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Norton Dynamics

Introduction

Aim: compute transport coefficients (mobility, shear viscosity, thermal
conductivity...). Proportionality constants in the linear response of a flux
to a non-equilibrium perturbation by a force.

At the macroscopic level, fluxes and forces play symmetric and conjugate
roles: fixing one determines the other.

“Standard” NEMD approaches fix the force exactly at the microscopic
level, and measure ergodic averages of the flux.

Instead, we can try to take the dual approach: fix the flux exactly, and
measure ergodic averages of the forcing needed to sustain it.

Proposed by Denis Evans and coauthors in 1980s, but in a deterministic setting
where ergodicity is dubious at best. Numerically shown to be correct, formal
proofs, but no rigorous mathematical treatment. Goal: define a stochastic
version of the method, easier to study theoretically, and more in phase with
current numerical practice.
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If the estimators for the average forcing have better statistical properties than
estimators for the average response, choose Norton over Thévenin.
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Norton Dynamics

Standard NEMD dynamics

Fix a d-dimensional configuration space X , a reference drift b and diffusion
matrix σ. External forcing: F : X → Rd , modulated in strength by η ≥ 0.

Standard NEMD/“Thévenin”:

dX η
t = b(X η

t ) dt + σ(X η
t )dWt + ηF (X η

t )dt.

We measure averages of the response R : X → R, with respect to the
invariant mesure µη.

Transport coefficient:

ρR,F = lim
η→0

1

η

[∫
X
R dµη −

∫
X
R dµ0

]
.
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Norton dynamics

Thévenin dynamics: dX η
t = b(X η

t )dt + σ(X η
t ) dWt + ηF (X η

t ) dt. Fix r ≥ 0
the value of the response.

For the Norton approach, we replace η dt by the increment of a
stochastic process dΛr

t .

Norton dynamics:

dY r
t = b(Y r

t )dt + σ(Y r
t )dWt + F (Y r

t )dΛr
t .

The forcing process Λr
t is determined by the condition R(Y r

t ) = r for all
t ≥ 0, and can be written as an adapted Itô process,

dΛr
t = λtdt + dΛ̃r

t ,

with Λ̃r a martingale.

Dynamics on the manifold

Σr = {y ∈ X , R(y) = r} = R−1{r}.
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Thévenin dynamics: dX η
t = b(X η

t )dt + σ(X η
t ) dWt + ηF (X η

t ) dt. Fix r ≥ 0
the value of the response.
For the Norton approach, we replace η dt by the increment of a
stochastic process dΛr

t .

Norton dynamics:

dY r
t = b(Y r

t ) dt + σ(Y r
t ) dWt + F (Y r

t ) dΛr
t .

The forcing process Λr
t is determined by the condition R(Y r

t ) = r for all
t ≥ 0, and can be written as an adapted Itô process,
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Explicit form

By applying Itô’s formula to the constraint, the SDE for Λr can be written
explicitely, and the Norton dynamics can be written as

dY r
t = PF ,∇R(Y r

t ) [b(Y r
t )dt + σ(Y r

t )dWt ]

−
(
∇2R : ΠF ,∇R,σ

)
F

2∇R · F (Y r
t )dt.

The linear map PF ,∇R is a non-orthogonal projector onto ∇R⊥, ΠF ,∇R,σ is a
covariation matrix.
Expressions for the forcing terms: λt = λ(Y t

r ), for some explicit λ : X → R,
and for the martingale part,

dΛ̃r
t = −∇R(Y r

t ) · σ(Y r
t )dWt

∇R(Y r
t ) · F (Y r

t )
.
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Geometric picture

Y r
t

Σr

TΣr ,Y
r
t

∇R(Y r
t )

F (Y r
t )

d̃Y r
t

dY r
t

The increments get reprojected onto the tangent space, but with respect to F
instead of ∇R.
“Controllability” condition: F · ∇R 6= 0 on Σr .
In the case F = ∇R, standard constrained dynamics.
We are interested in the average magnitude with respect to F (Y r

t ) of (the
non-martingale part of) the recall force or Lagrange multiplier dΛr

t .
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straightforward generalizations

By very similar arguments, we can easily recover explicit expressions for the
following generalizations:

The case of constraints on multiple fluxes.

The case of a time-dependent constraint R(Y r
t ) = rt , with rt deterministic

or stochastic.

A combination of these two.
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Transport coefficients

Assuming that the Norton dynamics has a unique invariant probability measure
νr for all r small enough, define the Norton analog of the transport coefficient:

ρ̃R,F = lim
r→0

r∫
Σr
λ dνr −

∫
Σ0
λ dν0

.

Loosely: measure the reciprocal of the resistance of the system instead of the
conductance.
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Computing averages of λ in practice

In practice, compute discrete trajectory averages of Lagrange multipliers:{
X̃ n+1 = Φ∆t(X

n,G n),

X n+1 = X̃ n+1 + Λn,∗F (X n),
(1)

with Φ∆t a scheme for the reference dynamics, Λn,∗ is taken so that
R(X n+1) = r .

Using the equation for dΛ̃r
t , the martingale part can be corrected at dominant

order:

Λn = Λn,∗ −
√

∆t
∇R(X n) · σ(X n)G n

∇R(X n) · F (X n)
.

Then, estimate λn by

λn =
1

∆t
Λn.
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Norton dynamics in the Langevin setting

We consider fluxes of the form

R(q, p) = G(q) · p

and mechanical forcings acting on the momentum coordinates.

