How to define good metastable states?

Noé Blassel (joint work with Tony Lelièvre and Gabriel Stoltz)

CERMICS lab, École des Ponts ParisTech - MATHERIALS team, Inria

April 6, 2024

MATHerials

European Research Council Established by the European Commission

The timescale problem in MD

Accelerated dynamics (Voter, A.F.)[18]

Exploiting metastability to speed up transitions. Metastability: the dynamics is "stuck" in a local equilibrium state $\Omega.$

- Temperature Accelerated Dynamics: heat up the system and filter out "unrealistic" transitions in a post-processing step. (assumes Eyring-Kramers laws hold)
- Hyperdynamics: add a biasing potential to reduce energetic barriers surrounding Ω. (assumes Gibbs invariant measure)
- Parallel Replica: speed up transitions by following the first of many independent replicas to escape Ω (works for any Markov process if local equilibrium in Ω exists.)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Formulation using the QSD

Dynamics $X_t \in \mathbb{R}^d$.

Definition

A quasi-stationnary distribution (QSD) in $\Omega \subset \mathbb{R}^d$ is a probability distribution ν such that:

$$\mathbb{P}^{\nu}\left(X_t\in A\,|\,X_s\in\Omega,\,0\leq s\leq t
ight)=
u(A).$$

Generally,
$$u = \lim_{t \to \infty} \operatorname{Law} \left(X_t \, | \, X_s \in \Omega, \, 0 \leq s \leq t \right).$$

Let $\tau = \text{exit time from } \Omega$. Key property (four-line proof):

 $\exists \lambda > 0 \text{ s.t. } \tau \sim \mathcal{E}(\lambda), \quad X_{\tau} \text{ independent of } \tau.$

Metastable exit from Ω : sample independent replicas $X_0^{(1)}, \ldots, X_0^{(N)} \sim \nu$, i = index of first replica to escape.

Using the key property:

$$(N\tau_i, X_{\tau_i}^{(i)}) \sim (\tau, X_{\tau}).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

The ParRep algorithm

Figure: Taken from [16]

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

э

Gain: parallel sampling of metastable exit event. **Overhead**: preparation of independent replicas $\sim \nu$. **Efficient** if $T_{\text{decorr+dephase}} \ll T_{\text{exit}}$.

Spectral characterization

Proposition (Le Bris, Lelièvre, Luskin, Perez 2012[11])

Assume $X_t = -\nabla V(X_t) dt + \sqrt{2\beta^{-1}} dW_t$ (overdamped Langevin). The QSD in Ω is given by:

$$u(A) = rac{\int_A u_1 \mathrm{e}^{-eta V}}{\int_\Omega u_1 \mathrm{e}^{-eta V}}, \mathbb{E}^{
u}[au] = 1/\lambda_1,$$

where (λ_1, u_1) satisfying

$$\begin{cases} -\mathcal{L}_{\beta} u_{1} := \nabla V \cdot \nabla u_{1} - \beta^{-1} \Delta u_{1} = \lambda_{1} u_{1}, & \text{ in } \Omega, \\ u_{1} = 0, & \text{ on } \partial \Omega, \end{cases}$$

is the smallest eigenpair of the generator \mathcal{L}_{β} with absorbing conditions on $\partial \Omega$.

The QSD is computed with the solution to a Dirichlet eigenvalue problem in a weighted space

$$L^2_\mu(\Omega) = \{f: \int_\Omega f^2 \mathrm{e}^{-eta V} < +\infty\},$$

and the **exit rate** from the QSD is the eigenvalue $\lambda_1 = T_{\text{exit}}^{-1}$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Speed of convergence to the QSD

Theorem (Le Bris, Lelièvre, Luskin, Perez 2012[11])

The law of the exit event (τ, X_{τ}) starting from $\mu_t := \text{Law}(X_t | \tau > t)$ converges to the law of (τ, X_{τ}) under the QSD exponentially fast:

$$\sup_{|f||_{\infty}\leq 1}|\mathbb{E}^{\mu_t}\left[f(X_{\tau},\tau)\right]-\mathbb{E}^{\nu}\left[f(X_{\tau},\tau)\right]|\leq C\mathrm{e}^{-(\lambda_2-\lambda_1)t}.$$

The equilibration rate to the QSD is given by the spectral gap $\lambda_2 - \lambda_1$ of the generator \mathcal{L}_{β} killed at the boundary $\partial\Omega$. How to choose Ω ?

- Maximize $J(\Omega) = \frac{\lambda_2(\Omega) \lambda_1(\Omega)}{\lambda_1(\Omega)}$.
- Make the exit time as large as possible compared to the decorrelation time.
- Loosely: maximize the separation of timescales (make the domain as metastable as possible).
- Default choice: Ω is a bassin of attraction for steepest descent.
 Suboptimal because of recrossings around the saddle.

