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Abstract

This thesis explores mathematical and algorithmic questions at the intersection of computational
physics and probability theory, specifically focusing on Molecular Dynamics (MD). MD
simulations are essential for understanding the macroscopic properties of matter based on an
atomistic description, yet they face persistent and significant hurdles. The primary challenge
addressed in this work is the "timescale problem" caused by metastability: molecular systems
often remain trapped in local ensembles of atomic configurations (or metastable states) for
extended periods of time, making the simulation of rare transition events computationally
prohibitive, even though these events are crucial to the understanding of the macroscopic
behavior of the system. This thesis contributes to the analysis and sampling of these molecular
dynamics through three complementary axes: the spectral analysis and optimization of
metastable states, the computation of nonequilibrium transport coefficients, and the rigorous
derivation of overdamped limits for degenerate stochastic differential equations.

The first main contribution addresses the definition and optimization of metastable states to
improve accelerated sampling algorithms, specifically the Parallel Replica (ParRep) method.
The efficiency of such algorithms relies on a large separation of timescales within a defined
metastable region: the system must relax to a local equilibrium (the quasi-stationary distribu-
tion) much faster than it exits the state. We first provide a theoretical foundation for analyzing
these timescales by deriving quantitative spectral asymptotics for the infinitesimal generator of
the overdamped Langevin dynamics. A key novelty of this work is the analysis of Dirichlet
eigenvalues on domains with temperature-dependent boundaries. In the low-temperature limit,
we rigorously derive precise asymptotic estimates for the principal eigenvalue (related to the
mean exit time) and the spectral gap (related to the relaxation time). We establish a modified
Eyring-–Kramers formula that accounts for the specific geometry of the domain boundary
near saddle points, demonstrating that the pre-exponential factor of the exit rate is highly
sensitive to the shape of the domain, in a way that can be computed explicitly.

We also propose a novel numerical method to optimize the definition of metastable states.
Standard definitions based on basins of attraction of the potential energy are often sub-
optimal, particularly when entropic effects are significant. We formulate the definition of
a metastable state as an eigenvalue shape optimization problem, aiming to maximize the
separation of timescales, understood as the ratio of the exit time to the local relaxation time.
We derive analytic shape derivatives for the Dirichlet eigenvalues of reversible diffusions and
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construct a robust local ascent algorithm to deform the domain boundary. To handle the
high dimensionality of realistic molecular systems, we propose a strategy based on dynamical
coarse-graining using collective variables. We validate this methodology on a biomolecular
system, demonstrating empirically that optimized domains can yield significant improvements
in the separation of timescales compared to standard definitions.

The second axis of the thesis shifts focus to nonequilibrium molecular dynamics (NEMD) and
the computation of transport coefficients, such as mobility and shear viscosity. Standard
NEMD methods impose a fixed external force and measure the resulting average flux. We
introduce a dual approach based on constrained stochastic dynamics. In this framework,
the flux is constrained to a fixed value, and the average force required to sustain this flux
is measured. We derive the stochastic differential equation governing these dynamics in a
general setting, and focus on underdamped Langevin systems, typically used in practice to
compute transport coefficients. Through numerical experiments on Lennard–Jones fluids,
we demonstrate empirically that the constant-flux method yields consistent linear response
estimates in the thermodynamic limit, and that the corresponding estimators exhibit lower
asymptotic variance than standard NEMD estimators, making them a computationally efficient
alternative for calculating transport properties.

A final contribution addresses the rigorous link between two models of molecular dynamics.
We study the high-friction limit of the kinetic or underdamped Langevin equation with
a position-dependent friction coefficient. By deriving new functional-analytic—so-called
hypocoercive—estimates, we provide a new proof of the convergence of the position process
to the overdamped Langevin dynamics with anisotropic and position-dependent fluctuation-
dissipation coefficients. This approach avoids the complexities of some previous methods, and
clearly elucidates the origin of the noise-induced drift term in the limiting equation.
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Résumé de la thèse

Cette thèse traite de questions mathématiques et algorithmiques à l’interface de la physique
statistique computationnelle et de la théorie des probabilités, et plus spécifiquement de certaines
méthodes numériques issues de la dynamique moléculaire (MD). Les simulations de MD sont
cruciales pour comprendre les propriétés macroscopiques de la matière en se fondant sur la
description atomique, mais se heurtent néanmoins à des obstacles persistants et importants.
Le principal défi abordé dans ce travail est le “problème des échelles de temps” induit par la
métastabilité des systèmes considérés. Les systèmes moléculaires restent souvent piégés dans
des ensembles locaux de configurations atomiques (ou états métastables) pendant de longues
périodes, rendant la simulation des événements rares de transition très coûteuse en termes de
calcul, alors même que ces événements sont cruciaux pour la compréhension du comportement
macroscopique du système. Cette thèse contribue à l’analyse et à l’échantillonnage de ces
dynamiques à travers trois axes : l’analyse spectrale et l’optimisation des états métastables, le
calcul des coefficients de transport hors équilibre, et la dérivation de limites sur-amorties pour
certaines équations différentielles stochastiques dégénérées.

La première contribution principale porte sur la définition et l’optimisation des états métastables
afin d’améliorer une famille d’algorithmes d’échantillonnage dynamique accéléré, de type
“Parallel Replica” (ParRep). L’efficacité de tels algorithmes repose sur une grande séparation
des échelles de temps au sein d’une région métastable définie : le système doit converger vers
un équilibre local (la distribution quasi-stationnaire) beaucoup plus vite qu’il ne quitte l’état.
Nous fournissons d’abord un fondement théorique pour l’analyse de ces échelles de temps en
établissant des asymptotiques spectrales quantitatives pour le générateur infinitésimal de la
dynamique de Langevin sur-amortie. Une nouveauté clé de ce travail réside dans l’analyse des
valeurs propres de Dirichlet sur des domaines dont la frontière dépend de la température. Dans
la limite de basse température, nous dérivons rigoureusement des estimations asymptotiques
précises pour la valeur propre principale (liée au temps de sortie moyen) et le trou spectral (lié
au temps de relaxation). Nous établissons une formule d’Eyring–Kramers modifiée qui prend
en compte la géométrie spécifique de la frontière du domaine près des points-selles, démontrant
que le préfacteur du taux de sortie est très sensible à la forme du domaine, d’une manière qui
peut être calculée explicitement.

Nous proposons également une nouvelle méthode numérique pour optimiser la définition des
états métastables. Les définitions standard basées sur les bassins d’attraction de l’énergie
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potentielle sont souvent sous-optimales, particulièrement lorsque les effets entropiques sont im-
portants. Nous formulons la définition d’un état métastable comme un problème d’optimisation
de forme pour un objectif dépendant des valeurs propres, visant à maximiser la séparation
des échelles de temps, comprise comme le rapport entre le temps de sortie et le temps de
relaxation local. Nous dérivons des dérivées de forme analytiques pour les valeurs propres de
Dirichlet de diffusions réversibles et construisons un algorithme robuste d’ascension locale pour
déformer la frontière du domaine. Pour gérer les difficultés liées à la grande dimension des
systèmes moléculaires, nous proposons une stratégie basée sur un “coarse-graining” dynamique
utilisant des variables collectives. Nous validons cette méthodologie sur un système biologique,
démontrant empiriquement que les domaines optimisés peuvent apporter des améliorations
notables dans la séparation des échelles de temps par rapport aux définitions standard.

Le deuxième axe de la thèse se concentre sur la dynamique moléculaire hors équilibre (NEMD)
et le calcul des coefficients de transport, tels que la mobilité et la viscosité de cisaillement. Les
méthodes NEMD standard imposent une force externe fixe et mesurent le flux moyen résultant.
Nous introduisons une approche duale basée sur une dynamique stochastique contrainte. Dans
ce cadre, le flux est contraint à une valeur fixe, et la force moyenne requise pour maintenir ce
flux est mesurée. Nous dérivons l’équation différentielle stochastique régissant ces dynamiques
dans un cadre général, et nous nous concentrons sur les systèmes de Langevin sous-amortis,
typiquement utilisés en pratique pour calculer ces coefficients de transport. À travers des
expériences numériques sur des fluides de Lennard–Jones, nous démontrons empiriquement
que la méthode à flux constant produit des estimateurs de réponse linéaire équivalents dans la
limite thermodynamique, et que ces estimateurs présentent souvent une variance asymptotique
plus faible que les estimateurs NEMD standard, ce qui fait de la méthode duale une alternative
efficace numériquement pour le calcul de propriétés de transport.

Enfin, une dernière contribution aborde le lien rigoureux entre deux modèles de dynamique
moléculaire. Nous étudions la limite de l’équation de Langevin dite cinétique ou sous-amortie
dans le régime grande friction, avec un coefficient de friction anisotrope dépendant de la variable
de position. En dérivant de nouvelles estimées d’analyse fonctionnelle dites hypocoercives, nous
fournissons une nouvelle preuve de la convergence du processus de position vers la dynamique
de Langevin sur-amortie avec des coefficients de diffusion anisotropes. Cette approche évite
les complexités de certaines méthodes précédentes et élucide clairement l’origine du terme de
dérive induit par le bruit dans l’équation limite.
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Chapter 1
Introduction

This thesis addresses some theoretical and algorithmic questions in computational physics
from the mathematical point of view. Our contributions are motivated by persistent challenges
in the computation of dynamical properties in molecular systems, both in the equilibrium and
nonequilibrium settings, using stochastic models of molecular motion. Computing dynamical
properties requires sampling informative microscopic trajectories of the molecular system
of interest. The main obstruction is metastability, a central phenomenon in this thesis,
which implies that such trajectories are necessarily long relative to the timescales of thermal
atomic motion. For many systems, the timescale gap is such that sampling sufficiently long
trajectories is simply infeasible with standard methods, and requires the conception, analysis
and implementation of dedicated numerical strategies.

In Section 1.1, we present a (necessarily incomplete) overview of the field of molecular
dynamics, with a particular emphasis on the mathematical framework which will be used
throughout this thesis. In Section 1.2, we present in more detail the problem of measuring
dynamical properties, as well as one class of algorithmic solutions designed to address the
sampling of long trajectories, the so-called accelerated molecular dynamics (AMD) methods of
Arthur Voter and collaborators, see [332, 333, 334, 312]. For the purpose of introducing these
methods clearly and identifying the main algorithmic questions, this discussion is partly formal.
We review in Section 1.3 some of the main mathematical approaches to study metastability
in molecular systems, and introduce useful mathematical formalism in view of analyzing and
optimizing the efficiency of AMD algorithms. We finally present the contributions of this
thesis in Section 1.4.

1.1 An overview of molecular dynamics

Molecular dynamics (MD) is a set of techniques aimed at extracting properties of atomistic
systems from carefully designed computer simulations. For details on the associated algorithms
and additional background on MD from an applied perspective, we refer the interested reader
to [7, 133, 324]. Due to the development of flexible and efficient methodologies, as well as
the steady increase in available computational power over the last seventy years, MD has

1
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become a mainstay of computational physics, and is now routinely used in a variety of scientific
applications from computational thermodynamics and material science to drug discovery and
cell biology. We refer to [26] for a historical perspective. Fundamentally, MD simulates the
time-evolution of systems at the atomic scale, by treating atoms as classical point particles,
whose trajectories are governed by a defined set of dynamical laws. From the simulation and
recording of these trajectories, several important scientific needs can be covered. Indeed, MD
is simultaneously:

◦ A means to compute properties of matter : MD provides numerical estimators for ther-
modynamic, structural and dynamical quantities that may be difficult or impossible to
measure experimentally, due to extreme conditions or prohibitive costs. This includes
materials which have not been synthesized yet, so that MD is a crucial tool in new
materials discovery. Typical outputs include radial distribution functions, free-energy
differences, pressure and enthalpy, defect formation energies, reaction rates, and transport
coefficients. With sufficiently long sampling, MD yields statistically converged values that
can be used to parametrize coarser models. The computation of dynamical properties,
and the associated need for long-time microscopic sampling, are the core motivation for
the contributions of this thesis.

◦ A numerical microscope: MD simulations allow to resolve molecular trajectories at a
level of detail which is far beyond the reach of physical experiments. The analysis of MD
trajectories can help to visualize reaction pathways, identify transition states, observe
collective rearrangements (such as nucleation, defect propagation or protein folding), and
extract mechanistic hypotheses that guide theoretical developments and experiments.
These insights are especially valuable for understanding rare events and conformational
changes, where a single trajectory can reveal the sequence of microscopic steps behind
an observed macroscopic transition. MD simulations can be understood as in silico
experiments, which have become an important tool of modern materials and biological
research.

◦ A benchmark for new methods: an important use case of MD simulations is the develop-
ment and testing of novel numerical and modelling tools for MD itself, which in turn
often have implications for computational science at large. Because realistic atomistic
simulations combine the challenges of high dimensionality, multimodality, anisotropy,
time-dependent signals and multiscale behavior, they make a perfect testbed to prototype
and benchmark numerical methods.

◦ A hurdle for theory: high-fidelity MD simulations have themselves become a source of
“ground truth” data. Notably, long trajectories produced on bespoke hardware [300]
are routinely used to test biophysical hypotheses and to train data-driven models. At
the same time, algorithms used in MD simulations are sources of inspiration for many
interesting mathematical questions, which are still a fruitful area of research, and some
of which we address in this thesis.

Appreciating the vast discrepancies between the atomic, macroscopic and computational
realms is key to understanding the scope of molecular dynamics simulations. It is therefore
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instructive to review some of the characteristic scales at play. Some typical atomistic orders of
magnitude are given below.

◦ Macroscopic amounts of matter are counted in moles of molecules, which are multiples of
Avogadro’s number NA = 6.022×1023. A tablespoon of liquid water at room temperature
contains about 0.8 moles of H2O molecules.

◦ Length is measured in units of Ångströms (1 Å = 10−10 m). For example, the Bohr
radius of hydrogen is 0.529 Å, while the helix of B-DNA has a diameter of 20 Å.

◦ Time is measured in units of femtoseconds (1 fs = 10−15 s), which is also the typical
timestep for MD simulations. The fastest molecular motions, such as the period of
hydrogen bond stretching vibrational modes, are of the order of 10 fs.

For comparison, we list some orders of magnitude related to the scale of achievable compu-
tations.

◦ A 2018 projection [278] estimates the size of the global “datasphere” (the total amount
of digital information on Earth) to reach 175 zettabytes by 2025, which corresponds
to 0.29NA bytes.

◦ Typical consumer machines provide on the order of 1012 bytes of persistent storage
capacity, whereas data centers and high-performance computing facilities operate at
the 1015–1018 bytes scale.

◦ Personal CPUs and GPUs deliver on the order of 109–1012 floating-point operations
per second (FLOPS), while modern exascale machines target sustained performance at
around 1018 FLOPS [297].

This profound disparity between available computational resources and atomic scales implies
that MD will fall short of fully resolving the microscopic trajectories of macroscopic systems
(say, a second-long evolution of a millimeter-sized sample) for a foreseeable future.

The floating-point operation cost of advancing the simulation by a single timestep typically
scales linearly with the number of atoms in the system: this fact imposes a hard limit on
the (length× system size) of a feasible simulation given available computational resources at
any fixed time. Critically, it also reveals a present bottleneck for observing phenomena of
scientific interest: with timesteps on the order of 1fs, simulating a single µs of a system’s
evolution requires executing on the order of a billion sequential steps. Yet, many important
processes are known to take place over timescales of milliseconds to seconds, or even longer.

Nevertheless, landmark MD simulations have consistently scaled up to larger numbers of
atoms (and also to longer simulation times, but for rather different reasons). Scaling in
the spatial domain (i.e. increasing the number of atoms in the system) can be achieved by
exploiting a common property of molecular systems, namely the locality of interactions. This
property allows to distribute the cost of advancing the simulation by one timestep, leveraging
parallel computing architectures and domain decomposition algorithms. This locality is the
structural property which allows the linear scaling of the cost of MD simulations with system



4 1.1. An overview of molecular dynamics

size. The link between locality and scalability is as ancient as MD itself, and underpins some
of the earliest algorithmic innovations in the field, such as neighbor lists [328].

The situation is seemingly bleaker in the time domain. The sequential nature of trajectories
forbids distributing the computational cost of a single long simulation across parallel simulations
of shorter segments. At first glance, the only way to extend the achievable computational
timescales is by hardware-level or low-level software optimizations of the simulation procedure.
This challenge is known as the timescale problem of MD. While progress has been made using
this brute-force approach, today still, for a typical solvated protein, a full day of computation
on one high-performance GPU yields, at best, a few hundred ns of trajectory time [170], and
still much less for the large systems of interest to materials science.

To enable the simulation of long trajectories for relevant systems (without requiring access
to highly specialized hardware) sophisticated algorithms have to be developed to go beyond
sequential MD. A class of such methods are the so-called accelerated MD methods pioneered
by Arthur Voter [332, 334, 312], which play a crucial role in this thesis, and are discussed in
further detail in Section 1.2 below. Similarly to the algorithms allowing to scale in space, these
methods rely on a structural property of many molecular systems, namely their metastability.
Loosely speaking, a metastable system spends the majority of its time in long-lived, quasi-
stationary states, punctuated by rare and abrupt transitions between them. Metastable
systems have become an object of study in their own right in mathematical physics, for which
many mathematical results have been obtained, some of which we review in Section 1.3, derive
in Chapter 2, and apply in Chapter 3.

Some historical milestones. Despite the challenges discussed above, full-atom “brute-
force” MD simulations have been successfully applied to various problems. Here we list some
simulations, notable for their historical importance and/or their novel magnitude, both in the
spatial and time domains.

◦ 1953 : Metropolis et al. [247] compute the equation of state for a hard-sphere model
using a Monte Carlo method, spawning the field of computational statistical physics.
This early work is followed in 1957 by the first simulation [4] of the molecular dynamics
of a hard sphere model.

