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Fixing the Flux: a Dual Approach to Computing Transport Coefficients

Transport coefficients

Measure sensitivity of flux induced by nonequilibrium perturbation

Parametrize macroscopic evolution equations (e.g. Navier—Stokes)

Dynamical quantities: thermal conductivity, mobility, shear viscosity...

Magnitude of flux depends linearly on the flux in the small perturbation

regime.

m Equilibrium methods (Green-Kubo, tangent dynamics?, martingale
product estimators®).

m Nonequilibrium dynamics.
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2R. Assaraf, B. Jourdain, T. Lelizvre & R. Roux (2015)

3P. Plehag, G. Stoltz & T. Wang (2021)
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Fixing the Flux: a Dual Approach to Computing Transport Coefficients

Standard NEMD dynamics: formal framework

Fix a d-dimensional configuration space X, a reference drift b and diffusion
matrix o. External forcing: F : X — RY modulated in strength by n € R. The
response flux is a function R : X — R, with zero average at equilibrium.

m Standard NEMD:

dX" = b(X]) dt + o(X{") AW, +nF(X") dt.
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Standard NEMD dynamics: formal framework

Fix a d-dimensional configuration space X, a reference drift b and diffusion
matrix o. External forcing: F : X — RY modulated in strength by n € R. The
response flux is a function R : X — R, with zero average at equilibrium.

m Standard NEMD:
dX" = b(X]) dt + o(X{") AW, +nF(X") dt.

m We measure averages of the response , with respect to the invariant
mesure u" (typically using ergodic averages). See* for precise 3!
statements for u".

m Transport coefficient:

.1 R 1 /7 ,
prF = lim p /X Rdu",  prp=-—=[ R(X")dt

= Challenging to estimate due to scaling of the variance in O(n™2) for the
standard estimator. Variance reduction techniques: active area of research®

“R. Spacek & G. Stoltz (2023)
°R. Spacek & G. Stoltz (2023), S. Darshan, A. Eberle & G. Stoltz: (In preparation)
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Fixing the Flux: a Dual Approach to Computing Transport Coefficients

Dual approach: formal framewok

m Idea: fix value of the flux r exactly, measure average magnitude of the
forcing needed to induce it. Stochastic version of the Norton method.®

SEvans, Hoover, Failor, Moran, & Ladd (1983),D. Evans, & G. Morris (1985,1986,1993,...)
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t t
/\;:/\5+/ /\(Ys’)ds+/ (YD) dW..
0 0

5Evans, Hoover, Failor, Moran, & Ladd (1983),D. Evans, & G. Morris (1985,1986,1993,...)
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0 0
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(V2R . I'Ipva,U) F
2VR - F

AY{ = Pevr(Y0) [B(Y)dt + o(Y{)AWi] - (Y)dt.
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4/19



Fixing the Flux: a Dual Approach to Computing Transport Coefficients

Dual approach: formal framewok

m Idea: fix value of the flux r exactly, measure average magnitude of the

forcing needed to induce it. Stochastic version of the Norton method.®

m Dual dynamics:

dytr — b(yt’) dt + O'(Ytr)th + F( Ytr) d/\;
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Dynamics on a submanifold £, = R™!{r}.

m Explicit form for the forcing:
t t
A =Ng +/ YY) ds +/ AYS) dWs.
0 0

m Explicit form for the dynamics:

(V2R . I'Ipva,U) F
2VR - F

AY{ = Pevr(Y0) [B(Y)dt + o(Y{)AWi] - (Y)dt.

[ ﬁF,VR is a non-orthogonal projector onto VRY = TX, in the direction F.
5Evans, Hoover, Failor, Moran, & Ladd (1983),D. Evans, & G. Morris (1985,1986,1993,...)
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Fixing the Flux: a Dual Approach to Computing Transport Coefficients

Geometric picture

The oblique projector ﬁpva(y):

Pr,wvr(y)Ay

F(y) ® VR(y)

Preorb) =10 Gy R)

) TpT
MNevro = Prvroo" Pyr .
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Dual transport coefficients

Assume 3! Norton steady-state p”* for all r small enough.

m Average forcing magnitude determined by the bounded variation
component of the forcing process

t
/ AY)ds, t>0.
0
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m Dual transport coefficient:

* . r
PRF = lim ——— p = —
RF = IIM fir Xdur R,F fOT AYr)de
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~T,ryx __ Tr

* . r
PRF = lim ——— p = —
RF = IIM fir Xdur R,F fOT AYr)de

m The procedure can be generalized to vector-valued responses and
time-dependent constraints.
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Dual transport coefficients

Assume 3! Norton steady-state p”* for all r small enough.

m Average forcing magnitude determined by the bounded variation
component of the forcing process

t
/ AY)ds, t>0.
0

m Dual transport coefficient:

p* — lim ; ﬁT,r,* _ L
RET S0 [ Ndpr BECITA(Y ) At

m The procedure can be generalized to vector-valued responses and
time-dependent constraints.

m Nonequilibrium analog of microcanonical/canonical duality (equivalence of

ensembles).
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Norton Langevin dynamics

Apply the general framework to kinetic Langevin equations, with responses of
the form
R(q,p) = p"G(q).
Typical examples: mobility, shear viscosity.
= NEMD:
gl = M~1p} dt,
1)

2
dp! = [~V V(q!) + nF(q))] dt — yM~1pl dt + | % AW,.