Direct approach: shape optimization of eigenvalues

Isolated Dirichlet eigenvalues of \mathcal{L}_{β} are **shape-differentiable**:

Proposition (B., Lelièvre, Stoltz, 2024 (in preparation))

The map

$$egin{cases} \mathcal{W}^{1,\infty}(\mathbb{R}^d;\mathbb{R}^d) o\mathbb{R}\ heta\mapsto\lambda_k((heta+\mathrm{Id})\Omega) \end{cases}$$

is continuously Fréchet-differentiable at 0, with:

$$\mathrm{d}\lambda_k(\Omega_0)\xi = -\frac{1}{\beta}\int_{\partial\Omega_0}\left(\frac{\partial u_k(\Omega_0)}{\partial \mathrm{n}}\right)^2(\xi\cdot\mathrm{n})\,\mathrm{e}^{-\beta V}\,\mathrm{d}\sigma,\quad\forall\,\xi\in\,\mathcal{W}^{1,\infty}(\mathbb{R}^d;\mathbb{R}^d),$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

where σ denotes the surface measure on $\partial\Omega_0,$ and n the outward surface normal to $\Omega_0.$

Shape gradient descent: $\beta = 3$

◆□ ▶ ◆□ ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへ⊙

Shape gradient descent: $\beta = 6$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Shape gradient descent: $\beta = 9$

The computed domains seem to close in on the energetic well at low temperatures, and "spill out" past the saddle point to a certain energy level. $< \Box \succ < \Box \succ < \Box \succ < \Xi \succ < \Xi \succ$

Indirect approach: optimization of the low-temperature asymptotics

For real systems, solving $-\mathcal{L}_{\beta}u = \lambda u$ is impossible.

- Idea: parametrize a family of domains $(\Omega_{\beta,\alpha})_{\beta>0}$ with $\alpha \in \mathbb{R}^p$, $p \ll d$. Find asymptotically optimal $\Omega_{\beta,\alpha}$ as $\beta \to \infty$.
- **Goal**: find asymptotics of $\lambda_1(\Omega_{\beta,\alpha}), \lambda_2(\Omega_{\beta,\alpha})$ in the limit $\beta \to 0$.
- **Allows**: optimization of asymptotics for $\lambda_2(\Omega_{\beta,\alpha})/\lambda_1(\Omega_{\beta,\alpha})$ w.r.t. α .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

 Mathematically: a question in spectral asymptotics with moving boundary.

Mathematical approaches to metastability

- Large deviations: (Friedlin & Wentzell): first mathematical proof of Ahrennius' law [19]
- Potential theory for Markov processes: approaches (Bovier, Eckhoff & al.) first sharp estimates of low-lying eigenvalues [2, 3]
- Semiclassical analysis, Witten Laplacians: (Hellfer, Sjöstrand, Nier & al.): alternative point of view [17, 7, 8, 6]
- Numerical analysis for accelerated dynamics: (Nier, Lelièvre & al.) Hyperdynamics [14], TAD/KMC [4, 13], rigorous Eyring–Kramers transition rates.
- Recent developments: non-reversible diffusions [1, 10, 12], entropic barriers [15, 5], resolvent formulation [9].

And many more... Active field with many open questions.

Assumption/choice: local geometry of the boundary

Figure: Local geometry of $\partial\Omega_{\beta,\alpha}$ around a saddle point z_i . Length scales: $\gamma(\beta) \ll \beta^{-\frac{1}{2}} \ll \delta(\beta)$. Direction $v_1^{(i)}$ is unstable eigenvector of $\nabla^2 V(z_i)$.

- $\alpha = (\alpha^{(i)})_{i=1,...,m}$ signed distances of the boundary to the saddle points on the scale $\beta^{-\frac{1}{2}}$. $\alpha^{(i)} = \lim_{\beta \to \infty} \sqrt{\beta} \sigma(\partial \Omega_{\beta,\alpha}, z_i)$. where $(z_i)_{i=1,...,m}$ are the saddle points.
- Domains whose boundaries are roughly perpendicular to minimum energy paths.

Limit behavior of the low-lying of the spectrum

Convergence of any finite number of eigenvalues.

Theorem (B., Lelièvre, Stoltz 2024 (in preparation))

Let $k \in \mathbb{N}$. Then:

$$\lim_{\beta\to\infty}\lambda_k(\Omega_{\beta,\alpha})=\lambda_{k,\alpha}^{\rm H},$$

where $\lambda_{k,\alpha}^{\mathrm{H}}$ is the k-th eigenvalue of a certain operator $-\mathcal{L}_{\beta,\alpha}^{\mathrm{H}}$.

