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Noé Blassel (joint work with Gabriel Stoltz)1
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Fixing the Flux: a Dual Approach to Computing Transport Coefficients

Transport coefficients

Measure sensitivities of fluxes in response to nonequilibrium perturbations.
Characterize dynamic properties of molecular systems (thermal transport,
diffusion, shear viscosity...), and parametrize macroscopic evolution equations
(e.g. Navier–Stokes).

In the small perturbation regime, the magnitude of the flux depends
asymptotically linearly on the magnitude of the perturbation. The
proportionality constant is the transport coefficient.
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Fixing the Flux: a Dual Approach to Computing Transport Coefficients

Standard NEMD dynamics: formal framework

Fix a d-dimensional configuration space X , a reference drift b and diffusion
matrix σ. External forcing: F : X → Rd , modulated in strength by η ∈ R. The
response flux is a function R : X → R, with zero average at equilibrium.

Standard NEMD, or “Thévenin”:

dX η
t = b(X η

t ) dt + σ(X η
t )dWt + ηF (X η

t )dt.

We measure averages of the response , with respect to the invariant
mesure µη (typically using ergodic averages). See2 for precise ∃!
statements for µη.

Transport coefficient:

ρR,F = lim
η→0

1

η

∫
X
R dµη.

Challenging to estimate due to low signal-to-noise ratio. Variance
reduction techniques are under active investigation3

2R. Spacek & G. Stoltz (2023)
3R. Spacek & G. Stoltz (2023), S. Darshan, A. Eberle & G. Stoltz (In preparation)
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Fixing the Flux: a Dual Approach to Computing Transport Coefficients

Dual approach: idea

NEMD = fix the forcing magnitude η, measure average flux µη(R).

Dual approach = fix the value of the flux r , and measure the average
magnitude νr (λ) of the forcing needed to induce it.

Stochastic version of the idea developed in4 for deterministic MD.

4Evans, Hoover, Failor, Moran, & Ladd (1983),D. Evans, & G. Morris (1985,1986,1993,...)
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Fixing the Flux: a Dual Approach to Computing Transport Coefficients

Dual approach: formal framewok

Norton dynamics:

dY r
t = b(Y r

t ) dt + σ(Y r
t ) dWt + F (Y r

t ) dΛr
t .

The forcing process Λr
t is determined by fixing the response: R(Y r

t ) = r
for all t ≥ 0.

Explicit form for forcing:

Λr
t = Λr

0 +

∫ t

0

λ(Y r
s )ds + Λ̃r

t , Λ̃r
t =

∫ t

0

λ̃(Y r
s ) dWs .

And thus for the dynamics:

dY r
t = PF ,∇R(Y r

t ) [b(Y r
t )dt + σ(Y r

t )dWt ]−
(
∇2R : ΠF ,∇R,σ

)
F

2∇R · F (Y r
t ) dt.

PF ,∇R is a non-orthogonal projector onto ∇R⊥, the tangent space to the
constant-response manifold Σr = R−1{r}.
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Fixing the Flux: a Dual Approach to Computing Transport Coefficients

Geometric picture

The oblique projector PF ,∇R(y)

y

Σr

TΣr (y)

∇R(y)

F (y)

∆y

PF,∇R (y)∆y
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Fixing the Flux: a Dual Approach to Computing Transport Coefficients

Geometric picture

The increments get reprojected onto the tangent space to the
constant-response manifold, but with respect to F instead of ∇R.

“Controllability” condition: F · ∇R 6= 0 almost everywhere on Σr .

In the case F = ∇R, standard constrained dynamics, well-studied in MD
(geometrical constraints and thermodynamic integration for free energy
computations).

Loosely, the forcing is given by the magnitude of the recall force in the
direction F (y), up to some curvature correction.
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Fixing the Flux: a Dual Approach to Computing Transport Coefficients

Computing transport coefficients

Assume ∃! Norton steady-state νr for all r small enough.

Define the Norton transport coefficient:

ρ̃R,F = lim
r→0

r∫
Σr
λ dνr

.