◦ 1964 : Rahman [273] measures properties of liquid Argon using a MD simulation of inter-
acting Lennard–Jones particles. Results are consistent with experimental measurements.
This is followed in 1971 by the more challenging case of liquid water [274] by Rahman
and Stillinger.

◦ 1975 : Levitt and Warshel [237] simulate a protein folding using a coarse-grained energy
minimization procedure.

◦ 1988 : Levitt and Sharon [236] perform the first simulation of a protein in explicit water
solvent, a 0.2 nanosecond-long trajectory.

◦ 1998 : Duan and Kollman [109] publish the first microsecond-long simulation of a fast-
folding protein in explicit solvent, the villin headpiece, exposing the intricate mechanisms
underlying protein folding.
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◦ 2002 : Abraham et al. [1] carry out the first MD simulation involving more than a billion
atoms, a short trajectory of a flawed FCC crystal undergoing ductile failure.

◦ 2008 : Germann and Kadau [135] report the first MD simulation involving a trillion
atoms, 40 timesteps of a Lennard–Jones crystal.

◦ 2010 : Shaw et al. [301] perform the first millisecond-long simulation of a protein in
explicit solvent, using a dedicated machine design [300], and at great financial cost.

◦ 2017 : Perilla and Schulten [269] publish a full-atom simulation of the HIV-1 viral capsid
in water (64 million atoms for 1.2µs).

Long MD trajectories provide valuable insight into the thermodynamic and kinetic properties
of molecular systems, by revealing their microscopic states and how they change in time. The
framework of statistical mechanics, which we now introduce, connects the microscopic state
of a physical system to its macroscopic properties, and in so doing provides the basis for the
measurement of physical properties from simulation data.

1.1.1 Elements of statistical mechanics

Statistical mechanics is the rigorous attempt to reconcile the microscopic point of view, in which
a system’s many microscopic degrees of freedom evolve according to fundamental physical laws,
and the macroscopic point of view, according to which only a handful of variables are relevant
to describe the system’s state and evolution. Here, we present the necessary formalism to
treat the molecular systems of interest in MD. In particular, we restrict our scope to classical
systems. We note however that a similar Gibbsian formalism also exists for quantum systems
(see [126, 20]) and has been more generally used to great effect in the study of a variety of
disordered systems, such as spin glasses [113], Hopfield networks [265] and their quantum
counterparts [282, 287].

Microscopic states, their energy and classical dynamics. In this thesis, we consider
systems of N ⩾ 1 point particles, representing classical atomic nuclei. The system’s microscopic
configuration, or microstate, is described by the positions and momenta (masses times velocities)
of each one of these nuclei. The microstate therefore corresponds to a point in phase space,

(q, p) ∈ E := Q×P, (1.1)

where Q is a configurational domain, and for a configuration (q, p) ∈ E , q ∈ Q is the position
variable, and p ∈ P is the associated momentum variable in the momentum space P.

To each microstate (q, p) ∈ E , we associate its energy H(q, p). The function H is called
the Hamiltonian. In most situations, Q ⊂ R3N , P = R3N , and the Hamiltonian takes the
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separable form

H(q, p) = V (q) + 1
2p

⊤M−1p, M =


m1I3 0 · · · 0

0 m2I3 · · · 0
... . . . . . . ...
0 · · · 0 mN I3

 (1.2)

where V : Q → R is a potential energy function, the term K(p) = 1
2p

⊤M−1p is the kinetic
energy, and M is a diagonal matrix encoding the atomic masses in the system, with mi > 0
giving the mass of the i-th particle for 1 ⩽ i ⩽ N . For 1 ⩽ i ⩽ N , we will also denote
by qi ∈ R3 and pi ∈ R3 respectively the position and momentum of the i-th nucleus.

The classical equations of motion, as described by Newton’s second law, can be written
compactly using the Hamiltonian (1.2). They are equivalently expressed by the following
ordinary differential equation in E :

d
dt Xt = J∇H(Xt), Xt = (qt, pt) ∈ E , (1.3)

where J is the symplectic matrix

J =
(

0 I3N

−I3N 0

)
. (1.4)

In this form, the equation (1.3) is known as Hamiltonian dynamics, and its trajectories in
phase space describe the time-evolution of an isolated system of classical particles.

On the choice of the interaction potential V . The potential is the crucial physical ingre-
dient, as it encodes the interactions between nuclei, and thus deeply influence their dynamics.
Ideally, it is defined by the ground-state energy VBO(q) of the electronic Hamiltonian associated
to a given position q ∈ Q of classical nuclei, in the Born–Oppenheimer approximation [56].
For systems of interest in MD, computing VBO requires solving a very high-dimensional partial
differential equation (PDE) eigenvalue problem, which is computationally prohibitive. Instead,
one resorts to a variety of approximations to estimate VBO, or rather its gradient ∇VBO with
respect to q, since the dynamics (1.3) only depends on the force −∇V . These classes of
approximations are also known as force fields, of which we distinguish three main families.

◦ Ab initio methods leverage the considerable work in electronic structure theory over the
last 100 years. Many numerical methods have been developed to address the problem of
approximating the ground-state VBO: with no claim of exhaustivity, popular schemes
include the Hartree–Fock method, the more precise (and costly) post–Hartree–Fock
methods, as well as methods rooted in density functional theory (DFT), see [188, 65]
for comprehensive introductions. While such methods can be very accurate, as they
incorporate quantum effects of the electronic structure in the classical nuclear dynamics,
their poor scaling with respect to system size and their high cost of evaluation limit
their applications to small systems and short simulation times. They are nevertheless
essential to capture some phenomena, such as bond-breaking in chemical reactions.
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◦ Empirical force fields, which constitute the most important class of methods historically,
proceed by first selecting a set of prototypical systems S, and for each s ∈ S, introducing
a parametric ansatz V s

θ (q) for VBO. The functional form of V s
θ is hand-crafted to

find a balance between physical principles and computational efficiency. To allow the
functional form to be transferable to systems with varying number of atoms and molecular
topologies, V s

θ is usually expressed as a sum of local energy contributions from each atom
in s, which are themselves functions of the corresponding atomic environment, given by
the relative positions of neighboring atoms, their species, and their adjacency relationship
in the covalent bond structure. A regression can then be performed to select an optimal
parameter θ∗, in order to replicate a set of targeted thermodynamic or structural
properties over S, measured either experimentally or using ab initio computations. The
empirical potential V s′

θ∗ can then be used to probe systems s′ ̸∈ S. The oldest and simplest
example of empirical potential is the Lennard–Jones pair-potential (Equation (1.6) below),
which only uses two parameters. Many families of force-fields of this type are still widely
used, such as CHARMM [63], AMBER [264] and GROMOS [299] for biomolecules,
EAM [92] and MEAM [25] for metallic systems, or Tersoff-type potentials [316] for
multi-species solids.

◦ Machine-learned interatomic potentials (MLIPs) can be understood as the application
of modern machine-learning architectures to the empirical approach described above.
While they are conceptually the same, the two approaches nevertheless differ in that the
parameter θ no longer has any clear physical meaning. MLIPs have recently gathered
interest, due to the hope of nearly matching the accuracy of ab-initio methods at a
fraction of their computational cost. This promise has gained some credence in recent
years, due to the demonstrated flexibility of various machine-learning architectures, and
to the rapid increase in the availability of ab-initio training data. We refer to [28, 184]
for recent overviews. This class of models typically defines the potential in two steps,
by first computing for each atom a feature vector of so-called descriptors encoding its
atomic environment, and designed to enforce some physical priors, such as the locality
of interactions and various symmetries. Common choices include radial symmetry
functions [29], SOAP [23] and ACE [108] descriptors. In a second step, the descriptor
is used as input to a machine-learning model, typically a linear model [319], neural
network [29] or Gaussian process [24], giving the energy contribution for a single atom.
Summing over atoms gives the final functional form. Crucially, forces on each atom,
which are required for dynamics (and training the model), can usually be computed
efficiently using reverse-mode automatic differentiation [27].

To give a concrete example–which will be used in Chapter 3– we consider the simplest
variant of the AMBER [264] force-field. It decomposes the potential energy into contributions
associated with bond stretching, bond bending, torsional energy, and pairwise interactions,
modelling Van der Waals and electrostatic interactions between nuclei. More precisely, the
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interatomic potential is given by

V (q) =
∑

bonds {i,j}

kijb
2 (rij − rij0 )2 +

∑
angles {i,j,k}

kija
2 (αijk − αijk0 )2

+
∑

dihedrals {i,j,k,ℓ}
Eijkℓ

(
1 + cos

(
nijkℓϕijkℓ − γijkℓ

))

+
∑

1⩽i<j⩽N

4εij

(σij
rij

)12

−
(
σij

rij

)6
+ Cij

rij

 ,
(1.5)

where the first three sums give the so-called bonded energy contributions, and run over covalent
bond chains of increasing length involving atom i: 2-chains defining a bond length rij = |qi−qj |,
3-chains defining a bond angle αijk, and 4-chains defining a dihedral (or torsional) an-
gle ϕijkℓ. The final two sums give the non-bonded contributions, respectively a Lennard–
Jones type term, and a Coulombic interaction term. The various parameters θijkℓ =(
kijb , r

ij
0 , k

ijk
a , αijk0 , Eijkℓ, nijkℓ, γijkℓ, εij , σij , Cij

)
are determined by the atomic species of atoms i, j, k

and ℓ, as well as their ordering in the covalent chain for bonded interaction terms. This func-
tional form can be decomposed into a sum V (q) =

∑N
i=1 Vi(q), where Vi is the contribution

of atom i to the total energy. A schematic representation of the different types of bonded
interaction terms is given in Figure 1.2.

For simpler systems, such as monoatomic noble-gas fluids, this general form reduces to the
Lennard–Jones potential

V (q) =
∑

1⩽i<j⩽N
VLJ (|qi − qj |) , VLJ(r) = 4ε

[(
σ

r

)12
−
(
σ

r

)6
]
, (1.6)

which now depends only on two parameters, an energy ε and a length σ, and which we will
use in Chapter 4. It is represented for reference in Figure 1.1.

In the case where the position domain Q = (LT)d is periodic (see the next paragraph), some
modifications to the non-bonded interaction terms in (1.5) are generally performed for the
sake of efficiency. Namely, the short-range Lennard–Jones-type energy is truncated in such a
way that all atomic pairs (i, j) with rij > rc do not contribute, where 0 < rc < L/2 is a fixed
cutoff-radius, see [7, Section 1.6.3], and the choice rc < L/2 ensures that no atom interacts
with one of its periodic images. A finite cutoff radius implies that forces need only be computed
for pairs of neighboring atoms, which represents a substantial efficiency gain in large systems.
Various cutoff strategies ensure the regularity of the resulting potential (see [7, Section 5.2.3]).
The cutoff radius should be chosen sufficiently large in order for the modified potential to
be a small perturbation of the original one. For this reason, this simple strategy cannot be
applied to Coulombic interaction terms which decay too slowly with respect to interatomic
distance, except in prohibitively large systems. To treat these Coulombic long-range terms, a
number of strategies have been proposed, most notably those based on the Ewald summation
trick, see [133, Chapter 12] and [7, Chapter 6]. This family of methods relies on a preliminary
approximation of the system’s charge density, and on the fact that the electrostatic energy of
a periodic charge density can be evaluated efficiently, by considering the electrostatic Poisson
equation in the Fourier representation.
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Figure 1.1: The pairwise Lennard–Jones potential defined in (1.6). The functional form imposes a
Van der Waals-like attraction between nuclei further apart than the equilibrium distance r∗ = 21/6σ,
and a very strong repulsion between nuclei closer than r∗.
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b

c
CH3
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CH3

Figure 1.2: Bond topology of alanine dipeptide, a toy model for a protein, often used as a benchmark
biophysical system, including in Chapter 3. Orange arrows give examples of contributing modes to the
AMBER energy (1.5). a: Stretching of the (C–N) bond. b: Angle bending associated to the (C–C=O)
3-chain. c Torsion of the backbone dihedral angle Ψ, defined by the (N–C–C–N) 4-chain. Hydrogen
bonds are not represented for the sake of readability.
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Boundary conditions. The specific definition of the phase space E depends on the physical
model and properties of interest. We distinguish several common choices.

◦ Periodic boundary conditions: this common choice corresponds to setting Q = (LT)d

and P = Rd, where T = R/Z is the unit one-dimensional torus, d = 3N is the number of
position degrees of freedom in the system, and L > 0 is a length parameter fixing the
size of the domain. This setup is essential for studying the bulk properties of matter, as
the periodic unit cell models a small portion of the molecular medium while its images
represent the surrounding environment, reducing surface effects.

◦ Unbounded domains: setting Q and P equal to Rd is appropriate for studying isolated
molecular systems, such as small atomic clusters or single molecules in vacuum.

◦ Non-flat position manifolds: for certain applications, it is useful to restrict the particle
positions to a non-flat manifold Q. This can be useful for enforcing geometric constraints,
such as fixed bond length or angles, or for expressing the equations of motion in non-
Cartesian coordinates [326]. Such constraints can improve the stability of numerical
schemes [293, 10, 22], allowing for larger time steps, and can be used for computing
free energy differences [308, 230]. In this geometric setting, the momentum associated
to a given position q ∈ Q is a cotangent vector p ∈ T ∗

qQ, and the phase space E is the
cotangent bundle: E = T ∗Q, which no longer has the simple product form (1.1).

◦ Exotic boundary conditions: for the purpose of some specialized simulations, one can
consider a variety of additional boundary conditions. For instance, one can consider
walls at the boundary of a domain ∂Q, on which particles are subject to specular and
diffusive reflections, or absorption. Absorbing boundary conditions play a crucial role in
the local approach to metastability, see Section 1.3 below and Chapters 2 and 3 of this
thesis. Mixed conditions, which are periodic with respect to a subset of coordinates, can
be used to study interfaces such as cell membranes, see for example [53]. One can even
consider time-dependent definitions, such as Lees–Edwards boundary conditions [215],
which allow to study shear flows.

The choice of boundary conditions fixes the geometry of the phase space. The next step is to
relate this collection of microstates to the macroscopic state of the system.

Statistical ensembles. The basic postulate of statistical mechanics, as formalized by Gibbs
in [136], is that the system’s macroscopic configuration is a probability distribution π ∈ P(E)
over the set of possible microstates. The distribution π is also known as a statistical or ther-
modynamic ensemble. In this statistical description, the ensemble π assigns to each microstate
a likelihood of being the microscopic realization of an observed macrostate, and the choice of
ensemble is a basic modelling assumption.

Given a physical observable φ : E → R, we can define the macroscopic value of φ as
the ensemble average:

Eπ [φ] =
∫

E
φ dπ. (1.7)
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For example, the pressure P of an isotropic fluid in a periodic box, described by pairwise
interactions such as (1.6), can be expressed as an ensemble average (1.7) of the instantaneous
bulk pressure:

φP (q, p) = 1
3L3

(
p⊤M−1p− q⊤∇V (q)

)
.

To make this notion of macroscopic configuration operational, one should have a principled
way to assign a specific ensemble to a specific set of physical conditions. We distinguish two
approaches.

◦ Dynamical definitions. In these constructions, the ensemble π is identified with an
invariant probability measure or steady state of the system’s underlying dynamics.
Whether the dynamics are deterministic or stochastic, whenever the system is ergodic
with respect to π, time averages of observables along a single, long trajectory will converge
to the ensemble average (1.7). This approach provides a physical justification for the
ensemble by connecting it directly to the microscopic time-evolution of the system, in
the case a model of the microscopic dynamics is available. It also the viewpoint which
underpins theoretically the computation of macroscopic properties using equilibrium and
nonequilibrium molecular dynamics.

◦ Variational definitions based on the principle of maximal entropy, as described in
[185, 186], offer a fairly general alternative. This approach frames the problem of
determining the thermodynamic ensemble from the sole knowledge of macroscopic data
as one of statistical inference. Namely, the ensemble π is defined as the probability
distribution which maximizes the information entropy, given by the ensemble average
S[π] = −⟨log π⟩π (with some abuse of notation), subject to a set of constraints fixed by
observing the values of a finite number of macroscopic variables. Informally, this principle
selects the most uninformative distribution compatible with the available information,
and draws a connection between statistical mechanics and information theory. Solving
for π generally leads to explicit expressions, without the need for any reference to a
microscopic dynamics.

Examples of statistical ensembles. We now give some examples, the first two of which
were introduced by Gibbs in [136], and are of primary interest for MD.

◦ The microcanonical ensemble (NV E) describes an isolated system with a fixed number
of particles (N), volume (V ), and total energy (E). It is given by the probability
measure πNV E , where

∀A ∈ B(E), πNV E(A) = 1
ZNV E

∫
A∩H−1(E)

|∇H|−1dHH−1(E),

where H is the Hamiltonian (1.2), HH−1(E) is the (d− 1)-dimensional Hausdorff measure
on the constant-energy surface H−1(E) and

ZNV E =
∫
H−1(E)

|∇H|−1dHH−1(E)
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is a normalizing constant known as the microcanonical partition function. Dynamically,
it is an invariant measure of Hamiltonian dynamics (1.3) started at a point X0 ∈
H−1(E). The choice of the microcanonical ensemble can also be motivated by postulating
equiprobability for microstates of equal energy; the measure πNV E can then be defined
(see [229, Section 1.2.3.1]) as the limit as δ → 0 of uniform probability distributions
on the energy shells S(E, δ) := H−1(E − δ, E + δ), which are known to maximize the
information entropy in P(S(E, δ)) (whenever S(E, δ) is compact).

