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Introduction
Motivation: Estimate transport coefficients (mobility, thermal
conductivity, shear viscosity).

Framework: Stochastic dynamics out of equilibrium.

Core idea: Make the flux the independent state variable instead
of the forcing.

Hope: Derive estimators with better statistical properties (lower
asymptotic variance).

General definition
Usual NEMD or “Thévenin” dynamics:

dXη
t = b(Xη

t ) dt+ σ(Xη
t ) dWt + ηF (Xη

t ) dt,

Reference (equilibrium) dynamics: η = 0.
Norton dynamics:{

dY rt = b(Y rt ) dt+ σ(Y rt ) dWt + F (Y rt ) dΛrt ,

R(Y rt ) = R(Y r0 ) = r.

Constrain the response flux R to be constant: dynamics on a
submanifold of phase space.

Forcing process:
dΛrt = λrt dt+ dΛ̃rt

with Λ̃r a martingale.

Transport coefficients
Thévenin:

ρF,R = lim
η→0

Eη [R]

η
.

where Eη is expectation with respect to steady-state of Thévenin
dynamics.

Norton
ρ̃F,R = lim

r→0

r

E∗r [λ]
,

where E∗r is expectation with respect to steady-state of Norton
dynamics, λ is the forcing.

In practice, these quantities are estimated through trajectory
averages.

Illustration

Explicit expressionClosed-form
The dynamics can be written

dY rt = PF,∇R(Y rt ) [b(Y rt )dt+ σ(Y rt )dWt]−
(
∇2R : ΠF,∇R,σ

)
(Y rt )

2∇R(Y rt ) · F (Y rt )
F (Y rt ) dt,

with PF,∇R(y) a non-orthogonal projector, and

ΠF,∇R,σ(y) =
[
PF,∇Rσσ

ᵀP
ᵀ
F,∇R

]
(y).

Non-martingale part of the forcing: λt = λ(Y rt ), with

λ(y) =

[
− 1

F · ∇R

(
b · ∇R+

1

2
∇2R : ΠF,∇R,σ

)]
(y).

Controllability condition: F · ∇R 6= 0.

Generalizations: Time-dependent flux R(Y rt ) = rt, multiple flux constraints R(Y rt ) = r ∈ Rc,
also explicit.

Langevin setting
Take R(q, p) of the form G(q) · p, adapted for mobility and shear viscosity computations. Norton
dynamics:

dqt = M−1pt dt,

dpt = PF,G(qt)

(
−∇V (qt) dt− γM−1pt dt+

√
2γ

β
dWt

)
+
∇G(qt)pt ·M−1pt
F (qt) ·G(qt)

F (qt) dt.

Mobility: F ∈ RdN , G = M−1F .
Shear-viscosity:

∀ 1 ≤ i ≤ N, ∀ 2 ≤ α ≤ d, F (q)i1 = fy(qi2), G(q)i1 =
1

m
exp

(
2iπqi2
L

)
, F (q)iα = G(q)iα = 0.

This corresponds to a longitudinal force with a transverse intensity profile. The response is the
Fourier coefficient of the transverse profile for the longitudinal velocity.

Equivalence of responses

Mobility Shear viscosity

The Thévenin and Norton responses cöıncide far outside of the linear response regime, and give
the same transport coefficient. Computations were performed on a Lennard-Jones fluid of 1000
particles using a dedicated flux-preserving splitting implemented using the Julia package Molly.

Asymptotic variances
Mobility

No gain in the case of mobility
Shear-Viscosity

Norton estimators systematically outperform their
Thévenin counterparts.

Future questions

• Existence and ergodicity results for the solu-
tions to the Norton dynamics.

• Equivalence of Thévenin and Norton ensem-
bles.

• Linear response theory/ Green-Kubo relations
for the Norton ensemble.
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