CECAM Summer School on Sampling High-Dimensional Probability Measures with Applications in (Non)Equilibrium Molecular Dynamics and Statistics, University of Birmingham
CERMICS lab, École des Ponts ParisTech, MATHERIALS team, Inria Paris. Funding from ERC EMC2 and ANR SINEQ.
2025-07-06
% % %
%
%%%%%%% Notational macros %%%%%%%%%%%%%%%%%%%
%%% geometry % Distance of critical point #1 to the boundary (epsiloni()) % Relatively large radius around critical point #1 % Limit of epsiloi() as %local neighborhoods of the boundary %% hessian % orthogonal transfer matrix to an eigenbasis #2 = optional % k-th eigenvector of the hessian at z_i (i,k) = (#1,#2) % k-th eigenvalue of the hessian at z_i (i,k) = (#1,#2) %% harmonic oscillators % local oscillators K. #1: index of associated critical point. #2 optional shift (#2 = -) % eigenmode for K. #1: index of associated critical point. #2 index of the mode. #3 optional shift (#3 = -) % eigenmode for H_^{(i)}. #1: index (i) of associated critical point. #2 index of the mode. #3 optional shift (#3 = -) % quasimode for H_ % scaled cutoff function % k-th eigenvalue of the local oscillator K^{(i)}__i (#1: optional shift, #2:% k-th eigenvalue of tensor product of the K^{(i)}. (#1: k, #2: vector of boundary conditions).
% for proof of harmonic approximation
% %
$$
\[ \definecolor{gris_C}{RGB}{96,96,96} \definecolor{blanc_C}{RGB}{255,255,255} \definecolor{pistache_C}{RGB}{176,204,78} \definecolor{pistache2_C}{RGB}{150,171,91} \definecolor{jaune_C}{RGB}{253,235,125} \definecolor{jaune2_C}{RGB}{247,208,92} \definecolor{orange_C}{RGB}{244,157,84} \definecolor{orange2_C}{RGB}{239,119,87} \definecolor{bleu_C}{RGB}{126,151,206} \definecolor{bleu2_C}{RGB}{90,113,180} \definecolor{vert_C}{RGB}{96,180,103} \definecolor{vert2_C}{RGB}{68,141,96} \definecolor{pistache_light_C}{RGB}{235,241,212} \definecolor{jaune_light_C}{RGB}{254,250,224} \definecolor{orange_light_C}{RGB}{251,230,214} \definecolor{bleu_light_C}{RGB}{222,229,241} \definecolor{vert_light_C}{RGB}{216,236,218} \]
Fourier’s law: \(J = \kappa (T_+-T_-)\), \(\kappa=\) thermal conductivity.
Perturbed stochastic differential equation: \[ \mathrm{d}X^\eta_t = b(X^\eta_t)\,\mathrm{d}t+\sigma(X^\eta_t)\,\mathrm{d}W_t +\eta F(X^\eta_t)\,\mathrm{d}t,\qquad X^\eta_t\in\mathcal X. \] Parameters: vector fields \(\mathcal X\to T\mathcal X\), \(b\) (equilibrium drift), \(F\) (nonequilibrium forcing), \(\sigma\) (diffusion matrix), \(W\) Wiener process.
Strength of the perturbation: \(\eta\). Equilibrium when \(\eta = 0\).
Nonequilibrium ensemble: \(\psi_\eta\in\mathcal M_1(\mathcal X)=\) invariant measure for \(X^\eta\). Generally non-explicit for \(\eta\neq 0\).
Define a response observable of flux \(R:\mathcal X \to\mathbb R\), with \(\mathbb E_{\psi_0} R = 0\)
Linear response is the derivative of the expected flux at equilibrium: \[ \begin{equation}\alpha(F,R) = \underset{\eta \to 0}{\lim}\, \frac1\eta\mathbb E_{\psi_\eta}[R] \end{equation} \]
Macroscopically: does the forcing cause a flux in the nonequilibrium steady-state, or does the flux cause a resisting forcing ?
Microscopically: dynamics with fixed forcing / variable flux vs dynamics with a fixed flux / variable forcing.
Constant-flux dynamics \[ \mathrm{d}Y^r_t = b(Y^r_t)\,\mathrm{d}t+\sigma(Y^r_t)\,\mathrm{d}W_t + F(Y^r_t)\mathrm{d}\Lambda^r_t,\quad \mathrm{d}\Lambda^r_t = \lambda(Y_t^r)\,\mathrm{d}t + \widetilde{\lambda}(Y_t^r)\,\mathrm{d}W_t. \]
The forcing process/stochastic Lagrange multiplier \(\Lambda^r\) is constructed to enforce the constant flux condition: \(R(Y_t^{r}) = r \in {\mathbb{{R}}}\) for all \(t>0\).
\(\Lambda^r\) satisfies a SDE with explicit coefficients \(\lambda,\widetilde{\lambda}\), which can be obtained under the controllability condition \(F^\top\nabla R\neq 0\).
Generalization of the “Norton” method of Evans & Morriss (1980s) to stochastic dynamics.
Also works for vector-valued fluxes/time-dependent constraints.
Does \(\alpha(F,R) = \alpha^*(F,R)\) ?
Sometimes. Take \(F =N^{-1/2} \begin{pmatrix}1 & 0 & 0 & -1 & 0 & 0 \cdots \end{pmatrix}^\top\): “color-drift” constant forcing.
Linear responses coincide (\(N=1000\)).
Non-linear responses coincide ! \(\rightarrow\) question of equivalence of nonequilibrium ensembles.
Exercise: Take a Langevin particle on \({\mathbb{{R}}}/\mathbb Z \times {\mathbb{{R}}}\). Show that, for any \(V:{\mathbb{{R}}}/\mathbb Z\to {\mathbb{{R}}}\) smooth, for \(F(q,p)=(0,1)\) and \(R(q,p)=p\), \(\alpha^*(F,R)=\gamma^{-1}\). Conclude \(\alpha(F,R)\neq \alpha^*(F,R)\) in general.
Asymptotic variance as a function of system size, for equivalent nonequilibrium state points (shear-forcing of a Lennard-Jones fluid).
Anomalous scaling of the stationary variance: \(\mathbb E_{\pi^r_{N}}[(\lambda - \langle \lambda_{\pi_N^r} \rangle)^2]\propto N^{-5/3}\)