◦ The canonical ensemble (NV T ) describes a system with fixed number of particles and
volume, in thermal equilibrium with a heat bath at a constant temperature T . It is given
by the Boltzmann–Gibbs distribution

∀A ∈ B(E), µ(A) = 1
Zµ(β)

∫
A

e−βH(q,p) dq dp, (1.8)

where µ is parametrized by
β = (kBT )−1,

kB is Boltzmann’s constant and

Zµ(β) =
∫

E
e−βH(q,p) dq dp

is the canonical partition function. It is an invariant probability measure for a system
evolving under various dynamics (often stochastic, some of which are discussed in
Section 1.1.2 below) which model the interaction with the heat bath. From the point
of view of the maximum entropy principle, it is derived by maximizing the information
entropy subject to the constraint of a fixed average energy, which is related to the
temperature T by the formula ⟨H⟩µ = − ∂

∂β log Zµ(β).

◦ Other equilibrium ensembles can be constructed to model more general physical conditions.
The isothermal-isobaric ensemble (NPT ) describes systems at constant temperature and
pressure P , which are often relevant for biological applications, and is derived from the
maximal entropy principle by fixing the average energy and average volume of the system
(related to the pressure P ). The grand-canonical ensemble (µVT) describes systems that
can exchange both heat and particles with a bath, and is defined by fixing the average
energy and average particle number (related to the chemical potential µ).

◦ Nonequilibrium ensembles, describe systems driven away from thermal equilibrium by
the application of non-conservative forces or thermal gradients. These systems are
characterized by the presence of irreversible fluxes and entropy production. Most often,
these ensembles are defined dynamically, as the invariant measure of some nonequilibrium
process, in which case the ensemble is also known as a nonequilibrium steady-state (NESS).
The question of finding variational constructions for nonequilibrium ensembles has been
investigated in the physical literature (see [187]), but does not appear to be fully settled
at this time. We elaborate on this type of ensemble in Section 1.2.2 below.

Finally, let us mention that equivalence of ensembles results allow to relate averages in one
ensemble to averages in another. For instance, it has been shown that, for homogeneous



Chapter 1. Introduction 13

systems with short-range interactions, the NV E and NV T ensembles are equivalent (in
several ways, and under technical conditions, see [323] for a detailed discussion) in the
thermodynamic limit N,V → +∞ keeping the particle density ρ = N/V fixed. In particular,
so called macrostate equivalence results imply that, for intensive observables φ, the canonical
averages µ(φ) and corresponding microcanonical averages πNV E(φ) converge to a common limit
when N → +∞, where T and E = Nu are chosen so that the canonical specific energy µ (H/N)
converges to the microcanonical one u. Equivalence results for nonequilibrium ensembles is
also a current topic of interest, see [76] for an example.

Collective variables and canonical free-energies. An important quantity associated
with the canonical ensemble is the Helmholtz free-energy

A(β) = − 1
β

log Zµ(β), (1.9)

from which a variety of thermodynamic properties may be deduced as a function of the
parameter β. For instance, a simple formal computation shows that the Helmholtz free-energy,
information entropy S(β) := −⟨log

(
e−βH/Zµ(β)

)
⟩µ and internal energy U(β) := ⟨H⟩µ are

related by the famous identity
A(β) = U(β)− 1

β
S(β).

Often, one is led to describe the microstate of the system with a collective variable (CV),
also known as an order parameter or reaction coordinate. For simplicity, we consider here
a one-dimensional CV, which is a map ξ : E → R (the extension to multi-dimensional CVs
is discussed in Section 3.4.1 of Chapter 3). Generally, the CV ξ is chosen to summarize
one of the microstate’s key structural features: the value of some interatomic distance or
angle, a measure of similarity with respect to some reference microstate, or a progress metric
along a reference trajectory are all common examples of CVs. They are very useful to get an
intuitive understanding of the microstate of a large molecular system. In turn, the CV induces
a summarized description of the ensemble itself, via the pushforward measure ξ∗π ∈ P(R),
defined by ξ∗π(A) = π(ξ−1(A)) for any measurable subset A ⊂ R.

In the case of the canonical ensemble π = µ (see (1.8)), and if ξ enjoys some regularity
properties (for instance, it is enough to require that ξ be smooth with ∇ξ ̸= 0 everywhere),
one can write a formula for ξ∗µ(A) using the coarea formula [199, Corollary 5.2.6]:

ξ∗µ(A) = 1
Zµ(β)

∫
A

∫
ξ−1(z)

e−βH

|∇ξ|
dσξ−1(z) dz,

where σξ−1(z) is the (d− 1)-dimensional surface measure induced by the Lebesgue measure on
the level set ξ−1(z). Defining, by analogy with (1.9), the free-energy associated with ξ as

Aξ(z) = − 1
β

logZξ(z), Zξ(z) =
∫
ξ−1(z)

e−βH

|∇ξ|
dσξ−1(z), (1.10)

we see that ξ∗µ has a density Zµ(β)−1e−βAξ with respect to the one-dimensional Lebesgue
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measure.1

From the knowledge of Aξ, one can recover the macroscopic value of any observable defined
in terms of ξ. For φ = ψ ◦ ξ, we have

⟨φ⟩µ =

∫ +∞

−∞
ψ(z)e−βAξ(z) dz∫ +∞

−∞
e−βAξ(z) dz

, (1.11)

which can be computed with elementary methods. This explains why the determination of
free energy Aξ given an informative collective variable ξ is a central task in computational
statistical physics. Numerous algorithms (see [229, 230], [233, Section 4] for an overview of
methods) have been developed to address this specific challenge.

1.1.2 The configurational sampling problem

One of the important uses of MD is the measurement of thermodynamic properties, which
corresponds to the task of computing the ensemble average (1.7) for a given microscopic
observable φ. For example, so-called histogram methods [229, Section 2.5] for computing the
free-energy (1.10) rely on such averages.

Since the integral in (1.7) has the same high dimensionality as the phase space (typi-
cally, dim E = 6N), these thermodynamic quantities cannot be computed using standard
quadrature methods. Beyond the simplest cases in which (1.7) is analytically computable, one
has to resort to a Monte Carlo method, which relies on the generation of sample configurations
from the thermodynamic ensemble.

In the canonical ensemble, the equilibrium measure (1.8) can be written as a product
measure µ(dq dp) = ν(dq)κ(dp), where

ν(dq) = 1
Zν(β)e−βV (q)dq, κ(dp) =

(
β

2π

)3N/2
detM−1/2e− β

2 p
⊤M−1p dp (1.12)

are the configurational and kinetic marginal distributions under µ, respectively, and

Zν(β) =
∫

Q
e−βV

is the configurational partition function. Since κ is a simple Gaussian distribution, (pseudo-
random) i.i.d. samples from κ can be generated very efficiently using elementary methods.
Therefore the main challenge in this setting is to sample from ν, the Gibbs measure.

While we focus on the important case of sampling from µ or ν, some of the methods and
concepts we describe are more general. To emphasize this point when needed, we introduce a
generic configuration space Y (which will generally be E or Q), and a target measure π ∈ P(Y)

1Here, we note that adding a constant in the definition (1.10) of Aξ only changes the normalizing constant for
this density from Zµ(β) to some other value. Such constants may appear depending on the chosen convention
for the surface measure, for instance if one uses a (d − 1)-dimensional Hausdorff measure. As the normalizing
constant has no effect on the computation of averages via (1.11), we are primarily interested in free-energy
differences.
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(which will generally be µ or ν) possessing a density ρ with respect to some reference measure λ
on Y (which will generally be the Lebesgue measure). In any case, the goal is to estimate,
given a function φ ∈ L1(Y, π), its average under π:

π(φ) =
∫

Y
φdπ =

∫
Y
φρ dλ. (1.13)

Methods for estimating (1.13) generally fall into one of two categories: Markov Chain Monte
Carlo (MCMC) methods [283, 238], based on the Metropolis–Hastings algorithm [247], or
MD-based methods, which rely on time-discretizations of some underlying ergodic dynamics.

Link with Bayesian statistics. Before presenting MCMC methods, we stress that the task
of estimating π(φ) has many scientific applications beyond computational physics.

One of these is Bayesian inference. In this setting, one considers a family of probability
distributions π(x|θ)dx ∈ P(D) on the set D of observable data, parametrized by θ ∈ Y. One
also fixes a prior distribution Π ∈ P(Y) over the space of parameters. Given a realization x

of the data, the posterior distribution π(·|x) ∈ P(Y) is given by Bayes’ rule: for A ⊂ Y a
measurable set, it writes

Π(A|x) =
∫
A π(x|θ)Π(dθ)

Z(x) , Z(x) =
∫

Y
π(x|θ) Π(dθ).

Many tasks in Bayesian statistics can be viewed as computing averages with respect to the
posterior distribution. For instance, the posterior predictive likelihood of observing some new
realization x̃ ∈ D is given by the integral∫

Y
π(x̃|θ)Π(dθ|x),

which is an ensemble average with respect to the posterior distribution. Such integrals, and
others, are similar to those encountered in statistical physics in two key respects:

◦ The posterior distribution is typically high-dimensional, while not as high-dimensional
as for MD applications.2 The likelihood functions π(·|θ) specify a model of the data-
generation process, which may depend on a large number of parameters in many applica-
tions.

◦ The posterior distribution is known up to a normalization constant, in the sense that it
has the density Z(x)−1π(x|θ) with respect to the prior Π, where π(x|θ) is explicit. The
only unknown quantity is the normalization constant Z(x), which plays an analogous
role to the partition function.

MCMC methods. Most of these methods are examples of the Metropolis–Hastings al-
gorithm [247, 151], which provides a general method for constructing Markov chains whose

2The dimensionality of θ is typically of the order of 101–103, compared to the 104–106 (and sometimes more)
degrees of freedom involved in modern MD systems.
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stationary distribution is π, whenever the density ρ is known up to a normalization constant.
MCMC methods are particularly well-suited to the problem of sampling microstates from
the canonical ensemble, where the partition function is unknown, as well as from conditional
distributions µ(dq dp|A) = µ(A)−1e−βH(q,p)χA(q, p) dq dp for some subset A ⊂ E .

The algorithm proceeds by generating a candidate configuration y′ ∈ Y from a starting
configuration y ∈ Y, according to a Markov transition kernel T (y′|y)λ(dy′). This proposed
move is then accepted with some probability α(y′|y) ⩾ 0, in which case the chain moves in the
state y′, or else is rejected, in which case the chain remains in the state y. The acceptance
probability α(y′|y) is defined as the Metropolis ratio

α(y′|y) = min
(

1, ρ(y′)T (y|y′)
ρ(y)T (y′|y)

)
.

This choice ensures that the resulting Markov chain, with transition kernel K(y2|y1)λ(dy2), is
reversible with respect to π, due to the detailed balance condition

ρ(y1)K(y2|y1) = ρ(y2)K(y1|y2).

Given a trajectory (yj)j⩾1 of this chain, a natural estimator for the average (1.13) is given, for
a sampled trajectory of length J ⩾ 1, by the trajectory average

φ̂J = 1
J

J∑
j=1

φ(yj). (1.14)

To justify the quality of these estimators, it is possible, under certain irreducibility conditions
on the kernel K (see for instance [248, Theorem 17.0.1] or [107, Chapter 21]), to obtain ergodic
and central limit theorems (CLTs)

φ̂J
J→+∞−−−−−−−−−−−→

Py−almost surely
π(φ),

√
J (φ̂J − π(φ)) J→+∞−−−−−→

in law
Gφ ∼ N (0, σ2

φ,K),

for any y ∈ Y , where Py is the law of the chain started from y0 = y, and σ2
φ,K is the asymptotic

variance
σ2
φ,K = Varπ(φ) + 2

∞∑
j=1

Covπ (φ(y0), φ(yj)) < +∞. (1.15)

Such results prove the consistency of the method, and allow in principle to construct confidence
intervals for the target quantity π(φ). This goal raises the question of estimating σ2

φ,K from
trajectory averages, for which some methods have been developed, see for instance [128], [133,
Appendix D] or [229, Section 2.3.1.3] and references therein.

The efficiency of the algorithm in measuring π(φ) critically depends on the choice of the
proposal kernel density T , which should be designed to minimize σ2

φ,K . In turn, this is achieved
by making the time series φ(yi) as uncorrelated as possible. This is a difficult task in MD, due
to the typical structure of the Gibbs measure ν, which consists of several sparse and often
anisotropic high-probability modes separated by vast low-probability regions, which have to
be overcome by the trajectories of the Markov chain. Various strategies have been proposed,
ranging from rather inefficient local exploration strategies, such as random-walks [247] or so-
called Metropolized numerical schemes for continuous-time dynamics (such as MALA [286, 284],
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which is based on the overdamped Langevin dynamics, or HMC [110] and gHMC [175]–which
are based on Hamiltonian dynamics), to global strategies leveraging recent progress in deep
generative models, see for instance [257, 134, 179] and references therein.

Langevin dynamics and its overdamped limit. The second broad class of methods are
based on continuous-time dynamics which are ergodic with respect to π. Here we only consider
diffusion processes, which are stochastic processes with trajectories in the configuration space Y ,
defined by the stochastic differential equation (SDE):

dYt = b(Yt) dt+ σ(Yt) dWt, (1.16)

where b is a vector field on Y , σ is a matrix of m ⩾ 1 vector fields on Y , and W is a standard m-
dimensional Brownian motion. The generic dynamics (1.16) will be called the equilibrium
dynamics, as we will consider nonequilibrium perturbations of this SDE in Section 1.2.2.
Various other processes we do not elaborate on, such as piecewise deterministic Markov
processes (PDMPs), could be considered instead of the diffusion (1.16) for the configurational
sampling problem, see [123].

A standard example is the underdamped Langevin dynamics, the model of choice to describe
the motion of molecular systems in thermal equilibrium, and a very common choice in
applications. Its trajectories (qγt , p

γ
t )t⩾0 are governed by the following second-order system of

SDEs on E : 
dqγt = M−1pγt dt,

dpγt = −∇V (qγt ) dt− γM−1pγt dt+
√

2γ
β

dWt,
(1.17)

where γ > 0 is a friction parameter, W is a standard 3N -dimensional Brownian motion,
and V : Q → R is the interaction potential. One can rewrite the dynamics (1.17) as a
first-order SDE, in the succinct form

dXγ
t = (J − γΠp)∇H(Xγ

t ) dt+
√

2γ
β

ΠpdW̃t, (1.18)

where Xγ
t = (qγt , p

γ
t ), J is the symplectic matrix defined in (1.4), Πp is the orthogonal projection

onto the p coordinate (i.e. Πp(q, p) = (0, p)), and W̃ is a standard 6N -dimensional Brownian
motion. Note that setting γ = 0 yields the Hamiltonian dynamics (1.3): the underdamped
Langevin dynamics can therefore be understood as a perturbation of the classical equations of
motion by an Ornstein–Uhlenbeck-type evolution in the momentum variable, corresponding
to the SDE dpγt = −γM−1pγt dt+

√
2γ/βdWt (and dqγt = 0 in the position variable), which is

easily verified to preserve µ. By Liouville’s theorem and energy conservation, the Hamiltonian
dynamics also preserves µ (meaning that forall t ∈ R, ϕt∗µ = µ, where ϕt is the Hamiltonian
flow). Therefore, µ is an invariant probability measure for the underdamped Langevin dynamics
as a whole. The rigorous version of this argument is discussed below.

The friction parameter γ in (1.17) can be understood as a rate of energy exchange with
a surrounding heat bath; a physical justification for this interpretation can be found in the
derivation [129] of the dynamics (1.17) as the effective motion of a Hamiltonian particle
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interacting with a bath of M coupled harmonic oscillators, in the limit M → +∞. Another
derivation of the dynamics (1.17) consists in considering the motion of a large spherical particle
of mass M > 0 undergoing elastic collisions with an infinite bath of non-interacting point
particles of mass m > 0, in the limit M/m → +∞, see [111, 104]. In this derivation, the
coefficients of the dynamics can be expressed in terms of the density and velocity distribution
of the ideal gas bath.

In the large-friction limit γ → +∞, one can show (see for example [229, Section 2.2.4] or Chap-
ter 5 below) that time-rescaled position trajectories (qγγt)0⩽t⩽T converge to solutions (Xt)0⩽t⩽T

of the following SDE on Q:

dXt = −∇V (Xt) dt+
√

2
β

dWt, (1.19)

where W is again a 3N -dimensional Brownian motion. This equation is named the overdamped
Langevin dynamics, and admits ν as an invariant probability measure.

Similarly to the case of discrete-time Markov chains, ensemble averages are estimated via
trajectory averages. To ensure that these averages are well-defined, one should show that the
trajectories of the dynamics (1.17) and (1.19) can be defined over arbitrarily long times, which
requires some conditions on the potential V . To give an example, the condition

V ∈ C∞(Q), ∃ a, b, R > 0 : ∀ |x| > R, −∇V (x)⊤x ⩽ a− b|x|2, (V -Conf)

guarantees, using [280, Theorem 5.9]3 or [193, Theorem 3.5] that strong solutions (qγt , p
γ
t )t⩾0

and (Xt)t⩾0 to (1.17) and (1.19) exist for all times. We stress that Assumption (V -Conf)
is sufficient, but by no means necessary: this one has the advantage of being concise and
ensuring both the finiteness of Zν(β) for all β > 0 and the everywhere-positivity of e−βV . This
condition is trivially satisfied when Q is compact and V is smooth.

