WINGS Todai - ENPC Workshop
CERMICS lab, École des Ponts ParisTech, MATHERIALS team, Inria Paris.
2025-04-02
$$
%% % %
%
%%%%%%% Notational macros %%%%%%%%%%%%%%%%%%%
%%% geometry % Distance of critical point #1 to the boundary (epsiloni()) % Relatively large radius around critical point #1 % Limit of epsiloi() as %local neighborhoods of the boundary %% hessian % orthogonal transfer matrix to an eigenbasis #2 = optional % k-th eigenvector of the hessian at z_i (i,k) = (#1,#2) % k-th eigenvalue of the hessian at z_i (i,k) = (#1,#2) %% harmonic oscillators % local oscillators K. #1: index of associated critical point. #2 optional shift (#2 = -) % eigenmode for K. #1: index of associated critical point. #2 index of the mode. #3 optional shift (#3 = -) % eigenmode for H_^{(i)}. #1: index (i) of associated critical point. #2 index of the mode. #3 optional shift (#3 = -) % quasimode for H_ % scaled cutoff function % k-th eigenvalue of the local oscillator K^{(i)}__i (#1: optional shift, #2:% k-th eigenvalue of tensor product of the K^{(i)}. (#1: k, #2: vector of boundary conditions).
% for proof of harmonic approximation
% %
$$
\[ \definecolor{gris_C}{RGB}{96,96,96} \definecolor{blanc_C}{RGB}{255,255,255} \definecolor{pistache_C}{RGB}{176,204,78} \definecolor{pistache2_C}{RGB}{150,171,91} \definecolor{jaune_C}{RGB}{253,235,125} \definecolor{jaune2_C}{RGB}{247,208,92} \definecolor{orange_C}{RGB}{244,157,84} \definecolor{orange2_C}{RGB}{239,119,87} \definecolor{bleu_C}{RGB}{126,151,206} \definecolor{bleu2_C}{RGB}{90,113,180} \definecolor{vert_C}{RGB}{96,180,103} \definecolor{vert2_C}{RGB}{68,141,96} \definecolor{pistache_light_C}{RGB}{235,241,212} \definecolor{jaune_light_C}{RGB}{254,250,224} \definecolor{orange_light_C}{RGB}{251,230,214} \definecolor{bleu_light_C}{RGB}{222,229,241} \definecolor{vert_light_C}{RGB}{216,236,218} \]
Molecular Dynamics (MD) investigates the behavior of molecular systems at the level of classical motion of atoms.
Five picoseconds of Foldit1 (PDB ID 6MRR) simulated with Molly.jl
, thanks to Joe Greener.
Replaces physical experiments in extreme (nuclear physics, materials science) or expensive (pharmaceutical trials) conditions with computer simulations (in silico experiments).
Very useful method in biophysics and materials science, e.g. to investigate properties of candidate drugs or new materials.
Many algorithmic tricks are needed to simulate long trajectories reliably and efficiently, and sample the whole configuration space.
Mathematical insight can help to justify algorithms theoretically and propose new methods. This is part of what the MAS (Modeling, Analysis and Simulation) team does at CERMICS.