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Fixing the Flux: a Dual Approach to Computing Transport Coefficients

Transport coefficients

Measure sensitivity of flux induced by nonequilibrium perturbation
Parametrize macroscopic evolution equations (e.g. Navier–Stokes)
Dynamical quantities: thermal conductivity, mobility, shear viscosity...
Magnitude of flux depends linearly on the flux in the small perturbation
regime.
Equilibrium methods (Green–Kubo, tangent dynamics2, martingale
product estimators3).
Nonequilibrium dynamics.

2R. Assaraf, B. Jourdain, T. Lelièvre & R. Roux (2015)
3P. Pleháč, G. Stoltz & T. Wang (2021)
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Fixing the Flux: a Dual Approach to Computing Transport Coefficients

Standard NEMD dynamics: formal framework

Fix a d-dimensional configuration space X , a reference drift b and diffusion
matrix σ. External forcing: F : X → Rd , modulated in strength by η ∈ R. The
response flux is a function R : X → R, with zero average at equilibrium.

Standard NEMD:

dX η
t = b(X η

t ) dt + σ(X η
t )dWt + ηF (X η

t )dt.

We measure averages of the response , with respect to the invariant
mesure µη (typically using ergodic averages). See4 for precise ∃!
statements for µη.

Transport coefficient:

ρR,F = lim
η→0

1

η

∫
X
R dµη, ρ̂T ,ηR,F =

1

ηT

∫ T

0

R(X η
t )dt

Challenging to estimate due to scaling of the variance in O(η−2) for the
standard estimator. Variance reduction techniques: active area of research5

4R. Spacek & G. Stoltz (2023)
5R. Spacek & G. Stoltz (2023), S. Darshan, A. Eberle & G. Stoltz (In preparation)
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Fixing the Flux: a Dual Approach to Computing Transport Coefficients

Dual approach: formal framewok

Idea: fix value of the flux r exactly, measure average magnitude of the

forcing needed to induce it. Stochastic version of the Norton method.6

Dual dynamics:

dY r
t = b(Y r

t ) dt + σ(Y r
t ) dWt + F (Y r

t ) dΛr
t .

Stochastic process Λr
t chosen to fix the response: R(Y r

t ) = r for all t ≥ 0.

Dynamics on a submanifold Σr = R−1{r}.
Explicit form for the forcing:

Λr
t = Λr

0 +

∫ t

0

λ(Y r
s ) ds +

∫ t

0

λ̃(Y r
s )dWs .

Explicit form for the dynamics:

dY r
t = PF ,∇R(Y r

t ) [b(Y r
t )dt + σ(Y r

t )dWt ]−
(
∇2R : ΠF ,∇R,σ

)
F

2∇R · F (Y r
t ) dt.

PF ,∇R is a non-orthogonal projector onto ∇R⊥ = TΣr in the direction F .

6Evans, Hoover, Failor, Moran, & Ladd (1983),D. Evans, & G. Morris (1985,1986,1993,...)
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Fixing the Flux: a Dual Approach to Computing Transport Coefficients

Geometric picture

The oblique projector PF ,∇R(y):

y

Σr

TΣr (y)

∇R(y)

F (y)

∆y

PF,∇R (y)∆y

PF ,∇R(y) = Id− F (y)⊗∇R(y)

F (y) · ∇R(y)
, ΠF ,∇R,σ = PF ,∇Rσσ

ᵀP
ᵀ
∇F ,R .
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Fixing the Flux: a Dual Approach to Computing Transport Coefficients

Dual transport coefficients

Assume ∃! Norton steady-state µr,∗ for all r small enough.

Average forcing magnitude determined by the bounded variation
component of the forcing process∫ t

0

λ(Y r
s )ds, t ≥ 0.

Dual transport coefficient:

ρ∗R,F = lim
r→0

r∫
Σr
λdµr,∗ , ρ̂T ,r,∗R,F =

Tr∫ T

0
λ(Y r

t ) dt
.

The procedure can be generalized to vector-valued responses and
time-dependent constraints.

Nonequilibrium analog of microcanonical/canonical duality (equivalence of
ensembles).
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Fixing the Flux: a Dual Approach to Computing Transport Coefficients

Norton Langevin dynamics

Apply the general framework to kinetic Langevin equations, with responses of
the form

R(q, p) = pᵀG(q).

Typical examples: mobility, shear viscosity.
NEMD:

dqηt = M−1pηt dt,

dpηt =
[
−∇V (qηt ) + ηF (qηt )

]
dt − γM−1pηt dt +

√
2γ

β
dWt .