We finally note that one can consider generalizations of these equilibrium dynamics obtained
by modifying the coefficients in (1.19) and (1.17) respectively, introducing (smooth) position-
dependent matrix fields γ and σ : Q → R3N×3N . More precisely, considering the modified
underdamped dynamicsdqγt = M−1pγt dt,

dpγt = −∇V (qγt ) dt− γ(qγt )M−1pγt dt+ σ(qγt ) dWt,
(1.20)

and the modified overdamped dynamics

dXt = −γ(Xt)∇V (Xt) dt+ 1
β

div γ(Xt) dt+ σ(Xt) dWt, (1.21)

where div denotes the row-wise divergence operator, it is easy to show that these dynamics
preserve µ and ν respectively, provided the matrix-valued functions γ and σ are related by the

3In the overdamped case, the Lyapunov function W (x) = |x|2 + c for some c ⩾ 1 will do in [280, Theorem
5.9]. The condition also implies that V (x) |x|→+∞−−−−−−→ +∞, so that the conditions of [280, Example 5.10] are
satisfied.
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fluctuation-dissipation relation
σσ⊤ = 2γ

β
. (1.22)

In particular, γ must be symmetric negative semidefinite. The dynamical relevance of the
coefficients γ and σ have to be assessed on a case-by-case basis. Regardless of the physical
interpretation of these coefficients, these modified dynamics provide a valid sampling instrument
to generate canonical microstates. A natural question in this perspective is the optimization of
the matrix γ to improve the efficiency of the associated sampling method, see [70, 86, 226, 232]
for recent works in this direction. Both the dynamics (1.21) and (1.20) play a role in this
thesis, see Chapter 3 for (1.21) and Chapter 5 for (1.20).

Ergodic averages. Given an observable φ ∈ L1(Y, π) an estimator for the average π(φ) is
given by the trajectory or ergodic average:

φ̂T = 1
T

∫ T

0
φ(Yt) dt, (1.23)

of a continuous-time ergodic process Y with trajectories in Y , invariant under π, typically the
solution to a Brownian SDE such as (1.16). The invariance condition means that∫

A
Py(Yt ∈ A)π(dy) = π(A)

for all measurable A ⊂ Y and all t ⩾ 0, where Py denotes the law of Y started from Y0 = y.
Similarly to the case of estimators coming from MCMC algorithms, the consistency and
accuracy of the estimator (1.23) should be checked. This is most easily done by introducing
the infinitesimal generator associated with the dynamics.

Infinitesimal generator. For any continuous-time process Y with trajectories in Y such as
the equilibrium dynamics (1.16), we may define two operators:

T Yt f(y0) =
∫

Y
f(y)Py0(Yt ∈ dy) = Ey0 [f(Yt)], LY f = lim

t→0+

T Yt f − f
t

.

The family of operators (T Yt )t⩾0 forms the transition semigroup for the process Y . It is a
semigroup of contractions on the Banach space (C0(Y), supY | · |) of continuous functions
vanishing at infinity (or equivalently the closure of the space C∞

c (Y) of test functions for
the sup-norm). Provided Y has the Feller property (see [279, Section III.2]), it is in fact
a C0-semigroup, with generator LY . We will often use the notation etLY := T Yt .

Assuming the law ψ(t, y) dy of the time-marginal Yt admits a C2 λ-density ψ(t, ·) at any
time t ⩾ 0, this density is a solution to the Fokker–Planck equation:

∂tψ =
(
LY
)†
ψ, (1.24)

where the operator
(
LY
)†

denotes the formal L2(λ)-adjoint of the generator, acting in the
spatial component. When no such density exists, an equation like (1.24) applies to P Yt , but
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only a priori in the sense of distributions, in which case
(
LY
)†

should be interpreted as the
generator of the dual semigroup acting on P(Y).

Many stability properties of the dynamics are encoded by the generator, and can often be
revealed by considering the generator’s action on a well-chosen Lyapunov function, see [243,
280, 150] for some of the many applications of this strategy.

Under Assumption V -Conf, both the underdamped and overdamped dynamics are Feller
processes with continuous trajectories (see [193, Theorem 3.5]), and their generators Lγ :=
L(qγ ,pγ) and L := LX act on the space C∞

c of smooth compactly supported functions as
second-order differential operators

Lγ = A+B + γO, where


A = p⊤M−1∇q,
B = −∇V ⊤∇p,

O = −p⊤M−1∇p + 1
β

∆p,

and L = −∇V ⊤∇+ 1
β

∆, (1.25)

where the indices under the operators ∇q,∇p,∆p indicate the variable with respect to which
differentials are taken. The operator Lham := A + B is the generator of the Hamiltonian
dynamics (1.3), while the operator γO is the generator of an Ornstein–Uhlenbeck process in
the momentum variable. These expressions are a consequence of Itô’s formula.

Given these expressions, checking that µ and ν are invariant measures for these respective
dynamics simply amounts to checking, in view of (1.24), that

L†
γe−βH = L†e−βV = 0. (1.26)

Both the operators L and Lγ can be written in the form

A = X0 +
M∑
k=1

X2
k , (1.27)

for some first-order differential operators (Xk)0⩽k⩽M satisfying Hörmander’s condition. This
condition requires that the algebra of iterated commutators associated to the decomposi-
tion (1.27) has full rank everywhere, namely

dim Span
{
Xi0 , [Xi0 , Xi1 ], [[Xi0 , Xi1 ], Xi2 ], . . . , (ij)j⩾0 ∈ {0, . . . ,M}N

}
= D, (1.28)

where D = 3N if A = L, and D = 6N if A = Lγ . This condition ensures that all the operators

L,Lγ ,L†,L†
γ , ∂t − L, ∂t − L†

are hypoelliptic (see [174], [280, Section 7]), which implies in particular that the laws of the
time marginals Xt and Xγ

t have smooth Lebesgue-densities for any t > 0. In fact L and L†

are elliptic, owing to the fact that the diffusion matrix in (1.19) is non-degenerate, in contrast
to the diffusion matrix in (1.18).
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Convergence of trajectory averages. From the knowledge of an invariant probability
measure with positive Lebesgue density (which follows from (1.26) as soon as Zν(β) is finite)
and the hypoellipticity of the generators, the results of Kliemann [196] can be used to prove
an ergodic theorem. 4 One can show in particular that, from any initial condition (q, p) ∈ E
or x ∈ Q, the trajectory average (1.23) converges almost-surely to the average of φ under the
invariant measure.

To establish a CLT, one can use the results of [38] to show (see the discussion in [233, Section
3.1]) that, for φ ∈ L2(Y, π),

√
T (φ̂T − π(φ)) T→+∞−−−−−→

in law
G ∼ N

(
0, σ2

φ

)
, σ2

φ = 2
∫

Y
Πφ(−LY )−1Πφ dπ, (1.29)

where Πf = f − π(f) denotes the centering projector with respect to π. The CLT is therefore
valid as long as the Poisson equation −LY f = Πφ is well-posed, in the sense that such an f

should exist and belong to L2(Y, π). A simple sufficient condition to this end is to establish
an exponential decay bound

∃λ,C > 0 : ∀ t > 0,
∥∥∥etLY

∥∥∥
E→E

⩽ Ce−λt, (1.30)

on the operator norm of the semigroup, for some Banach space E continuously embedded
in ΠL2(Y, π). Note that bounds such as (1.30) can be used to establish the convergence of
time marginal distributions of the process in various topologies, by duality.

The CLT (1.29) is then satisfied for any φ such that Πφ ∈ E, since the bound (1.30) ensures
that

(−LY )−1 =
∫ +∞

0
etLY dt (1.31)

is a continuous inverse of −LY on E (so that the Poisson equation is well-posed), with moreover∥∥∥∥(LY )−1
∥∥∥∥
E→E

⩽
C

λ
. (1.32)

The goal of establishing exponential decay estimates such as (1.30) motivates the study of
the long-time behavior of the transition semigroup on E = ΠL2(Q, π), which can be related to
the spectrum of LY on the weighted space L2(π) := L2(Y, π).

Spectral gap of the generator. Due to the invariance of π under the dual action of etLY ,
the family (etLY )t⩾0 is also a C0-semigroup of contractions on L2(π), whose infinitesimal
generator we denote by LY . We refer the reader to [240, Chapter 8] for a general discussion of
the analytical properties of this semigroup and its generator in the elliptic case.

In the overdamped case, C∞
c (Q) is a core for L (see [240, Theorem 8.1.26]), and one has the

equality (which follows on the core from an integration by parts, recalling the expression (1.25)
4The crucial point is to check Hörmander’s condition (1.28). In the underdamped case, we write Lγ =

X0 + 1
2
∑3N

j=1 X2
j with X0 = A + B − γp⊤M−1∇p, and Xj =

√
2γ
β

∂pj for 1 ⩽ j ⩽ 3N . The commutator identity

∀ 1 ⩽ j ⩽ 3N, [X0, Xj ] =
(
M−1(γ∇p − ∇q)

)
j

, implies that dim Span {X1, . . . , X3N , [X0, X1], . . . , [X0, X3N ]} =
6N . In the overdamped case, this condition is already verified without considering any commutators.
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for L):
⟨f,Lg⟩ν = − 1

β

∫
Q
∇f⊤∇g dν, ∀ f ∈ H1(ν), g ∈ D(L), (1.33)

and D(L) ⊂ H1(ν), where the weighted Sobolev space

H1(ν) =
{
f ∈ L2(ν) : ∇f ∈ L2(ν)3N

}
is the form domain. The generator L is therefore symmetric on L2(ν), and in fact self-adjoint, a
property which reflects the reversibility of the dynamics (1.19) with respect to ν. The quadratic
form (1.33) known as the Dirichlet form in the probability literature. Note in this case that
the Fokker–Planck operator L† is also symmetric, but on the weighted space L2(ν−1) weighted
by the inverse of the Gibbs density, due to the identity

∫
Q L†φψdν−1 =

∫
Q(φ/ρν)L(ψ/ρν)dν,

where we write ρν for the Gibbs density (1.12).

To study the spectral properties of the generator LY , it is often convenient to consider a
unitarily conjugated operator acting on the “flat” space L2(Y, λ) obtained by reweighting
observables, namely the operator ρ1/2LY ρ−1/2.

Applying this conjugation to the overdamped generator L, we obtain the so-called Witten
Laplacian, introduced in [340], acting on C∞

c (Q) ⊂ L2(Q) as:

∆V,β := e− β
2 V Le

β
2 V = 1

β
∆− Uβ, Uβ := β

4 |∇V |
2 − 1

2∆V, (1.34)

which now writes as a negative Schrödinger operator. The spectral properties of L can then
be recovered from the well-developed spectral theory for quantum Hamiltonians. For example,
a classical criterion (see [276, Theorem X.28]) implies that if Uβ is bounded from below, the
operator ∆V,β is essentially self-adjoint on C∞

c (Q), so that the (closed) operator L is self-adjoint.
If Uβ(x) |x|→+∞−−−−−→ +∞, then the closure of ∆V,β and therefore L have compact resolvents
(see [277, Theorem XIII.67]), which implies that the spectrum of L consists of a discrete set of
eigenvalues

0 = −λ0,β > −λ1,β ⩾ −λ2,β ⩾ · · · (1.35)

enumerated with multiplicity, and such that λn,β
n→+∞−−−−−→ +∞. Note that the first eigen-

value, λ0,β = 0, is simple (see for instance [277, Theorem XIII.47]), and corresponds to the
subspace ker L = ker Π ⊂ L2(π) of constant functions.

Under Assumption (V -Conf), a sufficient condition for the spectrum of L to be of the
form (1.35) is that∇2V is bounded or thatQ is compact5. The Courant–Fisher characterization
of λ1,β and the expression (1.33) then give the optimal Poincaré inequality:

∀φ ∈ H1(ν), ∥Πφ∥2L2(ν) ⩽
1

βλ1,β
∥∇φ∥2L2(ν).

This inequality is well-known (see for instance [233, Proposition 2.3]) to be equivalent to
the bound (1.30) with E = ΠL2(ν), C = 1 and λ = λ1,β. In view of the bound (1.32), the
asymptotic variance σ2

φ can then be bounded in terms of the sharp exponent λ1,β and ∥φ∥2L2(ν).
It is also possible to establish (suboptimal) Poincaré inequalities with direct estimates, under

5This follows easily from the fact that (V -Conf) implies |∇V (x)| ⩾ b|x| − a/|x| for |x| ⩾ R.
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the same growth assumption on Uβ, see for example [329, Theorem A.1].

One can try to apply the same procedure to the generator Lγ of the underdamped Langevin
dynamics, to obtain the Kramers–Fokker–Planck operator, acting on C∞

c (E) ⊂ L2(E) as:

Pγ,V := e− β
2HLγe

β
2H = Lham + γ∆K(p),β,

Lham = A+B, ∆K(p),β = 1
β

∆p −
(
β

4 |M
−1p|2 − 1

2Tr(M−1)
)
,

where ∆K(p),β is a Witten Laplacian in the p-variable, associated to the kinetic energy K(p) =
1
2p

⊤M−1p. It can be shown when V ∈ C∞(Q) that C∞
c (Q) is a core for Lγ 6, and that, under

suitable conditions on the potential V and its derivatives, Lγ has compact resolvent, and
therefore pure point spectrum7 (see for example [254, Corollary 5.10]). Using hypoelliptic
estimates related to −P †

γ,V , one can then establish (see [254, Theorem 6.4] or [169, 112] for
earlier results) a bound such as (1.30) in E = ΠL2(µ), for some constant C > 1.

Beyond these abstract results, it is of considerable practical interest to obtain bounds of
the form (1.30) which are quantitative, in the sense that the constants C and λ are explicit,
or, failing this, scale in an explicit way with the physical parameters N, γ and β. It is
also important to establish such bounds for dynamics other than (1.19) and (1.17), such as
nonequilibrium dynamics (see Section 1.2.2 below) for which the invariant measure π is not
necessarily explicit.

A variety of approaches have been developed to this end. To mention only a few, other
choices of functional settings, corresponding to different choices of Banach space E can be
considered, such as Lyapunov-weighted B∞ spaces (see [280, Section 8]), including in some
nonequilibrium settings [182], but the rates are rarely quantitative. Hypocoercive estimates
(see for instance [329, 105, 106, 37] and references therein) offer a different route to decay
bounds such as (1.30). These have the advantage of generally leading to explicit scalings
of the decay exponent λ in terms of the friction parameter γ, in both the Hamiltonian
limit γ → 0 and the overdamped limit γ → +∞. These can also be extended perturbatively
to some nonequilibrium settings [182, Theorems 1–3]. Finally, low-temperature spectral
asymptotics (see [304, 195, 157, 61, 35, 166, 167, 168] and references therein) aim to give
quantitative estimates of the optimal exponent λ in (1.30), in the limit β → +∞. Under
suitable assumptions, one can derive Eyring–Kramers-type formulas for λ; broadly speaking,
one can view a small value of λ as a signature of the metastability of the continuous dynamics,
which therefore acts as an obstacle to efficient configurational sampling. We come back to this
point in Section 1.3 below.

Discretizations of the Langevin dynamics. In practice, equations (1.17) and (1.19)
cannot be solved exactly. Therefore, the trajectory averages (1.23) are approximated by ergodic
averages along discrete-time trajectories generated by appropriate numerical schemes, two of

6A direct adaptation of the proof of [254, Proposition 5.5] shows that the closure −Pγ,V is maximally accretive
in L2(E). Therefore, the closure −A + B + γO of the differential operator (1.25) on C∞

c (E) is maximally accretive
on L2(µ): it must be the closed accretive operator −Lγ .

7In fact, the Helffer–Nier conjecture (which is unsolved in full generality) proposes that Lγ has compact
resolvent if and only if L has compact resolvent.
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which we now present. In this paragraph, we choose a certain timestep parameter ∆t > 0.

For the overdamped Langevin dynamics, a standard numerical scheme is given by the
Euler–Maruyama method

Xn+1 = Xn −∆t∇V (Xn) +
√

2
β
Gn∆t, Gn∆t = W(n+1)∆t −Wn∆t,

which can be implemented easily because the Brownian increments (Gn∆t)n⩾0 are i.i.d. with
common law N (0,∆tId3N ). This scheme therefore defines a Markov chain with transition
kernel

PEM
∆t (x,dx′) =

(
β

4π∆t

)3N/2
e− β

4∆t
|x−x′−∆t∇V (x)|2dx′.

This scheme is also known in the MCMC literature as the unadjusted Langevin algorithm
(ULA), by opposition to its Metropolis-adjusted counterpart (MALA [286, 284]).

For the underdamped Langevin dynamics, a popular family of methods is given by splitting
schemes, which rely on the decomposition (1.25) of the generator Lγ,β as a sum of generators
of explicitly solvable dynamics. Namely, simple computations show that the operators A,B
and γO are the infinitesimal generators of the following transition semigroups:

e∆tAφ(q, p) = φ
(
q + ∆tM−1p, p

)
,

e∆tBφ(q, p) = φ (q, p−∆t∇V (q)) ,

e∆tγOφ(q, p) = E
[
φ

(
q, e−γ∆tp+

√
2γ
β

∫ ∆t

0
e−γ(∆t−s)dWs

)]
,

(1.36)

where the last operator rewrites, using Itô’s isometry,

e∆tγOφ(q, p) = E

φ
q, e−γ∆tp+

√
1− e−2γ∆t

β
G

 , G ∼ N (0, Id3N ).

Many schemes can then be constructed based on various splittings of e∆tLγ . For example,
the OBABO scheme is the Markov chain associated with the Strang splitting approximation

e∆tγO/2e∆tB/2e∆tAe∆tB/2e∆tγO/2 (1.37)

of the semigroup e∆tLγ . The transition kernel POBABO∆t (q, p,dq′,dp′) is the result of the
dual action of the operator (1.37) on the Dirac measure δ(q,p), and as for the case of the
Euler–Maruyama scheme, it possesses a fully explicit Lebesgue-density.