The operator $\mathcal{L}_{\beta,\alpha}^{\mathrm{H}}$ is the **harmonic approximation**, with tractable spectrum. Assume single minimum z_0 , only order-one saddle points z_1, \ldots, z_m .

$$\lambda_1(\Omega_{\beta,\alpha}) \xrightarrow{\beta \to \infty} 0, \quad \lambda_2(\Omega_{\beta,\alpha}) \xrightarrow{\beta \to \infty} \min\left[\nu_1^{(0)}, \min_{i=1,\dots,m} |\nu_1^{(i)}| \left(\mu_{0,\alpha^{(i)}\sqrt{|\nu_1^{(i)}|/2}} + \frac{1}{2}\right)\right],$$

Sharp asymptotics for $\lambda_1(\Omega_{\beta,\alpha})$

Extension of the Eyring-Kramers formula to moving boundaries.

Theorem (B., Lelièvre, Stoltz 2024 (in preparation))

$$\lambda_1(\Omega_{\beta,\alpha}) = \mathrm{e}^{-\beta(V^* - V(z_0))} \left[\sum_{i \in I_{\min}} \frac{|\nu_1^{(i)}|}{2\pi \Phi\left(|\nu_1^{(i)}|^{\frac{1}{2}}\alpha^{(i)}\right)} \sqrt{\frac{\det \nabla^2 V(z_0)}{|\det \nabla^2 V(z_i)|}} \right] (1 + r(\beta)).$$

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{t^{2}}{2}} dt$$
$$I_{\min} = \underset{i=1,...,m}{\operatorname{Argmin}} V(z_{i}), \quad V^{*} = \underset{i=1,...,m}{\min} V(z_{i})$$
$$r(\beta) \xrightarrow{\beta \to \infty} 0$$

Main technical tool: an extension of Laplace's method for moving domains of integration.

Application: asymptotic optimization in the one-saddle case

Theorems 1 and 2 give sharp asymptotics for $[(\lambda_2 - \lambda_1)/\lambda_1](\Omega_{\beta,\alpha})$. We can optimize!

Instructive: the case of a single saddle point z_1 ($\alpha \in \mathbb{R}$).

$$\frac{\lambda_2(\Omega_{\beta,\alpha}) - \lambda_1(\Omega_{\beta,\alpha})}{\lambda_1(\Omega_{\beta,\alpha})} \stackrel{\beta \to \infty}{\sim} C \mathrm{e}^{-\beta(V(z_1) - V(z_0))} \lambda_{2,\alpha}^{\mathrm{H}} \Phi\left(|\nu_1^{(i)}|^{\frac{1}{2}} \alpha^{(i)} \right).$$

The prefactor depends on α :

$$\lambda_{2,\alpha}^{\mathrm{H}} \Phi\left(|\nu_{1}^{(i)}|^{\frac{1}{2}} \alpha^{(i)}\right) = |\nu_{1}^{(1)}|^{\frac{1}{2}} \left(\kappa \wedge \left[\mu_{0,\theta/\sqrt{2}} + \frac{1}{2}\right]\right) \Phi(\theta),$$

 $\kappa=\nu_1^{(0)}/|\nu_1^{(1)}|$ is a curvature ratio, and $\theta=|\nu_1^{(1)}|^{\frac{1}{2}}\alpha$ is a reduced distance to the boundary.

Reduced objective:

$$J(\kappa, \theta) = \left(\kappa \wedge \left[\mu_{0, \theta/\sqrt{2}} + \frac{1}{2}\right]\right) \Phi(\theta).$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Optimization of $J(\kappa, \theta)$

Figure: Left: objective landscape and optimal choice $\theta^*(\kappa)$. Right: $J(\kappa, \theta^*(\kappa))/J(\kappa, 0)$.

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < ⊙

Case of a sharp saddle ($\kappa \leq 1$)

The benefits of spilling out outweighs the cost ($\alpha^* = +\infty$), but taper off quickly for $\theta \gtrsim 1.96$.