(1)

M=mass matrix, 0 < γ=damping coefficient, β = (kBT )−1=inverse

temperature.

Norton:

dqrt = M−1prt dt,

dprt = PF ,G (qrt )

(
−∇V (qrt )dt − γM−1prt dt +

√
2γ

β
dWt

)

−
∇G(qrt )prt ·M−1prt

F (qrt ) · G(qrt )
F (qrt ) dt.

. (2)
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Fixing the Flux: a Dual Approach to Computing Transport Coefficients

Example: mobility computations

Forcing: constant perturbation F ∈ RdN .

Response: particle flux in the
direction F

R = F ᵀM−1p.

Single drift – singular forcing:

Fi,x = δi,1, Fi,y = Fi,z = 0

Color drift – bulk forcing:

Fi,x = (−1)iN−1/2, Fi,y = Fi,z = 0
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Fixing the Flux: a Dual Approach to Computing Transport Coefficients

Norton mobility dynamics

Projection of equilibrium momentum dynamics
dqt = M−1pt dt,

dpt = PF ,M−1F

(
−∇V (qt) dt − γM−1pt dt +

√
2γ

β
dWt

)
,

(3)

PF ,M−1F = Id− FF ᵀM−1

F ᵀM−1F
.
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Fixing the Flux: a Dual Approach to Computing Transport Coefficients

Numerical results: mobility

Lennard-Jones fluid of 1000 particles (liquid argon). Left: color drift (bulk
forcing/response). Right: single drift (singular forcing/response).

Linear responses coincide in the case of bulk forcings.
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Fixing the Flux: a Dual Approach to Computing Transport Coefficients

Numerical results: mobility with a bulk forcing

Non-linear responses coincide as well:
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Fixing the Flux: a Dual Approach to Computing Transport Coefficients

Shear viscosity7

Forcing F acts only on x-components, according to a y -profile f .

∀ 1 ≤ i ≤ N, ∀ 2 ≤ α ≤ d , F (q)i,x = f (qi,y ), F (q)iα = 0,

In non-equilibrium steady-state, measurable y -profile in the x-components of
velocity. Localized linear response: ux(y). Shear viscosity ν:

−νu′′x (y) + γxρux(y) = ρf (y) =⇒ ν = ρ

(
F1

U1
− γx

)(
Ly

2π

)2

,

Fourier coefficients F1,U1 of f and ux . Response observable

R(q, p) =
1

N

N∑
j=1

(
M−1p

)
j,x

exp

(
2iπqj,y
Ly

)
. (4)

7G. Stoltz & R. Joubaud (2012), Gosling, McDonald & Singer (1973)
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Shear viscosity
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Shear viscosity: equivalence of nonlinear responses

Lennard–Jones fluid: consistent (non)linear response profiles:

14 / 19
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Shear viscosity: consistency in the thermodynamic limit

Ergodic estimators of the linear response are consistent results in the limit
N →∞:

Extrapolating the estimated shear viscosity to the limit N →∞ give close
estimates for NEMD and dual approach.
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Shear viscosity: gain in asymptotic variance

Asymptotic variance of estimators for F1/U1 from ergodic averages:

Standard NEMD ≈ doubles the asymptotic variance with respect to dual
approach.
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Shear viscosity: decay of autocorrelations

To explain this discrepancy, we compare the variance for λ in the Norton
ensemble with the variance for R in the standard NEMD equilibrium ensembles.

Pearson autocorrelations functions for η = r = 0 in the standard NEMD and
Norton ensembles. Left: standard NEMD, Right: Norton.
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Shear viscosity: scaling of variance

Scaling of the variance with system size:

NEMD: Varµ0 (R) = O(N−1)→ consistent with spatial CLT.

Dual method: Varµ0,∗(λ) = O(N−5/3)→ gain in asymptotic variance increases
with system size. 18 / 19
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Conclusion

This work:

General framework to derive dual nonequilibrium dynamics.

Consistency/promising scaling properties of the approach on simple but realistic
systems.

Class of numerical methods (splitting schemes for dual Langevin dynamics).

Many theoretical questions are opened:

Well-posedness, existence/uniqueness of steady-state, ergodicity/convergence to
equilibrium for the dual dynamics.

Equivalence of (non)equilibrium ensembles, equivalence of linear responses,
Green–Kubo type formulas.

Numerical analysis: scaling law for Var(λ) / correlation times, error analysis for
numerical schemes.

Simulations using Molly: https://github.com/JuliaMolSim/Molly.jl
Code available at: https://github.com/noeblassel/ArticleNorton/

Preprint: https://arxiv.org/abs/2305.08224

Thank you!
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