ANR SINEQ final conference
CERMICS lab, École des Ponts ParisTech, MATHERIALS team, Inria Paris. Funding from ERC EMC2 and ANR SINEQ.
2025-10-22
% % %
%
%%%%%%% Notational macros %%%%%%%%%%%%%%%%%%%
%%% geometry % Distance of critical point #1 to the boundary (epsiloni()) % Relatively large radius around critical point #1 % Limit of epsiloi() as %local neighborhoods of the boundary %% hessian % orthogonal transfer matrix to an eigenbasis #2 = optional % k-th eigenvector of the hessian at z_i (i,k) = (#1,#2) % k-th eigenvalue of the hessian at z_i (i,k) = (#1,#2) %% harmonic oscillators % local oscillators K. #1: index of associated critical point. #2 optional shift (#2 = -) % eigenmode for K. #1: index of associated critical point. #2 index of the mode. #3 optional shift (#3 = -) % eigenmode for H_^{(i)}. #1: index (i) of associated critical point. #2 index of the mode. #3 optional shift (#3 = -) % quasimode for H_ % scaled cutoff function % k-th eigenvalue of the local oscillator K^{(i)}__i (#1: optional shift, #2:% k-th eigenvalue of tensor product of the K^{(i)}. (#1: k, #2: vector of boundary conditions).
% for proof of harmonic approximation
% %
$$
\[ \definecolor{gris_C}{RGB}{96,96,96} \definecolor{blanc_C}{RGB}{255,255,255} \definecolor{pistache_C}{RGB}{176,204,78} \definecolor{pistache2_C}{RGB}{150,171,91} \definecolor{jaune_C}{RGB}{253,235,125} \definecolor{jaune2_C}{RGB}{247,208,92} \definecolor{orange_C}{RGB}{244,157,84} \definecolor{orange2_C}{RGB}{239,119,87} \definecolor{bleu_C}{RGB}{126,151,206} \definecolor{bleu2_C}{RGB}{90,113,180} \definecolor{vert_C}{RGB}{96,180,103} \definecolor{vert2_C}{RGB}{68,141,96} \definecolor{pistache_light_C}{RGB}{235,241,212} \definecolor{jaune_light_C}{RGB}{254,250,224} \definecolor{orange_light_C}{RGB}{251,230,214} \definecolor{bleu_light_C}{RGB}{222,229,241} \definecolor{vert_light_C}{RGB}{216,236,218} \]
Molly.jl [17].Linear responses coincide (\(N=1000\)).
Non-linear responses also coincides. Question of full equivalence of nonequilibrium ensembles (in the regime \(N\to +\infty\)).
Fixing \(f:L\mathbb T\to {\mathbb{{R}}}\) a periodic profile, define \[ F(q) = \sum_{j=1}^N f(q_{j,y})\mathrm{e}_{j,x},\, R(q,p) = \frac{1}{N}\sum_{j=1}^N \left(M^{-1}p\right)_{j,x}\mathrm{e}^{\frac{2\mathrm{i}\pi q_{j,y}}{L}}. \]
The shear viscosity can be defined, using an analogy with Newton’s law of viscosity, as \[ \mu = \rho\left(\frac{F_1}{U_1}-\gamma\right)\left(\frac{L}{2\pi}\right)^2,\, U_1 = \alpha(F,R),\, F_1 = \frac1L\int_0^L f(y)\mathrm{e}^{\frac{2i\pi y}{L}}\,\mathrm{d}y, \] where \(\rho = N/L^3\) is the particle density.
Asymptotic variance as a function of system size, at equivalent nonequilibrium state points (shear viscosity of a Lennard-Jones fluid).
Anomalous scaling of the stationary variance: \(\mathbb E_{\pi^r_{N}}[(\lambda - \langle \lambda_{\pi_N^r} \rangle)^2]\propto N^{-5/3}\)