Thévenin dynamics:
dqt = M−1ptdt,

dpt = −∇V (qt)dt − γM−1pt dt +

√
2γ

β
dWt + ηF (qt) dt,

(2)

Norton dynamics:

dqt = M−1pt dt,

dpt = PF ,G (qt)

(
−∇V (qt) dt − γM−1pt dt +

√
2γ

β
dWt

)
+
∇G(qt)pt ·M−1pt

F (qt) · G(qt)
F (qt)dt.

(3)
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Physical interpretation

The Norton dynamics satisfies an oblique Gauss’s principle of least constraint:
the Norton force minimizes the distance to the equilibrium force, with respect
to a metric for which

F (q) ⊥ G(q)⊥ ∀ q.

If F is proportional to G , this is just the classical principle of least constraint,
and corresponds to the original idea of Evans & al.



Norton Dynamics

Splitting schemes

The generator for the Norton dynamics can be written as

L = LA + LB + γLO,

with 
LA = M−1p · ∇q +

∇Gp ·M−1p

F · G F · ∇p,

LB = −PF ,G∇V · ∇p,

LO = −PF ,GM
−1p · ∇p +

1

β
PF ,GPG ,F : ∇2

p.

(4)

These are the respective generators of dynamics which individually preserve the
constant-response manifold Σr .

B dynamics: ballistic evolution.
O dynamics: projected Ornstein-Uhlenbeck process.
A dynamics: not analytically solvable in general.
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Splitting schemes

These individual dynamics can be combined in a sequence to give an
approximation of the evolution operator over one time step. By combining the
forcing contribution of each substep, possible to estimate λ from the
integration step.

In the case R = G · p, the Lagrange multiplier can be computed analytically.
Because the O step is analytically solvable, the contribution of the Gaussian
increment can be exactly cancelled.
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Mobility

We take a constant force F ∈ RdN (d =physical dimension, N=number of
particles).

The response is the velocity in the direction F ,

R(q, p) = F ·M−1p = M−1F · p.

Then G = M−1F , ∇G = 0, so the Norton dynamics is just given by
dqt = M−1pt dt,

dpt = PF ,M−1F (qt)

(
−∇V (qt)dt − γM−1pt dt +

√
2γ

β
dWt

)
.

(5)
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Shear viscosity

Take a F acting only on the x-components, but with a strength dictated by a
y -profile. The response is the y -profile in the x-components of the velocity,
which can be quantified by an empirical Fourier coefficient. In equations,

∀ 1 ≤ i ≤ N, ∀ 2 ≤ α ≤ d , F (q)i1 = fy (qi2), F (q)iα = 0,

with fy a reference forcing profile, and

R(q, p) =
1

N

N∑
i=1

(
M−1p

)
i1

exp

(
2iπqi2

L

)
. (6)

The shear viscosity can be related to the transport coefficient for this response,
which is again of the form G · p.
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Shear viscosity
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Numerical results: mobility

We apply the method to a Lennard-Jones fluid of 1000 particles. We observe
agreement in the linear regime for the “color drift” forcing:
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Numerical results: mobility

Agreement far into the non-linear regime
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Numerical results:mobility

No gain in asymptotic variance for the mobility estimators.
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Numerical results: shear viscosity

We apply the shear viscosity Norton method to a Lennard-Jones fluid, first
using a sinusoidal forcing profile.

We observe convergence to the same thermodynamic limit, with agreement
well before that point.
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Numerical results: shear viscosity

Again, we observe agreement between Norton and Thévenin responses in the
non-linear regime. Here, with a piecewise-constant forcing profile:
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Numerical results: shear viscosity

However: we observe an improvement in the asymptotic variance for estimators
coming from the Norton method.
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Numerical results: shear viscosity

To explain this discrepancy, we compare the variance for λ in the Norton
ensemble with the variance for R in the Thévenin ensemble.

Surprising and asymptotically better scaling for the Norton method, but higher
variance: this suggest that the improvement comes from shorter correlations.
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Numerical results: shear viscosity

Indeed, this is what we observe.

Here, we plot the (statistical) autocorrelations functions for two equivalent
values of η and r in the Thévenin and Norton ensembles, at a fixed N = 8000.
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Problems for future work

Many theoretical questions are left to tackle:

Criteria for well-posedness, existence/uniqueness of the steady-state,
ergodicity.

Equivalence of ensemble results between the Thévenin and Norton
ensembles.

Providing an explanation for the variance and autocorrelation scaling of λ
in the Norton ensemble.

Linear response theory for the Norton method: derive Green-Kubo like
expressions for the inverse transport coefficient.
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Idea for linear response

Linear response results usually rely on a perturbative expansion of the
non-equilibrium steady-state with respect to the equilibrium steady-state.
However, there are issues to overcome in the Norton setting:

The equilibrium measure ν0, supported on Σ0, is not known.

The perturbed measure νr , supported on Σr , is singular with respect to ν0.

The generator for the Norton dynamics on Σr cannot be expressed as a
perturbation of the generator L0 on Σ0: they have the same expression,
but different domains.
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Formal idea for the linear response

Idea: by a change of variables φ−r : Σr → Σ0, consider instead the generator
Lr for the dynamics

φ−r (Y
r
t ),

which lives on Σ0. The map φ−r can easily be found by considering φ to be the
flow of the ODE

ẏ =
N(y)

∇R(y) · N(y)
.

Natural choices include N = ∇R and N = F . Then,

Lrϕ(y) = L0 [ϕ ◦ φ−r ] (φr (y)) .

This is a non-linear perturbation of L0, but by a formal linearization, we can
write the first-order term as

∇
[
L0ϕ

]
· N

∇R · N − L
0

[
∇ϕ · N

∇R · N

]
.