Measure the inverse of a resistance instead of a conductance (and neglect
martingale contributions).

Generalization 1: the case of constraints on multiple fluxes (Onsager
relations).

Generalization 2: the case of a time-dependent constraint on the flux
R(Y r

t ) = rt .
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Fixing the Flux: a Dual Approach to Computing Transport Coefficients

Example: mobility computations

Constant perturbation F ∈ RdN . Mass matrix M, friction coefficient γ > 0,
inverse temperature β = (kBT )−1.

Nonequilibrium Langevin dynamics:
dqt = M−1ptdt,

dpt = −∇V (qt) dt − γM−1pt dt +

√
2γ

β
dWt + ηF dt,

(1)

The response is the particle flux in the direction F

R = F ᵀM−1p.

Single drift:
Fix = δ(i − 1), Fi,y = Fi,z = 0

Color drift:
Fix = (−1)iN−1/2, Fi,y = Fi,z = 0
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Fixing the Flux: a Dual Approach to Computing Transport Coefficients

Norton mobility dynamics

In this case, the Norton dynamics is very simple: the dynamics on the momenta
is just and easily shown to be well-posed:

dqt = M−1pt dt,

dpt = PF ,M−1F

(
−∇V (qt) dt − γM−1pt dt +

√
2γ

β
dWt

)
,

(2)

with

PF ,M−1F = Id− FF ᵀM−1

F ᵀM−1F
.

10 / 18



Fixing the Flux: a Dual Approach to Computing Transport Coefficients

Numerical results: mobility

We apply the method to a Lennard-Jones fluid of 1000 particles. Left: color
drift. Right: single drift.

Dual method gives a consistent estimate of the mobility in the case of the bulk
forcing (color drift).
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Fixing the Flux: a Dual Approach to Computing Transport Coefficients

Numerical results: mobility

The response curves coincide far in the non-linear regime!
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Fixing the Flux: a Dual Approach to Computing Transport Coefficients

Numerical results: shear viscosity

We apply the dual approach to a non-equilibrium system perturbed to estimate
the shear viscosity. The forcing direction corresponds to a fixed underlying
longitudinal shear flow field, the response to a Fourier coefficient of the
longitudinal velocity profile5

5G. Stoltz & R. Joubaud (2012), Gosling, McDonald & Singer (1973)
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Fixing the Flux: a Dual Approach to Computing Transport Coefficients

Numerical results: shear viscosity

We check that the finite-estimators of the linear response give consistent
results in the large N limit.

Here, F1 and U1 are the Fourier coefficients of the forcing profile and the
response velocity profile, γx is the friction coefficient in the direction x .
Extrapolating to the thermodynamic limit N →∞ yields close estimates of the
shear viscosity for the NEMD and dual approach.
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Fixing the Flux: a Dual Approach to Computing Transport Coefficients

Numerical results: shear viscosity

In the shear viscosity case, observe an improvement in the asymptotic variance
of Norton estimators.
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Numerical results: shear viscosity

To explain this discrepancy, we compare the variance for λ in the Norton
ensemble with the variance for R in the standard NEMD equilibrium ensembles.

Surprising and asymptotically better scaling for the Norton method, but higher
variance: improvement comes from correlation time.
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Fixing the Flux: a Dual Approach to Computing Transport Coefficients

Numerical results: shear viscosity

Indeed, this is what we observe.

Pearson autocorrelations functions for η = r = 0 in the standard NEMD and
Norton ensembles. Left: standard NEMD, Right: Norton.
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Fixing the Flux: a Dual Approach to Computing Transport Coefficients

Many questions for the future:

Continuous/stochastic analysis: criteria for well-posedness,
existence/uniqueness of steady-state, pathwise ergodicity, rates of
convergence to Norton equilibrium.

Theory: equivalence of ensembles at equilibrium, linear response theory for
Norton dynamics, consistency results for linear responses, equivalence of
non-equilibrium ensembles.

Numerical analysis: explain concentration rate of λ/shorter correlation
times, error analysis for splitting schemes.
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