In the case γ = 0, splitting schemes based on the transition operators (1.36) reduce to
so-called symplectic integrators for the Hamiltonian dynamics (1.3). For instance, the velocity
Verlet method corresponds to the splitting BAB, which is the γ → 0 limit of the scheme (1.37).
Symplectic schemes are well-known [147, 148] to mirror many of the qualitative properties
of the Hamiltonian flow (in particular, they have long-term energy preservation properties)
which makes them the standard choice for the integration of long trajectories of Hamiltonian
systems.
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Given a numerical scheme, an estimator φ̂N,∆t for the ensemble average (1.7) can be defined,
using averages over trajectories of the associated Markov chain, just as for the MCMC
estimators (1.14). In this case, the estimator φ̂N,∆t is associated to a time-discretization of a
trajectory of the dynamics (1.17) or (1.19) of physical length Tsim = J∆t. The existence of an
invariant probability measure for the chain, and the convergence analysis for the estimator φ̂J,∆t
can be performed using the general theory of discrete-time, continuous-space Markov chains,
as in the case of MCMC estimators, see for instance [243, Section 6], [221], and references
therein.

An important feature setting apart MD-based methods from MCMC-based methods is that
the invariant measure π∆t associated to a particular numerical scheme is generically not the
ensemble measure π associated with the average (1.13). As a consequence, the estimator φ̂J,∆t
is typically not a consistent estimator of π(φ) as J → +∞. To control this systematic bias, one
can ensure the invariance of π by performing a Metropolis rejection step, as described above.
In practice, this timestep bias is typically negligible compared to the statistical error for MD
simulations. To nevertheless control this source of error, one can derive rigorous estimates
in ∆t for the bias π∆t(φ)− π(φ), see for instance [313], [233, Section 3.2.3], [221, Section 2.4].
In turn, these error estimates can be leveraged to reduce the systematic error, for instance
by applying Richardson’s extrapolation method [281], or using analytical correction schemes,
see [233, Section 3.3.4].

For MD-based estimators, the asymptotic variance of the estimator φ̂J,∆t defined by numerical
trajectory averages is given by

σ2
∆t,φ = Varπ∆t

(φ) + 2
+∞∑
n=1

Covπ∆t

(
φ(Y 0), φ(Y n)

)
,

where (Y n)n⩾0 is the Markov chain defining the numerical scheme, with invariant measure π∆t.
This expression can be seen formally as an approximation of

2
∆t

∫ +∞

0
Eπ [Πφ(Y0)Πφ(Yt)] dt = 1

∆tσ
2
φ,

using a trapezoidal quadrature rule for the time-integral, the substitutions π∆t ← π and
Y n ← Yn∆t for n ⩾ 0, and equations (1.29), (1.31) to express the continuous-time asymptotic
variance σ2

φ as an integrated autocorrelation. Considering the physical simulation time T = J∆t,
this computation shows formally that the variance associated with discrete-time MD estimators
is dictated (at dominant order and in the asymptotic regime J → +∞) by the variance of the
corresponding continuous-time ergodic average φ̂T defined in (1.23). Rigorous error estimates
justifying this assertion for various numerical schemes can be obtained, see for instance [233,
Section 5.3.1] or [221, Section 2.5].

Enhanced sampling methods. For both MCMC and MD-based methods to estimate Eπ[φ],
the efficiency of a given estimator is determined by its asymptotic variance, respectively given
by (1.15) and (1.39) for the naive trajectory estimators (1.14), (1.23). Due to the poor design
of the proposition kernel K, or to the metastability of the continuous-time dynamics, these
may suffer from a large asymptotic variance. Short of modifying the dynamics to improve
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sampling, some alternative strategies can be implemented, inspired by classical variance
reduction techniques. Enhanced sampling methods, particularly those aimed at computing the
free energy (1.10), are a vast and important subject in the MD methodological literature. We
refer to the perpetual review [162] for a more exhaustive overview and additional references.

◦ Importance sampling [322], [238, Section 2.5] consists in replacing the target ensemble π
with a dominating probability measure π′ ≫ π, and computing the average with respect
to π′ of a reweighted observable. It derives from a simple identity:

π(φ) =
∫

Y
φρdλ =

∫
Y
φρ′ ρ

ρ′ dλ = π′
(
φ
ρ

ρ′

)
, (1.38)

where π′(dy) = ρ′(y)λ(dy). In the context of canonical sampling, i.e. when π ∈ {ν, µ},
a simple way to design π′ is by adding a biasing potential Ṽ to the potential energy
function V . Assuming for simplicity that φ only depends on atomic positions, the
formula (1.38) writes

π(φ) =

∫
Q
φ eβṼ e−β(V+Ṽ )∫

Q
eβṼ e−β(V+Ṽ )

=
π′
(
φeβṼ

)
π′
(
eβṼ

) .
Both terms in this ratio can be estimated from trajectory averages of a biased dynamics,
under one of the SDEs (1.17), (1.19), (1.20), (1.21) with the substitution V ← V + Ṽ ,
or using MCMC methods. Often, the biasing potential is defined in terms of a collective
variable, to focus sampling on a specific region of position space, or to reduce the height
of free energy barriers. Importance sampling will be used in Chapter 3 of this thesis.
Adaptive biasing techniques are a powerful class of related methods, we refer to [229,
Chapter 5], [162, Section 7] and references therein for overviews.

◦ Control variates, in their simplest implementation, replace φ by φ− cψ, for observables ψ
such that π(ψ) = 0 and some scalar control c ∈ R. One can estimate π(φ) = π(φ− cψ)
with the naive estimators (1.14) or (1.23), and choose the control c to minimize the
corresponding asymptotic variance, namely σ2

K,φ−cψ or σ2
φ−cψ. In both cases, this leads

to a closed-form expression for the optimal control, which in turn can be estimated
from trajectory correlations. A simple way to ensure that π(ψ) = 0 is to take ψ in
the range of the generator LY , see for instance [233, Section 3.4.2] and [289]. Beyond
this simple scheme, one can extend this strategy to multivariate controls, or controls
which are themselves stochastic processes such as carefully chosen martingales, see for
example [11, 161]. Martingale control variates are used extensively in Chapter 4 of this
thesis.

◦ Symmetrization, in the spirit of antithetic variates, exploits symmetries in the system to
construct new estimators from existing ones, by exploiting the identity

π(φ) = Eπ
[∫
G
φ ◦ ψg µG(dg)

]
,

valid whenever g 7→ ψg is a group action of G on Y leaving π invariant, and µG ∈ P(G)
is any probability measure on G. For physical systems of indistinguishable particles, G is
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typically generated by a set of rigid motions of the configuration space, and permutations
of particles.

This family of methods is a simple way to ensure some amount of variance reduction, as
implied by Jensen’s inequality:

Eπ

[(∫
G
φ ◦ ψg µG(dg)

)2
]
⩽ Eπ

[∫
G

(φ ◦ ψg)2 µG(dg)
]

= Eπ[φ2].

This method is very general, as the same principle allows to use symmetries in the
distribution of trajectories of the dynamics, which provides a simple approach to reducing
the variance of estimators for the dynamical quantities discussed in Section 1.2 below. An
example of symmetrization of dynamical averages applied to shear viscosity computations
can be found in [96, 241].

◦ Stratified sampling relies on a decomposition of the configuration space in several regions,
roughly corresponding to modes of π, which are sampled independently. This can be
done more efficiently than sampling from π for well-defined regions. Samples from each
region are then combined and reweighted according to the relative probability of each
region under π. Various reweighting schemes are possible, see for instance [161, 302],
and [233, Section 3.4.1] for details.

We refer to [162] for various other methods, such as so-called extended ensemble techniques,
which augment the phase space with non-physical degrees of freedom allowing to bypass
free-energy barriers.

1.2 The trajectorial sampling problem

In Section 1.1.2, we presented various methods for computing ensemble averages (1.7). In this
section, we consider the problem of computing dynamical properties, which can be defined
as averages over a path ensemble of microstate trajectories. It is intuitively clear that this
is a qualitatively harder problem than the configurational sampling problem discussed in
Section 1.1.2: in asking for trajectories, we traded a high but finite-dimensional space of
microstates for an infinite-dimensional space of paths.

After a general approach to dynamical properties of interest, we present in Section 1.2.1 a
class of methods which address the timescale problem introduced in Section 1.1, and which form
a core motivation for the results of Chapters 2 and 3. Following this, we discuss the sampling
of nonequilibrium response properties in Section 1.2.2, which motivate the contributions of
Chapter 4.

Dynamical properties are determined by the underlying model of the molecular dynamics,
which is usually an instance of one of the dynamics (1.20) or (1.21), but is at any rate given
by a SDE of the form (1.16). In particular, while ensemble averages (1.13) were invariant with
respect to particular choices of dynamical parameters (such as the choice of the parameter γ in
the dynamics (1.17), (1.21) or (1.20)), dynamical properties are generically sensitive to these
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choices, which should now therefore be regarded as physical modelling parameters, rather than
hyperparameters of the sampling algorithm.

The computation of dynamical quantities is the main motivation for all the methods studied
in this thesis. We begin by giving some typical examples of quantities of interest.

◦ Autocorrelations. Due to the CLT (1.29) for the ergodic average (1.23) of some φ ∈ L2(π),
as well as the expression (1.31) for the inverse generator (which holds assuming a bound
of the form (1.30)), the asymptotic variance can be written

σ2
φ = 2

∫ +∞

0
Covπ (φ(Yt), φ(Y0)) dt. (1.39)

This integral, which is a functional of the trajectory, is the prototypical example of a
dynamical property, and computing it is of practical interest to quantify the statistical
uncertainty associated with estimators of the thermodynamic average π(φ).

◦ Path statistics. Many quantities of interest can be reduced to path averages of the form

Eπ0 [f(τ, Yτ )] , (1.40)

where π0 is some distribution of initial microstates, τ is a stopping time for the process Y ,
and f : R × Y → R is a measurable function. For example, given two closed disjoint
subsets A,B ⊂ Y, their respective hitting times τA, τB, and C ⊂ ∂B, the committor
function, mean first passage time and the reactive time distribution function and entering
distribution kernel, can be defined respectively as

hA→B(y) = Py (τB ⩽ τA) , TA(y) = Ey [τA] ,

FA→B(y, t) = Py (τB < t ⩽ τA)
hA→B(y) , πA→B(y, C) = Py (YτB ∈ C, τB ⩽ τA)

hA→B(y) .
(1.41)

These are all examples of quantities which can be computed using averages of the
form (1.40).

The subsets A and B can be understood as ensembles of microstates corresponding to
the reactant and product state of a given chemical reaction, or as discriminating between
two metastable conformations of a molecule. Regardless of the specific interpretation,
these quantities are of great interest in biology, where they can be used to estimate
reaction rates, and resolve both the timescales and microscopic mechanisms underlying
some of the most important biochemical processes, such as protein folding, protein-ligand
binding and enzyme catalysis.

The last two quantities in (1.41) are examples of conditional path averages, which can
be challenging to compute with naive methods when Py(τB < τA) is small. A variety of
algorithms have been developed to address this specific problem (see for instance [97, 8, 68]
and references therein).

◦ Response properties relate perturbations of the dynamics to perturbations of physical
averages under these dynamics. More precisely, one considers a perturbation Y η of the
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equilibrium dynamics Y defined in (1.16), which should be thought of as a nonequilib-
rium dynamics. The associated invariant measure πη is an example of a nonequilibrium
thermodynamic ensemble, already introduced in Section 1.1. The goal is to compute
perturbed thermodynamic averages πη(R) for a physically motivated response observ-
able R : Y → R, measuring an irreversible flux in the system. Although estimating
the average flux πη(R) is conceptually precisely the configurational sampling problem
from πη we discussed in Section 1.1.2 above, the measure πη is in general only defined
implicitly by being stationary for the nonequilibrium dynamics. Sampling trajectories
of these dynamics is therefore necessary to estimate the average flux. An important
related quantity is the linear response, defined as the derivative α = ∂ηπη(R)|η=0. The
Green–Kubo formula (1.64) derived in Section 1.2.2 expresses the linear response as a
specific functional of the equilibrium path ensemble, and explains why α can be viewed
as a dynamical property. The computation of the linear response is the motivation
for the method developed in Chapter 4 of this thesis. We elaborate on this specific
and important case in Section 1.2.2 below. Finally, methods to compute alchemical
free-energy differences via the Jarzynski–Crooks formula (see [229, Chapter 4]) also rely
on sampling trajectories from nonequilibrium path ensembles.

The ability to measure dynamical properties hinges on the ability to sample unbiased, long
trajectories of the dynamics. Sampled trajectories, to be useful, should be long enough so that
the integral from a time T to +∞ of the correlation in (1.39) can be neglected, or that the
time τ corresponding to the event of interest is likely to have elapsed in (1.40). In most cases,
sampling long trajectories is computationally prohibitive using naive methods, due to the
timescale problem introduced in Section 1.1. The source of this challenge is the metastability of
the system, whereby typical trajectories of the dynamics remain trapped in particular regions
of the phase space for very long times before transitioning to other regions, where they remain
trapped once again. These regions are called metastable states, and typical paths of the system
alternate between long periods of residence within these metastable states and rare and rapid
transitions between them.

The nature of the trapping mechanism associated to a metastable state Ω depends on the
system under consideration. It may be that Ω contains some attractor y0 for the equilibrium
dynamics, whose neighborhood cannot be escaped by the dynamics, without entering regions
of low likelihood according to π. This is the situation for the dynamics (1.17) or (1.19)
around local energy minima of V surrounded by energetic barriers which are high relative
to kBT = β−1. It may also be the case that escaping Ω does not require crossing low-likelihood
regions, but rather navigating narrow configurational pathways via a very specific realization
of the driving noise. This is the typical obstacle to global conformational changes in organic
molecules, which are forbidden by steric effects unless well-coordinated collective motions of
atoms occur. In this case, we speak of entropic barriers, which are particularly pronounced in
high-dimensional bonded systems.

In many cases, the presence of entropic barriers can be revealed by considering the free-energy
landscape (1.10) given an appropriate collective variable ξ : Y → R, corresponding to a slow
variable of the system. We illustrate this point in the following example, which was suggested
to us by Danny Perez.
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Example 1.1 (Energetic versus entropic barriers.). We consider, for d ⩾ 1, potentials
on Y = Rd of the form

V (y) = W (y1) + k(y1)|ŷ1|2, (1.42)

where W,k are scalar-valued functions with k > 0 pointwise, and ŷ1 = (y2, . . . , yd)⊤ ∈ Rd−1.
We also choose the natural reaction coordinate ξ(y) = y1, and the associated free-energy (1.10),
which in this case can be computed analytically:

Fξ(y1) = W (y1) + d− 1
2β log k(y1) + C(d, β) (1.43)

for some explicit constant C(d, β). Different choices of W and k lead to different trapping
mechanisms. The purely energetic case (see Figure 1.3 below for an example) corresponds to
the choices k(y1) = 1 and W possessing more than one local minimum. The purely entropic
case (see Figure 1.4 below for an example) corresponds to the case where W has only one local
minimum (which is therefore global), but where k displays some spatial dependence. In each
case ξ is a slow variable of the system, with metastable states separated by free-energy barriers
in Fξ. In the cold regime β ≫ d, the energetic barriers from W are the dominant terms in the
expression (1.43), while in the high-dimensional regime d≫ β, entropic contributions from k

are the primary effect.

1.2.1 Accelerated MD algorithms

The timescale problem is a direct consequence of the metastable nature of most molecular
systems. As illustrated in Example 1.1, the dynamics can become trapped for long periods
in metastable states corresponding to local minima of the free-energy landscape. Transitions
between these states require the system to cross high free-energy barriers, which are, by
definition, infrequent events. In these metastable systems, most of the wall-clock time of
a sequential MD simulation will be spent in the simulation of thermal fluctuations within
free-energy basins, which are typically uninformative. To overcome this issue, the family
of accelerated MD (AMD) algorithms has been proposed to go beyond sequential MD.

Here, we choose a slightly different setup than what can be found in other reviews of
AMD (see for instance [337, 267] or [233, Sections 6.3 & 6.4 ]), allowing for the definition
of more general metastable states, which can in particular overlap. We consider a collection
of subsets of Y, denoted by (Ωα)α∈I , each representing a distinct metastable region of the
configuration space, which we call metastable states. We assume that for each α ∈ I, Y \ Ωα

has non-empty interior. Within each state Ωα, we define a core-set or milestone Cα ⊊ Ωα. We
assume that core-sets are disjoint:

∀α ̸= α′, Cα ∩ Cα′ = ∅. (1.44)

We recursively define a sequence of events, corresponding to the sequence of visits to the
set of milestones. This sequence consists in a sequence of hitting times (τn)n⩾0, as well as a
sequence of milestone indices (αn)n⩾0. The sequence is defined as follows: let τ−1 = 0, α−1 = ∅
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Figure 1.3: The case of a purely energetic barrier, W (y) = 1
4 (y2 − 1)2 and k(y) = 1 in (1.42).

Top row: two-dimensional slice of the potential V in the (y1, y2)-plane. Middle row: free-energy
profile for ξ(y) = y1 and various values of the physical parameters d and β. The physically irrelevant
constant C(d, β) in (1.43) has been substracted. Bottom row: sample trajectories of the slow variable ξ
under the dynamics (1.19) for the potential V , showcasing metastability at low temperature.
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Figure 1.4: The case of a purely entropic barrier, W (y) = 1
2y

2 and k(y) = 1+e−10y2 in (1.42). Top row:
two-dimensional slice of the potential in the (y1, y2)-plane. Middle row: free-energy profiles for ξ(y) = y1.
Middle row: sample trajectories of the slow variable under the dynamics (1.19), showcasing metastability
in high-dimension.
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be undefined, and Y0 ∈ Y be some initial configuration. The sequence of events is initialized by

τ0 = inf
{
t > τ−1 : Yt ∈

⋃
α∈I

Cα

}
, α0 =

∑
α∈I

α1Yτ0 ∈Cα ,

where the sum is well-defined owing to the disjointness condition (1.44). Subsequent events
are defined recursively, for n ⩾ 0, via

τn+1 = inf

t > τn : Yt ∈
⋃

α∈I\{αn}
Cα

 , αn+1 =
∑

α∈I\{αn}
α1Yτn+1 ∈Cα .

