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The timescale problem in MD

Increase in computational power ∆P ∝ ∆Natoms for a given simulation
time Tsim. But ∆P 6∝ ∆Tsim for a given Natoms!
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Accelerated dynamics (Voter, A.F.)[18]

Exploiting metastability to speed up transitions. Metastability: the
dynamics is ”stuck” in a local equilibrium state Ω.

Temperature Accelerated Dynamics: heat up the system and filter out
”unrealistic” transitions in a post-processing step. (assumes
Eyring–Kramers laws hold)

Hyperdynamics: add a biasing potential to reduce energetic barriers
surrounding Ω. (assumes Gibbs invariant measure)

Parallel Replica: speed up transitions by following the first of many
independent replicas to escape Ω (works for any Markov process if local
equilibrium in Ω exists.)
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Formulation using the QSD

Dynamics Xt ∈ Rd .

Definition

A quasi-stationnary distribution (QSD) in Ω ⊂ Rd is a probability distribution ν
such that:

Pν (Xt ∈ A |Xs ∈ Ω, 0 ≤ s ≤ t) = ν(A).

Generally, ν = lim
t→∞

Law (Xt |Xs ∈ Ω, 0 ≤ s ≤ t) .

Let τ = exit time from Ω.
Key property (four-line proof):

∃λ > 0 s.t. τ ∼ E(λ), Xτ independent of τ.

Metastable exit from Ω: sample independent replicas X
(1)
0 , . . . ,X

(N)
0 ∼ ν, i =

index of first replica to escape.
Using the key property:

(Nτi ,X
(i)
τi ) ∼ (τ,Xτ ).
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The ParRep algorithm

Figure: Taken from [16]

Gain: parallel sampling of metastable exit event.
Overhead: preparation of independent replicas ∼ ν.
Efficient if Tdecorr+dephase � Texit.
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Spectral characterization

Proposition (Le Bris, Lelièvre, Luskin, Perez 2012[11])

Assume Xt = −∇V (Xt)dt +
√

2β−1dWt (overdamped Langevin). The QSD
in Ω is given by:

ν(A) =

∫
A
u1e
−βV∫

Ω
u1e−βV

,Eν [τ ] = 1/λ1,

where (λ1, u1) satisfying{
−Lβu1 := ∇V · ∇u1 − β−1∆u1 = λ1u1, in Ω,

u1 = 0, on ∂Ω,

is the smallest eigenpair of the generator Lβ with absorbing conditions on ∂Ω.

The QSD is computed with the solution to a Dirichlet eigenvalue problem in a
weighted space

L2
µ(Ω) = {f :

∫
Ω

f 2e−βV < +∞},

and the exit rate from the QSD is the eigenvalue λ1 = T−1
exit.
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Speed of convergence to the QSD

Theorem (Le Bris, Lelièvre, Luskin, Perez 2012[11])

The law of the exit event (τ,Xτ ) starting from µt := Law(Xt |τ > t) converges
to the law of (τ,Xτ ) under the QSD exponentially fast:

sup
‖f ‖∞≤1

|Eµt [f (Xτ , τ)]− Eν [f (Xτ , τ)]| ≤ Ce−(λ2−λ1)t .

The equilibration rate to the QSD is given by the spectral gap λ2 − λ1 of the
generator Lβ killed at the boundary ∂Ω.
How to choose Ω ?

Maximize J(Ω) = λ2(Ω)−λ1(Ω)
λ1(Ω)

.

Make the exit time as large as possible compared to the decorrelation time.

Loosely: maximize the separation of timescales (make the domain as
metastable as possible).

Default choice: Ω is a bassin of attraction for steepest descent.
Suboptimal because of recrossings around the saddle.
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Direct approach: shape optimization of eigenvalues

Isolated Dirichlet eigenvalues of Lβ are shape-differentiable:

Proposition (B., Lelièvre, Stoltz, 2024 (in preparation))

The map {
W1,∞(Rd ;Rd) −→ R
θ 7→ λk((θ + Id)Ω)

is continuously Fréchet-differentiable at 0, with:

dλk(Ω0)ξ = − 1

β

∫
∂Ω0

(
∂uk(Ω0)

∂n

)2

(ξ · n) e−βV dσ, ∀ ξ ∈ W1,∞(Rd ;Rd),

where σ denotes the surface measure on ∂Ω0, and n the outward surface
normal to Ω0.
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Shape gradient descent: β = 3
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Shape gradient descent: β = 6
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Shape gradient descent: β = 9

The computed domains seem to close in on the energetic well at low
temperatures, and ”spill out” past the saddle point to a certain energy level.
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Indirect approach: optimization of the low-temperature asymptotics

For real systems, solving −Lβu = λu is impossible.

Idea: parametrize a family of domains (Ωβ,α)β>0 with α ∈ Rp, p � d .
Find asymptotically optimal Ωβ,α as β →∞.

Goal: find asymptotics of λ1(Ωβ,α), λ2(Ωβ,α) in the limit β → 0.

Allows: optimization of asymptotics for λ2(Ωβ,α)/λ1(Ωβ,α) w.r.t. α.