M=mass matrix, 0 < y=damping coefficient, 8 = (kg T) l=inverse
temperature.
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dp! = [~V V(q!) + nF(q))] dt — yM~1pl dt + | % AW,.

M=mass matrix, 0 < y=damping coefficient, 8 = (kg T) l=inverse
temperature.
m Norton:

dgf = M~'pfdt,

_ 2
dpf = Pr,c(ar) <—VV(q{)dt—wM1p{dt+ \/?th> )

vG(ar r.Mfl r
_ Mp(qg)dt,
F(af)- G(a;)
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Forcing: constant perturbation F € R,

«0O> «Fr 4

1PN G4
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direction F

Forcing: constant perturbation F € RN, Response: particle flux in the

R=F"Mp.

«40>» «F»r» « =>»

«E

1PN G4
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Fixing the Flux: a Dual Approach to Computing Transport Coefficients

Example: mobility computations

Forcing: constant perturbation F € R, Response: particle flux in the
direction F
R=F M !p.

Single drift — singular forcing:

Fix =dia, F,'yy =F,=0

s

Color drift — bulk forcing:

Fix=(-1)N""2 F,=F.=0

’ s
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Norton mobility dynamics

Projection of equilibrium momentum dynamics

dg: = M 'p, dt,
_ _ 2 (3)
dp: = Pry-1r (—VV(qt)dt — M pedt + /% th) ,
= FFTM~?
PF,M—IF =1Id - FTM-1F’
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Fixing the Flux: a Dual Approach to Computing Transport Coefficients

Numerical results: mobility

Lennard-Jones fluid of 1000 particles (liquid argon). Left: color drift (bulk

forcing/response). Right: single drift (singular forcing/response).
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Numerical results: mobility

Lennard-Jones fluid of 1000 particles (liquid argon). Left: color drift (bulk

forcing/response). Right: single drift (singular forcing/response).
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Linear responses coincide in the case of bulk forcings.
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Numerical results: mobility with a bulk forcing

Non-linear responses coincide as well:
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Fixing the Flux: a Dual Approach to Computing Transport Coefficients

Shear viscosity’

Forcing F acts only on x-components, according to a y-profile f.
VI<i<N,V2<a<d, F(qix=f(qy), F(q)ia=0,

In non-equilibrium steady-state, measurable y-profile in the x-components of
velocity. Localized linear response: uy(y). Shear viscosity v:

—vil(y) + wpux(y) = pf(y) = v=0p (% - %> <2L7YT>2

Fourier coefficients Fi, Us of f and ux. Response observable

R(q,p) = i( ) exp (2':&) , (4)

Y

7G. Stoltz & R. Joubaud (2012), Gosling, McDonald & Singer (1973)
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Shear viscosity: equivalence of nonlinear responses

Lennard—Jones fluid: consistent (non)linear response profiles:
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Shear viscosity: consistency in the thermodynamic limit

Ergodic estimators of the linear response are consistent results in the limit

N — oo:
0.4y x_
| X Norton 10705 e X Norton (slope = -0.67)
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Extrapolating the estimated shear viscosity to the limit N — oo give close
estimates for NEMD and dual approach.
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Shear viscosity: gain in asymptotic variance

Asymptotic variance of estimators for F1/U; from ergodic averages:

Norton (linear force profile)

Norton (constant force profile)

Norton (sinusoidal force profile)

NEMD (linear force profile)

NEMD (constant force profile)

NEMD (sinusoidal force profile)
——————— slope=-2

Asymptotic variance for U
=
[=]

1072 10°
Forcing magnitude

Standard NEMD = doubles the asymptotic variance with respect to dual
approach.
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Shear viscosity: decay of autocorrelations

To explain this discrepancy, we compare the variance for X in the Norton
ensemble with the variance for R in the standard NEMD equilibrium ensembles.
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Pearson autocorrelations functions for = r = 0 in the standard NEMD and
Norton ensembles. Left: standard NEMD, Right: Norton.
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Shear viscosity: scaling of variance

Scaling of the variance with system size:

X
102
X
o) X
3 .
c s
.© 3
T 107 X
© g
> .., .
107 e
A (Norton, slope= -1.67)
R (Thévenin, slope=-1.0)
L L L
1025 1630 1035

N

NEMD: Var,o(R) = O(N~') — consistent with spatial CLT.

Dual method: Var,0.«(\) = O(N75/3) — gain in asymptotic variance increases
with system size. 1819
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Conclusion

This work:
m General framework to derive dual nonequilibrium dynamics.

m Consistency/promising scaling properties of the approach on simple but realistic
systems.

m Class of numerical methods (splitting schemes for dual Langevin dynamics).
Many theoretical questions are opened:

m Well-posedness, existence/uniqueness of steady-state, ergodicity/convergence to
equilibrium for the dual dynamics.

m Equivalence of (non)equilibrium ensembles, equivalence of linear responses,
Green—Kubo type formulas.

m Numerical analysis: scaling law for Var(\) / correlation times, error analysis for
numerical schemes.

Simulations using Molly: https://github.com/JuliaMolSim/Molly.jl
Code available at: https://github.com/noeblassel/ArticleNorton/

Preprint: https://arxiv.org/abs/2305.08224

Thank you!
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