We call the I-valued process(
αn(t)

)
t⩾0

, n(t) = #{n ⩾ 0 : τn ⩽ t} − 1 (1.45)

the milestone-to-milestone dynamics (it is the analog in our setting of the state-to-state
dynamics, see [233, Section 6.3]). If the milestones Cα are defined to represent physically
significant configurations, it can reveal the sequence of microscopic steps underlying large
conformational transitions. This is invaluable in providing mechanistic insight into various
biochemical and material processes.

AMD algorithms can be seen as a way to sample (approximately) unbiased trajectories
of the dynamics (τn, αn)n⩾1, which allow to recover the milestone-to-milestone dynamics.
Note in particular that, for any milestone A, the first hitting time is given by τA = τNA−1,
where NA = inf {n ⩾ 0 : Cαn = A} so that AMD methods yield approximate samples of YτA ,
making the quantities (1.41) accessible in principle.

The central idea of accelerated MD methods is to exploit the following property of metastable
systems. For reasonable definitions of the pairs (Cα,Ωα), and if Y0 ∈ Cα, the time-marginal
distribution of Law(Yt) will converge to a local equilibrium να ∈ P(Ωα), conditionally on
remaining trapped inside Ωα for long enough before leaving Ωα. One can picture Cα as
lying deep inside a free-energy basin, while the metastable state Ωα covers the whole basin.
Initializing the dynamics from the local equilibrium να, exit events from Ωα, defined as the
pair

(τα, Yτα) , τα := τΩc
α

= inf {t ⩾ 0 : Yt ̸∈ Ωα} , (1.46)

are infrequent.

The three AMD methods of Arthur Voter, namely Temperature-Accelerated Dynamics (TAD,
2000, [312]), Hyperdynamics (HMD, 1997, [333, 332]) and Parallel Replica (PR, 1998, [334]),
can all be understood as particular methods to sample the exit event (1.46) at a reduced cost,
measured either in terms of number of floating-point operations or of wall-clock time. The
notion of local equilibrium in Ωα is formalized, for each α ∈ I, by the following assumption
and approximation, which are both shared by all three AMD methods, and formalize the
condition that each Ωα truly corresponds to a metastable state.

Assumption 1.2. There exists a unique probability measure να ∈ P(Ωα) such that, for all
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measurable A ⊂ Ωα,
Pνα (Yt ∈ A | τα > t) = να(A). (QSD)

A simple argument8 shows that (QSD) implies the following property. There exists λα > 0
such that for any bounded measurable function f : ∂Ωα → R,

Eνα [1τα>tf (Yτα)] = e−λαtEνα [f (Yτα)] .

This equation says that, given Y0 ∼ να, the exit time τα is an exponential random variable
with rate λα, independent from the exit point Yτα .

The measure να satisfying Assumption (QSD) is called the quasi-stationary distribution
(QSD) for Y inside Ωα. The second assumption (which implies the first) states that the law of
the process converges to the QSD provided it stays trapped longer than some time tcorr(α) > 0.

Approximation 1.3. Assumption (QSD) holds, and for all y0 ∈ Cα:

∀ t ⩾ tcorr(α), Law(Ytcorr(α) |τα > t ) = να. (MS(tcorr(α)))

When tcorr(α)≪ 1/λα, Approximation (MS(tcorr(α))) is a separation of timescales hypoth-
esis: it posits that convergence to the QSD occurs on a much shorter timescale than the
metastable exit time.

Regardless of its specific implementation, any procedure to sample the exit event (1.46)
can be used in the following algorithm to simulate the sequence (τn, αn)n⩾1, and therefore
the milestone-to-milestone dynamics (1.45). In the following algorithm, we assume that we
can “run AMD” to sample the exit event (1.46) starting from any local equilibrium.

Algorithm 1.4 (AMD-accelerated trajectorial sampling.). We initialize a simulation clock Tsim =
0, the index n = −1 of the last milestone transition, and αlast = ∅, the index of the last
visited milestone. The dynamics is initialized at Y0 ∈ Y, and the following steps are iterated
until Tsim, n or αlast satisfy some termination condition.

A) Initialization step. Run sequential MD starting from YTsim until TA,
where TA = inf {t > Tsim : ∃α ∈ I, Yt ∈ Cα}. Increment Tsim ← TA. Let α ∈ I such
that YTA ∈ Cα. If α ̸= αlast, set n← n+ 1, αlast ← α, αn ← α, and τn ← Tsim + TA.
Proceed to Step B.

B) Decorrelation step. Run sequential MD starting from YTsim for a time tcorr(αlast). Incre-
ment Tsim ← Tsim + tcorr(αlast).

B.1) If an exit from Ωαlast occured in step B, go back to step A.

B.2) If not, YTsim ∼ ναlast by Approximation (MS(tcorr(α))). Proceed to step C.
8Take t, s ⩾ 0 and compute Eν [f (Yτα )1τα>t+s] = Pνα (τα > s)Eνα [f (Yτα )1τα>t+s | τα > s] =

Pνα (τα > s)Eνα [f (Yτα )1τα>t] using the strong Markov property and (QSD). Taking f = 1Ω and t = 0
respectively shows the desired exponentiality and independence properties. The fact that λα > 0 is a con-
sequence of the fact that Y \ Ωα will be eventually be visited by Y with probability 1, see [84, Section
2.3].
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Ω1

Ω2

Ω3

C2

C3C1

Figure 1.5: A metastable trajectory sampled using Algorithm 1.4. Boundaries of metastable states
are represented with dashed lines. The state of the milestone-to-milestone dynamics is represented
by the color of the solid line. AMD-accelerated portions of the trajectory, corresponding to step C in
Algorithm 1.4, are represented by dotted arrows. Here, we represent a recrossing event: the system
reaches C1 and equilibrates under ν1, exits Ω1, but reenters C1 before reaching another milestone, upon
which it reequilibrates under ν1 and finally transitions. If the metastable states are well designed, the
bulk of the physical time evolution is hidden behind the “jumps” performed in step C.

C) Accelerated metastable exit step. Run any AMD procedure starting from Y AMD
0 = YTsim.

Let
(
TC, Y

AMD
TC

)
be the sampled exit event. Increment Tsim ← Tsim + TC, set YTsim ←

Y AMD
TC

, and proceed from step A.

Algorithm 1.4 generates a sequence (τn, αn)n⩾0 which is statistically exact, provided the
AMD-sampled metastable exit event is unbiased and Approximation (MS(tcorr(α))) is valid.9

However, some details of the trajectories are lost in step C, and indeed most, since the bulk of a
metastable system’s lifetime is spent in local equilibria. However, these details consist of many
excursions in the quasi-stationary regime, which can easily be sampled a posteriori if necessary.
The most revealing portions of the trajectory, corresponding to transitions between milestones,
are sampled using sequential MD. A schematic representation of a trajectory sampled using
Algorithm 1.4 is given in Figure 1.5.

Before presenting the AMD methods, we give a natural choice for the sets (Ωα)α∈I

and (Cα)α∈I , which is the setting of Voter’s original papers [333, 332, 334, 312].

Example 1.5 (Energy basins of attraction). Assume that the local minima of the potential V
9In practice, this condition can only be verified in an approximate sense. Here, we choose to keep the

presentation of AMD algorithms separate from concerns of their numerical analysis, and therefore speak of
“approximations” rather than mathematically formalized hypotheses.
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inQ can be enumerated by a discrete set of isolated points Crit0 = {xα}α∈I . To each xα ∈ Crit0,
we associate the basin of attraction for the energy minimization dynamics X ′(t) = −∇V (X(t)),

ΩQ
α = A(xα) =

{
x ∈ Q : ϕ(t, x) t→+∞−−−−→ xα

}
,

∂tϕV (t, x) = −∇V (ϕV (t, x)), ϕV (0, x) = x.
(1.47)

It is often the case that the set of local minima is not countable, typically because of
certain symmetry invariances of the potential function V . In this case, one can still often
write Crit0 =

⊔
α∈I Γα, where each Γα is a connected manifold, which is an orbit under a

certain symmetry group. In this case one should take ΩQ
α =

⋃
x∈Γα

A(x).

One can then take Ωα = ΩQ
α if the dynamics is given by (1.19), or Ωα = ΩQ

α × P if the
dynamics is given by (1.17). Generically, the (Ωα)α∈I form a partition of configuration space,
up to a set of measure zero.

Defining Cα = Ωα the milestone-to-milestone dynamics (1.45) becomes a “state-to-state”
dynamics.

Finally, we note that in the kinetic case, it may also be interesting to define Cα ⊂ ΩQ
α × Pα,

where Pα is a subset of momentum space (containing e.g. sufficiently small momenta “entering”
ΩQ
α ).

We now present the three AMD methods of Voter, listed roughly in order of decreasing
computational efficiency, but increasing generality and precision.

Temperature-Accelerated Dynamics. In TAD [312], we assume that the dynamics (1.16)
depends on a temperature parameter β, like (1.21) and (1.20) when the fluctuation-relation (1.22)
holds. Moreover, it relies on a coarse-graining of the exit event into a finite number of dis-
joint transition events, whose probabilities are governed by an Eyring–Kramers-type law. We
recall that the parameter β = (kBT )−1 is inversely proportional to the temperature. The
fact that the transition event obeys an Eyring–Kramers law is formalized in the following
approximation.

Approximation 1.6. There exists a critical value β0 > 0 of the temperature parameter, and,
for each α ∈ I, a finite partition of the boundary

∂Ωα =
⊔

1⩽i⩽mα

Γi,α,

with positive constants (κi,α)1⩽i⩽mα and (εi,α)1⩽i⩽mα such that, for all 1 ⩽ i ⩽ mα and β > β0,

Pνα(β)
(
Y β
τα
∈ Γi,α

)
= κi,αe−βεi,α

λα(β) , λα(β) =
mα∑
j=1

κj,αe−βεj,α , (EK)

where Y β is the dynamics with temperature parameter β, and να(β) and λα(β) are the corre-
sponding QSD and metastable exit rate of Assumption (QSD).

The (εi,α)1⩽i⩽mα are called the activation energies, and the (κi,α)1⩽i⩽mα are subexponential
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prefactors, which are assumed to be independent of β. Extensions to situations where the
prefactors are assumed to scale in some explicit way with respect to β are straightforward.
When the dynamics is given by (1.19) or (1.17), it is common to define the Γi,α as basins of
attraction for the tangential energy minimization dynamics

X ′(t) = −Π(X(t))∇V (Xt), Π(x) = x− (x⊤n(x))n(x), X(0) ∈ ∂Ωα,

where n denotes the outward normal to ∂Ωα. In this case, harmonic transition state theory
(HTST) proposes explicit expressions for these constants in terms of local properties of the
potential V , so-called Eyring–Kramers formulas, see Section 1.3 below.

Regardless, using the famous “alarm-clock lemma” for sums of independent exponential
random variables, the combination of Assumption (QSD) and Approximation (EK) can be
reformulated as assuming the following representation for τΩα started from Y0 ∼ να(β):

τΩα

in law= min
1⩽i⩽mα

eβεi,α
Ti
κi,α

, (Ti)1⩽i⩽mα i.i.d. E(1). (1.48)

Another useful way to understand this coarse-grained exit model is given by the following
description: the exit event started from Y0 ∼ να is given by one step of a Markovian jump
process into the set (Γi,α)1⩽i⩽mα

, with corresponding jump rates given by the Eyring–Kramers
formula.

In the original TAD formulation, the states are defined as in Example 1.5, and it is assumed
that tcorr(α) = 0 for each α ∈ I. Furthermore, each of the boundary segments (Γi,α)1⩽i⩽mα

are defined by the portions of the boundary separating Ωα from some other energy basin:

∀ 1 ⩽ i ⩽ mα, ∃α′ ̸= α : Γi,α = ∂Ωα ∩ ∂Ωα′ . (1.49)

Therefore, the original TAD assumptions model the milestone-to-milestone dynamics (1.45)
(which is a state-to-state dynamics in this case) with a Markov jump process on the set I.
Markovian jump models for the milestone-to-milestone dynamics belong to the class of Markov
state models (MSMs), see [181]. The jump process induced by the TAD assumptions is the
basis of kinetic Monte Carlo (KMC) methods to measure dynamical properties, see [335] for
example.

The core idea of TAD, to sample a metastable exit for Y β− , is to sample coarse-grained
exits at a higher value of the temperature parameter β+ ∈ (β0, β

−) for a given observation
time using sequential MD. Subsequently, one uses the representation (1.48) to infer the first
transition one would have observed at the target value β−. Since the rate of transitions
through Γi,α is multiplied by a factor e(β−−β+)εi,α when simulating the system at β = β+

rather than at β = β−, one can infer the order in which transitions observed at β+ would have
occured at β− by determining the value of the activation energies εi,α. Moreover, the transition
states (Γi,α)1⩽i⩽mα and corresponding activation energies (εi,α)1⩽i⩽mα need not be known
in advance, but can instead be detected on the fly at β = β+. This discovery phase can be
aborted dynamically, using statistical criteria and a priori bounds on the constants (κi,α)1⩽i⩽mα

and/or (εi,α)1⩽i⩽mα . All in all, the TAD procedure can lead to a significant acceleration in Ωα

if (mini εi,α) (β−−β+) is sufficiently large. For convenience, we give a schematic representation
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of the TAD algorithm in Figure 1.6 below.

The basic structure of the TAD algorithm to sample a transition proceeds as follows.

Algorithm 1.7 (TAD). Initialize high-temperature observation time T+
stop = +∞, simulation

clock T+
sim = 0, first transition time T−

min = +∞ and first transition point Ymin = ∅. Iterate
the following steps given Y +

0 ∼ να(β+).

A) Reinitialize Y +
T+

sim
by drawing an independent sample from να(β+). This can be ignored

if T+
sim = 0.

B) Run sequential MD on Y + at β = β+, until detecting an exit through Γi,α at time T̃+
i ,

for some 1 ⩽ i ⩽ mα. Compute εi,α.
This requires a procedure (i, εi,α)← FindTransition. Increment T+

sim ← T+
sim + T̃+

i .

B.1) If Y +
T̃i

is the first observed transition through Γi,α, set T+
i = T̃+

i

and T−
i = e(β−−β+)εi,αT+

i . If T−
i < T−

min, update T−
min ← T−

i , Ymin ← Y +
T+

i

and T+
stop ← StopCriterion(δ, T−

min). Proceed to step C.

B.2) If a transition through Γi has already been observed, proceed to step A.

C) If T+
sim > T+

stop, return
(
T−

min, Ymin
)
. Otherwise proceed to step A.

Algorithm 1.7 relies on two auxiliary procedures, FindTransition and StopCriterion. The
role of FindTransition is to determine that an exit occured through Γi,α and the associated
activation energy εi,α. In the setting of Example 1.5, when Γi,α is defined by (1.49), the
activation energy εi,α is given by an energy difference V (xi,α)−V (xα), where xi,α minimizes V
on Γi,α, and xα is the global minimum of V inside Ωα. In this case, xi,α is an index-1 saddle point
for V . Upon detecting, that Y + has exited Ωα (for instance by running gradient descent on V ),
two-sided saddle point search methods, such as the nudged-elastic band method (NEB [189]),
can be used to identify xi,α, and compute the associated activation energy V (xi,α)− V (xα).

The role of StopCriterion is to ensure that the probability of observing a transition T+ >

StopCriterion(δ, T−
min) which would extrapolate to a time T− < T−

min is bounded by an user-
supplied confidence parameter δ ∈ (0, 1). Such criteria are defined using a priori bounds on
the prefactors (κi,α)1⩽i⩽mα and/or the activation energies (εi,α)1⩽i⩽mα , see [344] for additional
details.

In practice, it is possible, using TAD on solid-state systems with high energy barriers, to
reach acceleration factors with respect to sequential MD of the order of 104–109 [312]. The
method is however both inexact and inefficient if the energy barriers are too low, or when
entropic effects are significant.

Hyperdynamics. HMD [333, 332] relies on a local modification of the potential energy V ,
and applies to equilibrium systems evolving according to the dynamics (1.19) or (1.17). The
core of the method resides in replacing the potential energy V by a biased potential V +δV in the
governing equation, and considering the resulting biased dynamics Y δV . The bias potential δV
is non-negative, and such that the restriction to δV |Ωα

is compactly supported inside Ωα.
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(a) Sampling at high temperature (β = β+).
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(b) Extrapolation to low temperature.

Figure 1.6: Illustration of the two-step TAD procedure in the framework of Example 1.5, consisting
of (a), sampling metastable exits at high temperature, and (b), reordering these exits in time by
extrapolating to a lower temperature. In this case there are mα = 2 transition states. The slopes of the
lines in Figure (b) are given by the activation energies ε1,α and ε2,α from Figure (a).

If Ωα is surrounded by energetic barriers, δV will increase the minimum energy in Ωα, and thus
effectively lower these energetic barriers, accelerating transitions. A schematic representation
of a HMD-biased potential is given in Figure 1.7 below. We denote by (νδVα , λδVα ) the local
equilibrium and metastable exit rate associated with the biased dynamics Y δV , and τ δVα the
associated exit time. The core assumption of HMD is that the exit point distribution starting
in any of the two local equilibria is the same.