Mathematically: a question in spectral asymptotics
with moving boundary.
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Mathematical approaches to metastability

Large deviations: (Friedlin & Wentzell): first mathematical proof of
Ahrennius’ law [19]

Potential theory for Markov processes: approaches (Bovier, Eckhoff &
al.) first sharp estimates of low-lying eigenvalues [2, 3]

Semiclassical analysis, Witten Laplacians: (Hellfer, Sjöstrand, Nier &
al.): alternative point of view [17, 7, 8, 6]

Numerical analysis for accelerated dynamics: (Nier, Lelièvre & al.)
Hyperdynamics [14], TAD/KMC [4, 13], rigorous Eyring–Kramers
transition rates.

Recent developments: non-reversible diffusions [1, 10, 12], entropic
barriers [15, 5], resolvent formulation [9].

And many more... Active field with many open questions.
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Assumption/choice: local geometry of the boundary

∂Ωβ,α

zi

2γ(β)

β−
1
2α(i)v

(i)
1

δ(β)

Figure: Local geometry of ∂Ωβ,α around a saddle point zi . Length scales:

γ(β)� β−
1
2 � δ(β). Direction v

(i)
1 is unstable eigenvector of ∇2V (zi ).

α = (α(i))i=1,...,m signed distances of the boundary to the saddle points on

the scale β−
1
2 . α(i) = lim

β→∞

√
βσ(∂Ωβ,α, zi ). where (zi )i=1,...,m are the

saddle points.

Domains whose boundaries are roughly perpendicular to minimum
energy paths.
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Limit behavior of the low-lying of the spectrum

Convergence of any finite number of eigenvalues.

Theorem (B., Lelièvre, Stoltz 2024 (in preparation))

Let k ∈ N. Then:
lim
β→∞

λk(Ωβ,α) = λH
k,α,

where λH
k,α is the k-th eigenvalue of a certain operator −LH

β,α.

The operator LH
β,α is the harmonic approximation, with tractable spectrum.

Assume single minimum z0, only order-one saddle points z1, . . . , zm.

λ1(Ωβ,α)
β→∞−−−−→ 0, λ2(Ωβ,α)

β→∞−−−−→ min

[
ν

(0)
1 , min

i=1,...,m
|ν(i)

1 |
(
µ

0,α(i)
√
|ν(i)

1 |/2
+

1

2

)]
,

ν
(i)
1 = bottom eigenvalue of ∇V 2(zi ),

µ0,θ = ground-state energy for 1
2
(x2 − ∂2

x ) with infinite potential on x > θ.
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Sharp asymptotics for λ1(Ωβ,α)

Extension of the Eyring–Kramers formula to moving boundaries.

Theorem (B., Lelièvre, Stoltz 2024 (in preparation))

λ1(Ωβ,α) = e−β(V∗−V (z0))

∑
i∈Imin

|ν(i)
1 |

2πΦ
(
|ν(i)

1 |
1
2α(i)

)√ det∇2V (z0)

|det∇2V (zi )|

 (1 + r(β)).

Φ(x) =
1√
2π

∫ x

−∞
e−

t2

2 dt

Imin = Argmin
i=1,...,m

V (zi ), V ∗ = min
i=1,...,m

V (zi )

r(β)
β→∞−−−−→ 0

Main technical tool: an extension of Laplace’s method for moving domains of
integration.



How to define good metastable states?

Application: asymptotic optimization in the one-saddle case

Theorems 1 and 2 give sharp asymptotics for [(λ2 − λ1)/λ1] (Ωβ,α). We can
optimize!
Instructive: the case of a single saddle point z1 (α ∈ R).

λ2(Ωβ,α)− λ1(Ωβ,α)

λ1(Ωβ,α)

β→∞∼ Ce−β(V (z1)−V (z0))λH
2,αΦ

(
|ν(i)

1 |
1
2α(i)

)
.

The prefactor depends on α:

λH
2,αΦ

(
|ν(i)

1 |
1
2α(i)

)
= |ν(1)

1 |
1
2

(
κ ∧

[
µ0,θ/

√
2 +

1

2

])
Φ(θ),

κ = ν
(0)
1 /|ν(1)

1 | is a curvature ratio, and θ = |ν(1)
1 |

1
2α is a reduced distance to

the boundary.
Reduced objective:

J(κ, θ) =

(
κ ∧

[
µ0,θ/

√
2 +

1

2

])
Φ(θ).
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Optimization of J(κ, θ)

Figure: Left: objective landscape and optimal choice θ∗(κ). Right:
J(κ, θ∗(κ))/J(κ, 0).
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Case of a sharp saddle (κ ≤ 1)

The benefits of spilling out outweighs the cost (α∗ = +∞), but taper off
quickly for θ ' 1.96.
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Case of a soft saddle (κ > 1)

Non-trivial optimal α∗, but easy to find by precomputing κ 7→ θ∗(κ).
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Compute good domains on the fly

Practical algorithm:

Run the dynamics until you detect a saddle point zij .

Compute imaginary frequency ωij = |ν(ij)
1 |

1
2 at the saddle.

Find minima mi , mj on both sides of the saddle. Compute corresponding

bottom frequencies ωi = |ν(i)
1 |

1
2 , ωj = |ν(j)

1 |
1
2 .

Parametrize the boundary around zij for the transition i → j with a

hyperplane at a distance β−
1
2ω−1

ij θ
∗(κi→j), where κi→j = ω2

i /ω
2
ij in the

unstable direction.

Do the same for the reverse transition j → i .

Far from a saddle point, revert to the standard definition of the state.
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[14] T. Lelièvre and F. Nier.
Low temperature asymptotics for quasistationary distributions in a
bounded domain.
Analysis & PDE, 8(3):561–628, 2015.
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