▲□▶ ▲□▶ ▲臣▶ ★臣▶ = 臣 = のへで

Case of a soft saddle ($\kappa > 1$)

Non-trivial optimal α^* , but easy to find by precomputing $\kappa \mapsto \theta^*(\kappa)$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Compute good domains on the fly

Practical algorithm:

- Run the dynamics until you detect a saddle point z_{ij}.
- Compute imaginary frequency $\omega_{ij} = |\nu_1^{(ij)}|^{\frac{1}{2}}$ at the saddle.
- Find minima m_i, m_j on both sides of the saddle. Compute corresponding bottom frequencies ω_i = |ν₁⁽ⁱ⁾|^{1/2}, ω_j = |ν₁^(j)|^{1/2}.
- Parametrize the boundary around z_{ij} for the transition $i \rightarrow j$ with a hyperplane at a distance $\beta^{-\frac{1}{2}}\omega_{ij}^{-1}\theta^*(\kappa_{i\rightarrow j})$, where $\kappa_{i\rightarrow j} = \omega_i^2/\omega_{ij}^2$ in the unstable direction.
- Do the same for the reverse transition $j \rightarrow i$.
- Far from a saddle point, revert to the standard definition of the state.

[1] F. Bouchet and J. Reygner.

Generalisation of the Eyring–Kramers transition rate formula to irreversible diffusion processes.

Annales Henri Poincaré, 17(12):3499-3532, 2016.

[2] A. Bovier, M. Eckhoff, V. Gayrard, and M. Klein. Metastability in reversible diffusion processes. I: Sharp asymptotics for capacities and exit times.

Journal of the European Mathematical Society, 6(4):399–424, 2004.

 [3] A. Bovier, V. Gayrard, and M. Klein. Metastability in reversible diffusion processes. II: Precise asymptotics for small eigenvalues.

Journal of the European Mathematical Society, 7(1):69–99, 2005.

[4] G. Di Gesù, T. Lelièvre, D. Le Peutrec, and B. Nectoux. Jump markov models and transition state theory: the quasi-stationary distribution approach.

Faraday discussions, 195:469-495, 2016.

[5] V. Felli, B. Noris, and R. Ognibene.

Eigenvalues of the Laplacian with moving mixed boundary conditions: the case of disappearing Dirichlet region.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Calculus of Variations and Partial Differential Equations, 60:1-33, 2021.

[6] B. Helffer and F. Nier.

Quantitative analysis of metastability in reversible diffusion processes via a Witten complex approach: the case with boundary.

Matemática contemporânea, 26:41-85, 2004.

[7] B. Helffer and J. Sjöstrand.

Puits multiples en mécanique semi-classique. IV: Étude du complexe de Witten.

Communications in partial differential equations, 10(3):245-340, 1985.

- [8] W. Kirsch, H. Cycon, R. Froese, and B. Simon. Schrödinger Operators. Springer, Berlin, 1987.
- C. Landim, D. Marcondes, and I. s. Seo.
 A resolvent approach to metastability. Journal of the European Mathematical Society, pages 1–56, 2023.

[10] C. Landim and I. Seo.

Metastability of nonreversible random walks in a potential field and the Eyring-Kramers transition rate formula.

Communications on Pure and Applied Mathematics, 71(2):203–266, 2018.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

 [11] C. Le Bris, T. Lelievre, M. Luskin, and D. Perez.
 A mathematical formalization of the parallel replica dynamics. Monte-Carlo Methods and Applications, 18:119–146, 2012.

[12] D. Le Peutrec and L. Michel.

Sharp spectral asymptotics for nonreversible metastable diffusion processes.

Probability and Mathematical Physics, 1(1):3–53, 2020.

[13] T. Lelièvre, D. Le Peutrec, and B. Nectoux.

Exit event from a metastable state and Eyring-Kramers law for the overdamped langevin dynamics.

In Stochastic Dynamics Out of Equilibrium: Institut Henri Poincaré, Paris, France, 2017, pages 331–363, 2019.

[14] T. Lelièvre and F. Nier.

Low temperature asymptotics for quasistationary distributions in a bounded domain.

Analysis & PDE, 8(3):561-628, 2015.

 [15] T. Lelièvre, M. Rachid, and G. Stoltz.
 A spectral approach to the narrow escape problem in the disk. arXiv preprint, 2024.

[16] C. Lu, A. Voter, and D. Perez.

Extending atomistic simulation timescale in solid/liquid systems: Crystal growth from solution by a parallel-replica dynamics and continuum hybrid method.

The Journal of Chemical Physics, 140(4), 2014.

[17] B. Simon.

Semiclassical analysis of low lying eigenvalues. I. non-degenerate minima: Asymptotic expansions.

Annales de l'IHP: Physique Théorique, 38(3):295–308, 1983.

- [18] A. Voter, F. Montalenti, and T. Germann. Extending the time scale in atomistic simulation of materials. *Annual review of materials research*, 32(1):321–346, 2002.
- [19] A. Wentzell and M. Freidlin. On small random perturbations of dynamical systems. *Russian Mathematical Surveys*, 25(1):R01, 1970.