Approximation 1.8. For all measurable A ⊂ ∂Ωα

Pνα (Yτα ∈ A) = PνδV
α

(
Y δV
τδV

α
∈ A

)
. (TST)

It is often the case (this is true for example for the case of the overdamped Langevin
dynamics (1.19), see Equation 1.87 in Section 1.3.2 below), that the exiting distribution can
be written explicitly as a boundary flux:

Pνα (Yτα ∈ A) = −

∫
A
∂nuαe−βV

βλα

∫
Ωα

uαe−βV
, (1.50)
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where uα denotes the density of να with respect to ν(x)1Ωα(x)dx, and ∂nuα denotes its outward
normal derivative. Furthermore, when Ωα is surrounded by high energy barriers, the local
equilibrium is approximately equal to the restriction ν(x)1Ωα(x) dx of the equilibrium measure.
This motivates the further approximation∫

Ωα

uαe−βV ≈
∫

Ωα

e−βV . (1.51)

Applying (1.50) and (1.51) to (TST) (with A = ∂Ωα and both Y and Y δV ), we have

λα
λδVα

≈ 1
Bα(δV ) , Bα(δV ) =

∫
Ωα

e−βV∫
Ωα

e−β(V+δV ) =
∫

Ωα
eβδV e−β(V+δV )∫

Ωα
e−β(V+δV ) . (1.52)

The quantity Bα(δV ) is called the boost factor. The last expression for the boost factor in (1.52)
suggests that it can be approximated with an ergodic average of eβδV along trajectories of Y δV ,
prior to exiting Ωα. Making this assumption motivates the following simple algorithm.

Algorithm 1.9 (Hyperdynamics). A) Generate Y δV
0 ∼ νδVα .

B) Run sequential MD on Y δV until detecting a transition at time TδV .

C) Return
(
B̂α(δV )TδV , Y δV

TδV

)
, where

B̂α(δV ) = 1
TδV

∫ TδV

0
eβδV (Y δV

s ) ds.

The original formulation of (TST) is motivated by physical heuristics from transition state
theory (TST). The approximation (TST) (as well as (1.51)) can be made fully rigorously for
the dynamics (1.19) in the low temperature regime β → +∞, in the presence of sufficiently
high energetic barriers, as we further discuss in Section 1.3 below.

In the case Ωα = A(xα) of Example 1.5, and if the Eyring–Kramers approximation (EK)
correctly describes the exit event for both Y and Y δV , one can perform the following sanity
check. Since the activation energies can be written εi,α = V (xi,α) − V (xα) for some saddle
point xi,α ∈ Γi,α, raising the energy level inside the well by some constant value E > 0, so
that V (xα)← V (xα) + E, will not affect the probabilities of exiting through each of the Γi,α,
but will multiply the overall exit rate by eβE , which is indeed consistent with the estimated
boost factor in step C of Algorithm 1.9.

Although Algorithm 1.9 is conceptually simple, it is not so easy to implement in practice,
because of the need to design a biasing potential δV satisfying δV |∂Ωα

≡ 0, whose gradient
can be computed at an affordable computational cost, and for which Approximation (TST)
is valid. We refer to [333, Section II.B] and [332] for a discussion of various strategies in the
case Ωα = A(xα). Nevertheless, boost factors of order 104 were reported for the simulation of
an atomic cluster diffusing on a crystalline surface in [332], which translated to accelerations
with respect to sequential MD of order 102, due to the high cost of evaluating ∇δV .

The original version of HMD was limited to the simulation of relatively small systems, due to
poor scaling in the computational cost associated with δV , but this issue has been subsequently
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V + δV

Ωα
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νδVα

Figure 1.7: Schematic representation of the HMD bias in an energy basin Ωα (see Example 1.5). The
original potential V (black curve) is modified into V +δV (red curve) by adding a bias potential δV ⩾ 0,
compactly supported inside Ω. The corresponding local equilibria distributions ν and νδV are represented
by dashed lines. Note that the normal derivatives of the two local equilibrium densities coincide on ∂Ωα,
implying that the metastable exit distributions are the same for both the biased and unbiased dynamics.

addressed, see e.g. [249, 194] for practical choices of biasing potentials.

Parallel Replica Dynamics. The third of Voter’s AMD methods is the Parallel Replica
(PR) [334] method, and is also the most general, since it only relies on the validity of the
Approximation MS(tcorr(α)). It is based on the following simple observation. Since τα is
exponentially distributed and independent from Yτα if Y0 ∼ να, the following equality in law
holds: (

NτN,α, Y
(IN )
τN,α

) in law= (τα, Yτα), (1.53)

whenever N ⩾ 1 and
(
Y (i)

)
1⩽i⩽N

are i.i.d. replicas of the dynamics such that Y (i)
0 ∼ να for

all i, with respective exit times
(
τ

(i)
α

)
1⩽i⩽N

, and

τN,α = min
1⩽i⩽N

τ (i)
α , IN = argmin

1⩽i⩽N
τ (i)
α .

Since τN,α is exponentially distributed with rate Nλα, one obtains an expected acceleration or
order N in the wall-clock time needed to sample the exit event, by simulating the independent
replicas (Y (i))1⩽i⩽N in parallel. A schematic representation of the procedure is given in
Figure 1.8 below.

This observation leads to the following algorithm.

Algorithm 1.10 (Parallel Replica). A. Dephasing step. Prepare N independent initial
conditions (Y (i)

0 )1⩽i⩽N , each distributed according to να.

B. Parallel step. Compute (IN , τN,α) by evolving the replicas (Y (i))1⩽i⩽N on parallel proces-
sors, running sequential MD with independent Brownian motions. All simulations are
aborted at time τN,α.

C. Return
(
NτN,α, Y

(IN )
τN,α

)
.
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Note that, contrarily to Algorithms 1.7 and 1.9, PR does not lead to a greater efficiency in
terms of computational cost, but only in terms of wall-clock time.10 The expected wall-clock
time spent in step C of Algorithm 1.4 by combining it with Algorithm 1.10 (PR-AMD) is
divided on average by N , the number of simultaneously available MD processes.

On the other hand, both TAD and HMD rely on strong physical assumptions, namely
Approximations (EK) and (TST), which restrict the class of systems on which they can be
applied. Efficiency concerns further restrict the class of systems on which they are useful.
By contrast, PR is completely generic: it applies to any metastable system, as soon as
Approximation (MS(tcorr(α))) is valid for some tcorr(α) > 0, regardless of the underlying
dynamics. In particular, it can in principle be used on nonequilibrium systems [325, 268],
systems with entropic barriers [156], but also discrete Markov chains [15] and PDMPs [12].
Versions of Algorithm 1.10 suitable for asynchronous computing architectures can also be
formulated (see again [12]).

Wall-clock time speedups with respect to sequential MD of order 104 have been reported [242,
268, 294] when applying PR-AMD, to systems on which TAD and HMD cannot be used effi-
ciently. Simulations at this scale require supercomputing clusters, providing O(104) computing
cores. Additionally, PR can be combined with HMD or TAD (see [336] for an application of
the combination of PR with HMD) to further accelerate sampling.

Finally, we mention that there exists another method based on the equality (1.53), Par-
Splice [266], which provides another powerful and general method to tackle the timescale
problem in MD, but lies beyond the framework of Algorithm 1.4.

Challenges in AMD. Despite their proven potential in addressing the timescale problem,
some issues have to be settled for AMD-based methods to be useful in practice.

The first challenge is theoretical, and consists in setting rigorous mathematical foundations
for AMD methods.

Problem 1.11 (Theoretical foundations.). The first issue concerns the validity of Assump-
tion (QSD), and grounding the various Approximations (MS(tcorr(α))), (EK), (TST) in
mathematical analysis, ideally with quantitative error bounds in terms of the various physical
and approximation parameters.

The existence and uniqueness of the QSD να has recently been established for a large class of
Feller processes (see [30]), including the diffusions (1.20) (1.19), and more general hypoelliptic
diffusions and PDMPs. However, these result only apply to bounded domains Ωα ⊂ Y. For
the specific case of the underdamped Langevin dynamics (1.20), similar results have been
obtained for cylindrical domains of the form Ωα = ΩQ

α × R3N with ΩQ
α bounded 11 , using

analytic methods in [253], and probabilistic arguments in [228]. Under suitable conditions
on the infinitesimal generator (see [30, Theorem 1.8] and [228, Theorem 2.22]), exponential

10A more in-depth discussion of ParRep-AMD, with a particular focus on its wall-clock time efficiency, is
given in Appendix 3.B of Chapter 3 below.

11In the kinetic case, another way to define bounded metastable states consists in truncating the kinetic
energy K of the system, i.e. Ωα = ΩQ

α × K−1(0, R) for some R > 0. In this case the results of [30] can be
applied, even for the nonequilibrium Langevin dynamics considered in Examples 1.15 and 1.16 below.
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Figure 1.8: Schematic representation of Algorithm 1.10 with N = 24 replicas. In step A), N i.i.d.
samples are drawn according to να, see Problem 1.13 below for further discussion on how to achieve
this. The discontinuous trajectory represented in step C), obtained by concatenating the trajectories
sampled in parallel in step B), has length NτN,α, and its endpoint (in red) is an unbiased sample of the
exit-from-Ωα distribution starting from να.
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convergence to the QSD in total variation norm can be proven. Such results give the existence
of a constant rα > 0 such that, for any initial distributions ρ ∈ P(Ωα) and t > 0,

dTV (Pρ (Yt ∈ · | τα > t) , να) ⩽ C(ρ)e−rαt, (1.54)

for some constant C(ρ) > 0 uniform in t, where dTV denotes the total-variation distance
on P(Ωα), given by

dTV (µ1, µ2) = sup
∥f∥∞⩽1

|µ1(f)− µ2(f)| .

The bound (1.54) provides the theoretical basis for Approximation (MS(tcorr(α))).

Justifications for Approximations (EK) and (TST) are much more difficult to obtain in
general, and as far as we are aware, the only rigorous results in this directions are in the
low-temperature limit of the overdamped Langevin dynamics (1.19), under restrictions on Ωα

and the potential V , see [14, 225, 99, 100, 224] and the discussion in Section 1.3 below.

The second issue is practical, and concerns the design of metastable states.

Problem 1.12 (Defining Ωα and Cα). Example 1.5 provides a general way to define the
metastable states Ωα, which is often sufficient in systems with high energetic barriers. However,
the entropic case of Example 1.1 (see Figure 1.4) already shows why this definition is inadequate
in general: V has a unique global minimum (0 ∈ Rd), but A(0) = Rd does not discriminate
between the two metastable states. Even in the energetic case, AMD methods are known
to be inefficient if the energy barriers to leave Ωα are too small, an issue known as the low
barrier problem. This is an issue for definitions of Ωα based on A(xα), which are sensitive to
low-amplitude features in the potential energy surface. Various strategies have been proposed
to address this issue (see [268, Section 2.11]), such as aggregating several energetic basins into
a superbasin surrounded by suitably high barriers, replacing energetic basins with free-energetic
basins associated to a slow-moving collective variable, or hand-crafting system-specific, ad-hoc
definitions using well-chosen order parameters. Even in the case of high potential energy
barriers, definitions based on A(xα) are not expected to be optimal, because of frequent
recrossings of the boundary around saddle points of the potential energy, which typically
hinder the efficiency of Algorithm 1.4.

A separate question is, given a metastable state Ωα, to define the core-set Cα. We believe that
this point is less critical than the definition of Ωα. Loosely speaking, Cα should be contained in
the bulk of the QSD να, so that Y0 ∈ Cα corresponds to a typical configuration from να, from
which Law(Yt) is expected to quickly converge to να conditionally on {τα > t}. On the other
hand, Cα should be large enough for the set

⋃
αCα to be visited often by the dynamics. The

question of defining good core-sets is related to the question of estimating tcorr(α) (Problem 1.14
below). Note that since να is defined independently of Cα, it is possible in principle to adapt
the definition of the milestones (and correspondingly tcorr(α)) as the simulation progresses,
although this changes somewhat the meaning of the milestone-to-milestone dynamics (1.45).

Finally, the milestone-hitting times (τn)n⩾1 and metastable exit times τα for α ∈ I are
particular instances of stopping times. Therefore, replacing these times with more general
stopping times could lead to more flexible definitions of both metastable states and milestones.
In particular, soft killing times have been explored in the potential-theoretic approach to
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metastability, see [39, 40]

The second practical issue, which is largely solved for the purposes of AMD simulations,
concerns sampling from the QSD.

Problem 1.13 (Sampling from να.). The second problem that each of TAD, HM and PR must
address is the sampling of independent configurations under the QSD να (or νδVα in the case of
Hyperdynamics). Indeed, such samples are required in step A of each of the Algorithms 1.7, 1.9
and 1.10. In PR, N > 1 i.i.d. such samples are required to achieve accelerated sampling.

The simplest approach to tackle this problem is through rejection sampling. Under Assump-
tions (QSD), and Approximation (MS(tcorr(α))), for any tdephase(α) ⩾ tcorr(α) and Y0 ∈ Cα,
the law of Ytdephase(α) conditionally on {τα > tdephase(α)} is again να. Therefore, one may
arbitrarily sample initial conditions (Y (i)

0 )1⩽i⩽Nrep inside Cα, and simulate trajectories of
the dynamics with independent driving noises for a dephasing time tdephase(α) ⩾ tcorr(α),
eventually keeping only the N ⩽ Nrep replicas which did not transition during this phase. The
procedure can be tried again if no replica survives, although this should never happen if Cα is
carefully defined. To guarantee the independence of the generated samples, one should either
draw the Y (i)

0 independently, or choose tdephase(α) sufficiently large to ensure the decay of
correlations between replicas. In the original paper of Voter [334], it is suggested to initialize
positions by copying the position of the reference dynamics at time t = tcorr(α) (at which
point it is distributed under να by assumption), and sample momenta independently from the
kinetic marginal κ defined in (1.8).

Another possibility is to draw on ideas to approximate QSDs using empirical measures of
interacting diffusions. In particular, Fleming–Viot particle systems (see [330, 95, 64]) have been
proposed to generate approximately i.i.d. samples from the QSD να. In this process, N ⩾ 2
replicas of the dynamics are simulated with independent Brownian motions, until a replica
escapes Ωα. Whenever this happens, the state of the exiting replica is reinitialized at the
current state of a surviving replica, drawn independently and uniformly at random. Similarly
to the rejection sampling case, the Fleming–Viot system is evolved for some time tdephase(α).
Theoretical results (see [291]) can in some cases ensure that the marginal distribution of
each replica approaches να as N, tdephase(α) → +∞, and this approach has the advantage
of conserving the number of replicas. However, the final configurations of the replicas are
correlated, which may introduce some bias in the final sample. This bias can be controlled
using propagation of chaos results, see for instance [191]. A second approach in the stochastic
approximation of QSDs uses self-interacting diffusions (see [31, 338]) whose configurations
are resampled upon exiting Ωα under their own occupation measure τ−1

α

∫ τα
0 δYs ds. The

practicality of this method in the specific context of AMD algorithms is unclear.

The third, important practical issue concerns the choice of a valid decorrelation time.

Problem 1.14 (Choosing tcorr(α).). Once Ωα and Cα are defined, one must find tcorr(α)
such that Approximation MS(tcorr(α)) is valid. Note that if a conservative choice is made
for tcorr(α), an unnecessarily large proportion of a trajectory simulated using Algorithm 1.4
will be spent in step B instead of step C. Since the acceleration from the AMD methods only
occurs in step C, this will lead to suboptimal performance of the overall method. On the
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other hand, setting tcorr(α) to too small a value will lead to a systematic dynamical bias,
since Algorithm 1.4 relies on the dynamics being distributed according to some QSD at the
end of step B.

Several approaches have been suggested to handle this basic tradeoff. The original papers [333,
332, 334, 312] advocate for physically motivated choices of tcorr(α). For both HMD and
TAD ([333, 332, 312]), the separation of timescales was presumed to be sufficiently large
to warrant the choice tcorr(α) = 0, meaning that the QSD να is reached immediately upon
entering Cα (which was equal to Ωα in this case). For PR in solid-state systems, where the
states are defined as in Example 1.5, the pragmatic recommendation [334, 268] is to set tcorr(α)
to a few vibrational periods of Einstein’s crystalline model, on the order of one picosecond.

More principled but still heuristic approaches [268], again in the case of single energetic
basins, rely on a harmonic approximation of the dynamics around the local minima xα. This
approximation is a time-homogeneous linear SDE, whose convergence to equilibrium can be
monitored analytically. One then selects tcorr(α) based on the analytical rate of convergence
of this harmonic approximation.

For more general definitions of states, analytical results can still provide quantitative
estimates for the exponential rate of convergence to the QSD, i.e. the exponent rα defined
in (1.54), in specific dynamical settings and physical regimes. In particular, semi-classical
techniques can be used to compute the leading asymptotic behavior r̂α(β) of the convergence
rate to the QSD in the low-temperature regime β → +∞ for the dynamics (1.19), see for
instance [159, 209, 50]. Such results may or may not confirm the validity of the harmonic
approximation heuristic. A natural question concerns the estimation of the prefactor C(ρ)
in (1.54). This problem is still open for general initial conditions ρ.12 These methods can be
used to set tcorr(α) by requiring the right hand-side of (1.54) to be less than some tolerance
parameter ϵ > 0, assuming some a priori bound on C(ρ) and solving the resulting inequality.

