] G. Di Gesù, T. Lelièvre, D. Le Peutrec, and B. Nectoux. Jump markov models and transition state theory: the quasi-stationary distribution approach.

Faraday discussions, 195:469–495, 2016.

[9] V. Felli, B. Noris, and R. Ognibene. Eigenvalues of the Laplacian with moving mixed boundary conditions: the case of disappearing Dirichlet region.

Calculus of Variations and Partial Differential Equations, 60:1–33, 2021.

[10] B. Helffer and F. Nier.

Quantitative analysis of metastability in reversible diffusion processes via a Witten complex approach: the case with boundary.

Matemática contemporânea, 26:41–85, 2004.

[11] B. Helffer and J. Sjöstrand.

Puits multiples en mécanique semi-classique. IV: Étude du complexe de Witten.

Communications in partial differential equations, 10(3):245–340, 1985.

[12] W. Kirsch, H. Cycon, R. Froese, and B. Simon. Schrödinger Operators. Springer, Berlin, 1987.

[13] C. Landim and I. Seo.

Metastability of nonreversible random walks in a potential field and the Eyring-Kramers transition rate formula.

Communications on Pure and Applied Mathematics, 71(2):203–266, 2018.

KORKAR KERKER SAGA

- [14] C. Le Bris, T. Lelievre, M. Luskin, and D. Perez. A mathematical formalization of the parallel replica dynamics. Monte–Carlo Methods and Applications, 18:119–146, 2012.
- [15] D. Le Peutrec and L. Michel.

Sharp spectral asymptotics for nonreversible metastable diffusion processes.

Probability and Mathematical Physics, 1(1):3–53, 2020.

[16] D. Le Peutrec and B. Nectoux.

Small eigenvalues of the Witten Laplacian with Dirichlet boundary conditions: the case with critical points on the boundary. Analysis & PDE, 14(8):2595–2651, 2021.

[17] T. Lelièvre, D. Le Peutrec, and B. Nectoux.

Exit event from a metastable state and Eyring-Kramers law for the overdamped langevin dynamics.

In Stochastic Dynamics Out of Equilibrium: Institut Henri Poincaré, Paris, France, 2017, pages 331–363, 2019.

KORKARYKERKER POLO

[18] T. Lelièvre and F. Nier.

Low temperature asymptotics for quasistationary distributions in a bounded domain.

Analysis & PDE, 8(3):561–628, 2015.

- [19] T. Lelièvre, M. Rachid, and G. Stoltz. A spectral approach to the narrow escape problem in the disk. arXiv preprint, 2024.
- [20] L. Payne, G. Pólya, and H. Weinberger. On the ratio of consecutive eigenvalues. J. Math. Phys, 35(1-4):289–298, 1956.
- [21] D. Perez, B. Uberuaga, and A. Voter.

The parallel replica dynamics method – Coming of age. Computational Materials Science, 100:90–103, 2015.

[22] B. Simon.

Semiclassical analysis of low lying eigenvalues. I. non-degenerate minima: Asymptotic expansions.

KORKARYKERKER POLO

Annales de l'IHP: Physique Théorique, 38(3):295–308, 1983.

[23] A. Voter.

Parallel replica method for dynamics of infrequent events. Physical Review B, 57(22):9599–9606, 1998.

[24] A. Wentzell and M. Freidlin.

On small random perturbations of dynamical systems. Russian Mathematical Surveys, 25(1):R01, 1970.