For problems with entropic barriers, in particular most biophysical systems, such heuristics
are of no use. It is therefore interesting to develop methods to estimate a valid decorrelation
time on the fly. Since TAD and HMD are generally poorly suited to entropic barriers, this
approach holds the most promise for the PR-AMD method. In [42], the authors propose
applying a MCMC convergence diagnostic (or rather, non-convergence diagnostic) to the
Fleming–Viot process described in Problem 1.13 above. In this approach, the decorrelation
step (step B in Algorithm 1.4) is performed in parallel to the dephasing step (step A in
Algorithm 1.10), with an unsuccesful decorrelation (step B.1 in Algorithm 1.4) aborting the
dephasing step. This can be implemented with a “master/slave” Fleming–Viot process, in
which a reference (decorrelating) replica, evolving according to sequential MD, kills all the
other (dephasing) replicas whenever it exits Ωα. The initial state of the other replicas is copied
from that of the master replica, which therefore belongs to Cα. To apply MCMC convergence
diagnostics, trajectories of the Fleming–Viot process F :=

(
Y (i)

)
0⩽i⩽N

(where Y (0) is the
master replica) may be treated as independent trajectories of an underlying Markov process
with values in Ωα. In this case, it is assumed that exits during the decorrelation/dephasing
stage are sufficiently rare not to invalidate this approximation. A process Rt with values

12In the low-temperature regime, methods have been developed in [21, 213] for certain classes of diffusions,
the principal difficulty here being the conditioning in (1.54).
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in (0,+∞), the decorrelation gauge, is then constructed as a function of (Fs)0⩽s⩽t, and the
decorrelation/dephasing time is defined as the random time

Tcorr(α) = inf {t ⩾ 0 : Rt ⩽ ϵ} ,

where ϵ > 0 is a user-specified tolerance parameter. The gauge R should in particular be
constructed such that dTV (P (Yt ∈ · | τα > Tcorr(α)) , να) is small. The decorrelation/dephasing
time is now a stopping time for the natural filtration of the Fleming–Viot process.

While [42] proposes using the so-called Gelman–Rubin diagnostic from MCMC, a number of
constructions or possible: classical MCMC diagnostics (see [292] for a review), non-parametric
tests, coupling-based estimators of the total variation distance (see [44]), or histograms-based
methods (see Chapter 3 below) are all possibilities. Further experimentation and theory is
needed to better understand which choices of (R, ϵ) are valid and perform best in practice.

Problems 1.12 and 1.14 are core motivations for some of the results in Chapters 2 and 3.

1.2.2 Computing response properties

We now turn to a second class of methods, aimed at the problem of computing particular
instances of dynamical properties, namely nonequilibrium response properties. We focus
in particular on the important case of transport coefficients, introducing a mathematical
framework for their computation.13 At the macroscopic scale, a transport coefficient relates
the average flux (or response) of some transported physical quantity in the steady state of a
system driven out of equilibrium by an external forcing (or perturbation), and the magnitude
of that forcing. Such a system is known as a nonequilibrium system. Standard examples
of transport coefficients include the mobility and shear viscosity of a fluid, or the thermal
conductivity in atom chains and lattices.

The computation of transport coefficients is a crucial step in fitting parameters of mesoscopic
and continuum models of fluids and materials at a larger scale, such as the Navier–Stokes or
heat equation. However, their estimation from trajectory data can be very costly with naive
methods, prompting the need for innovative numerical strategies. This topic is still the object
of active research, both in the MD and mathematical communities, see [309] and references
therein for another recent overview.

Broadly speaking, computational methods to measure transport coefficients from MD
simulations fall in one of two categories. The first relies on the sampling of nonequilibrium
microstates, and the direct measurement of various response functions under perturbations of
the equilibrium dynamics. These methods include nonequilibrium molecular dynamics (NEMD)-
like methods [79], as well as transient techniques such as the transient time-correlation function
(TTCF [250]). The second relies on the analysis of time-dependent signals in the trajectories
of the equilibrium dynamics. These include methods following the pioneering theoretical
work of Green [142] and Kubo [201, 202], methods based on Einstein’s relation [114, 285] for
the diffusion coefficient, as well as transient methods based on relaxation to the equilibrium

13The content of this section is adapted from original material written for an upcoming review paper [49].
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steady-state from nonequilibrium initial conditions (as in [17, 204]). Here we focus on the
NEMD method and the Green–Kubo formula.

We refer to [79, 80] for early accounts of NEMD experiments, as well as [81, 172, 82, 78]
and [171, Chapter 4] for reviews of the NEMD approach at various stages of historical
development, as well as the books [119, 321]. Early measurements of transport coefficients
from equilibrium MD trajectories can be found in [3, 234, 235].

Nonequilibrium dynamics. To formalize the physical notion of the nonequilibrium systems
used in the NEMD method, we introduce perturbations of the equilibrium dynamics (1.16),
which are given by a parametric family of SDEs evolving on Y,

dY η
t = bη(Y η

t ) dt+ ση(Y η
t ) dWt, (1.55)

indexed by a parameter η > 0 modulating the strength of the perturbation. The perturbations
should be understood as being of order η as η → 0, i.e.

∀ y ∈ Y, |b(y)− bη(y)|Y , |σ(y)− ση(y)|Y = O (η) .

To be more specific, we focus on the two cases which are the most relevant in physical
applications, although one could in principle consider more general classes of perturbations.

◦ Non-conservative forces. Nonequilibrium systems are often obtained by the application of
a non-gradient driving force ηF , where F : Q → Rd is a fixed forcing field. Dynamically,
this amounts to replacing the force −∇V by

−∇V + ηF (1.56)

in the governing equation (1.17) or (1.19) for the equilibrium dynamics.

◦ Temperature profiles. The second typical example consists of a spatial temperature
gradient, which amounts to replacing the temperature parameter β by a positive position-
dependent scalar field

βη = 1
kB(T0 + ηδT ) , δT : Q → R, (1.57)

in the equilibrium dynamics, where T0 = β−1 and T0 + ηδT > 0.

Nonequilibrium generator and steady states. In both examples given above, the
generator of the nonequilibrium dynamics is a linear perturbation of the equilibrium generator:

Lη = LY + ηL̃, (1.58)

where the expression of the perturbation L̃ depends both on the dynamics and on the type of
perturbation. Analytical expressions for L̃ are listed in Table 1.1.

A steady-state for the nonequilibrium dynamics (1.55) (or nonequilibrium ensemble, see
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Perturbation
Dynamics Underdamped (1.17) Overdamped (1.19)

Force (1.56) F · ∇p F · ∇
Temperature (1.57) γδT∆p δT∆

Table 1.1: Nonequilibrium perturbation L̃ of the generator for usual dynamics and perturbation types.

Section 1.1 above) is, by definition, an invariant probability distribution πη ∈ P(Y) (which
we often write µη or νη depending on the underlying equilibrium dynamics). The existence
and uniqueness of the steady state can often be obtained using Lyapunov techniques, in the
spirit of [150], see [233, Section 5] and [280], or by a perturbative analysis (see the discussion
following (1.62) below). The steady state πη is a solution to the stationary Fokker–Planck
equation (1.24), i.e.

L†
ηπη = 0 (1.59)

in the sense of distributions. Regularity properties for πη can then usually be obtained by
applying hypoelliptic or standard elliptic regularity theory, depending on whether the diffusion
matrix ση is degenerate or not.

In turn, the results of [196] can be used, under suitable conditions on the coefficients ση, bη to
ensure the hypoellipticity of the generator (1.58) and the positivity of the steady state probabil-
ity density, to deduce the following pathwise ergodic property: for any initial condition y ∈ Y ,
and observable φ ∈ L1(πη),

1
T

∫ T

0
φ(Y η

t ) dt T→+∞−−−−−→ Eπη [φ] Py-almost surely. (1.60)

A crucial distinction with the equilibrium setting is that πη typically does not have an
explicit density: since the non-conservative force F cannot be written as the gradient of a
potential on Q, or since the fluctuation-dissipation relation is generally not satisfied for a
position-dependent temperature profile, one cannot write πη as a Gibbs measure for any explicit
energy function. We can nevertheless, in view of (1.60), sample from the nonequilibrium steady
state, by considering sufficiently long trajectories of (1.55).

Similar to the equilibrium case, discretizations of the dynamics create bias at the level of
the invariant measure of the numerical scheme and the resulting trajectory averages, but
while in the equilibrium case, one can correct for this bias via Metropolization, this option is
unavailable in the nonequilibrium case in all but the simplest settings, since computing the
nonequilibrium stationary density up to normalization is equivalent to finding a solution to
the Fokker–Planck equation (1.59).

For similar reasons, the importance sampling method (1.38) cannot be straightforwardly
applied to reduce the variance of the ergodic average (1.60), because it requires an explicit
expression for the likelihood ratio between the target density and modified density.

Fluxes and linear response. We now formally define transport coefficient, which measure
the relative magnitude of a nonequilibrium flux with respect to the magnitude of the pertur-
bation. The response or flux of the nonequilibrium system is measured by a scalar-valued
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observable R : Y → R, which we assume vanishes on average at equilibrium:

Eπ [R] = 0.

The transport coefficient α is then defined as the derivative of the average flux with respect to
the perturbation magnitude (provided the limit exists):

α = lim
η→0

Eπη [R]
η

. (1.61)

This definition motivates the following natural NEMD approach to estimate α.

◦ Pick a set of perturbation sample points η = (ηk)1⩽k⩽K , and estimate the correspond-
ing nonequilibrium steady-state flux using trajectory averages of the nonequilibrium
dynamics (1.55):

∀ 1 ⩽ k ⩽ K, π̂ηk,T (R) := 1
T

∫ T

0
R(Y ηk

t ) dt,

for T > 0 sufficiently large.

◦ Fit an assumed functional form (e.g. a polynomial): η 7→ R̂η,T (η) to the data (η, π̂η,T (R)),
chosen so that R̂η,T (0) = 0.

◦ The derivative
α̂η,T := R̂′

η,T (0)

is then used as an estimator of the transport coefficient α.

A schematic representation of a typical non-linear response profile is depicted in Figure 1.9,
together with the estimators π̂ηk,T (R) for several values of ηk, an estimator η 7→ R̂η,T (η) of the
response profile using a quadratic functional form, and the inferred linear response η 7→ R̂′

η,T (0).

Connection with equilibrium fluctuations. We briefly present linear response results
giving alternative expressions for the coefficient α in terms of equilibrium dynamical averages,
and form the basis of numerical methods such as the celebrated Green–Kubo formula [142,
201, 202]. Here, we only give a somewhat informal presentation in the L2(π) functional setting,
and stress that similar results can be obtained in more general situations, see for example [149]
or [233, Section 5.2].

The derivation assumes that the nonequilibrium steady-state πη admits a probability density
with respect to the equilibrium steady-state π, which can be perturbatively expanded (for |η|
sufficiently small) into a power series

πη = π
∞∑
k=0

ηkψk, (1.62)

where ψk ∈ L2(π) for all k ⩾ 0.

Setting η = 0 in (1.62), it necessarily holds that ψ0 = 1Y . The formal expansion (1.62)
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Figure 1.9: Sketch of a typical nonequilibrium response profile for a flux R with respect to the forcing
magnitude, together with its linear response. In dotted lines, NEMD estimators of the nonlinear and
linear response profiles, obtained by fitting a quadratic model to average responses computed via NEMD
simulations. These sampled responses are represented by black crosses.

can be shown to converge when the nonequilibrium perturbation is “small”, e.g. when L̃
is LY -bounded on L2(π) and |η| is small enough, see for instance the proof of [233, Theorem
5.2]. This is the case for perturbations of the dynamics by a non-conservative force F (see
Table 1.1), under mild assumptions on F . For instance, it is enough to assume that F is
bounded.

Assuming the validity of such an ansatz, the stationary Fokker–Planck equation (1.59) writes

(
LY + ηL̃

)∗ ∞∑
k=0

ηkψk = 0,

where adjoints are taken with respect to the L2(π) scalar product. Matching terms in η, it
therefore holds for any k ⩾ 1 that (

−LY
)∗
ψk = L̃∗ψk−1,

so that in particular =
(
−LY

)∗
ψ1 = L̃∗

1Y .

Provided the so-called conjugate flux

S = L̃∗
1Y ,

belongs to the space ΠL2(π) of π-centered observables and LY (hence also its adjoint) is
invertible on that functional space, we may write

ψ1 =
(
−LY ∗

)−1
S.

This, in turn implies, by the definition (1.61) and the expansion (1.62) the following expression
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for the transport coefficient:

α = lim
η→0

η−1
∫

Y
Rdπη = lim

η→0
η−1

∫
Y

(
1Y + η

(
−LY ∗

)−1
S

)
R dπ =

∫
Y
S
(
−LY

)−1
R dπ.

(1.63)
Note that action of L̃∗, and therefore the expression for the conjugate response S, can
be computed explicitly via integration by parts. The expressions of the conjugate fluxes
corresponding to the perturbations given in Table 1.1 are given in Table 1.2 below, and can
easily be checked to belong to ΠL2(π) under mild assumptions on V, δT and F .

The formulation (1.63) shows that the linear response α can be expressed as the equilib-
rium average π

(
S
(
−LY

)−1
R

)
. Unfortunately, the various equilibrium sampling methods

described in Section 1.1.2 cannot be applied outright, since they require evaluating the
solution

(
−LY

)−1
R to a high-dimensional Poisson equation.

Instead, one can reformulate (1.63) as a dynamical average using the expression of the ΠL2(π)-
inverse of LY given in (1.31) in terms of the integrated semigroup. This yields the celebrated
Green–Kubo formula

α =
∫ ∞

0
Eπ [S(Y0)R(Yt)] dt, (1.64)

which expresses the transport coefficient as an integrated correlation function along trajectories
of the equilibrium dynamics. In this form, α is clearly a dynamical property.

Perturbation
Dynamics Overdamped Langevin Underdamped Langevin

Non-conservative force βF · ∇V −∇ · F βF ·M−1p

Temperature profile
∆δT − 2β∇V · ∇δT
− δT

(
β2|∇V |2 − β∆V

) βγδT
(
TrM−1 − β

∣∣M−1p
∣∣2)

Table 1.2: Expressions for the conjugate response S, for usual dynamics and perturbation types.

It may happen, for example in the case of a nonequilibrium temperature gradient, that
the perturbation L̃ is not LY -bounded. In this case, the formal expansion (1.62) of the
steady-state density does not converge in L2(π). One can nevertheless often recover the final
expression (1.63) for the linear response, as discussed in [233, Remark 5.5].

Examples of nonequilibrium systems. We conclude this section by giving practical
examples of nonequilibrium systems which can be used to compute transport coefficients in
the bulk of single-species fluids. We assume the system evolves according to the underdamped
Langevin dynamics (1.17) in a periodic configurational domain Q = (LT)3N , and that M =
mId3N for the atomic mass m > 0. We also assume that the particles interact according to the
Lennard–Jones potential (1.6), although the methods apply to any other pairwise potential.

Example 1.15 (Mobility of a Lennard–Jones particle). Arguably the simplest example of
transport coefficient is provided by the mobility a particle moving in a fluid. Physically, this
quantity measures how easily mass is transported through the fluid in response to an external
driving field. It is closely related to the phenomenon of self-diffusion, a relationship which is
quantified by the Einstein relation (see (1.65) below and [285]).
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In the framework described in Section 1.2.2 above, and keeping the same notation, this
corresponds to taking a constant forcing F ∈ Rd for the configurational domain Q = (LT)3N .
Note that F is not the gradient of a periodic function, and thus, this is indeed a nonequilibrium
dynamics. We measure the average particle flux through the hyperplane perpendicular to F ,
defining

R(q, p) = m−1F⊤p,

so that
S(q, p) = m−1βF⊤p, L̃ = F⊤∇p.

The mobility αF is the corresponding linear response (1.61). In view of the Green–Kubo
formula (1.64), it can also be written as

αF = βF⊤CF, C := m−2Eµ
[
p0p

⊤
t

]
∈ Rd×d

in terms of the velocity autocovariance matrix C.

The diffusion coefficient D entering in Fick’s law can be computed from the linear response αF ,
in the case F = ex,1 is a unit field acting only on the first particle, via the Einstein relation [285]

αex,1 = βD. (1.65)

The coefficient αex,1 is called the mobility.

Example 1.16 (Shear viscosity of a Lennard–Jones fluid). The second prototypical example
of transport coefficient is the dynamic viscosity of a Newtonian fluid. Here, we present
the computation of dynamic viscosity in monoatomic Lennard–Jones fluids, following the
method described in [190], itself inspired by the sinusoidal transverse force (STF) method [141].
Another class of NEMD algorithms to measure the shear viscosity consist of boundary-driven
methods, such as the direct simulation of Couette flows via shearing boundary conditions [215],
see [119, Section 6.3] and [321, Section 9.3]. A schematic illustration of the STF method is
given in Figure 1.10.

The STF method proceeds by analogy with Newton’s macroscopic law of viscosity, for a
fluid subjected to a shear force f directed along the longitudinal x-coordinate, which varies
in intensity in the transverse y-coordinate. At the continuum level, the shear viscosity R is
defined via the constitutive relation

σxy = −R
dux
dy , (1.66)

where σxy is the (x, y) component of the local stress tensor, and ux is the local x-velocity field
of the fluid. Both σxy and ux are functions of the y position in the fluid.

Microscopically, the action of the shear forcing on the fluid particles is defined by the
following non-conservative force field:

∀ 1 ⩽ j ⩽ N, F (q)j,x = f(qj,y), F (q)j,y = F (q)j,z = 0. (1.67)

The forcing field (1.67) acts on each component of the x-momentum variable, in a way which is
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dictated by the corresponding component of the y-position variable, according to a fixed forcing
profile f . The STF method derives its name from the standard choice f(y) = sin(2πy/L),
although other profiles can be considered.

The microscopic formulation of the relation (1.66) relies on appropriate definitions of the
velocity profile ux and shear-stress profile σxy. These are defined as the linear responses (1.61)
for (a limit of) y-dependent observables defined in [190] following a mathematically rigorous
version of the Irving–Kirkwood procedure [183].

Using the linear response formula (1.63), one can show that the velocity and shear-stress
linear response profiles ux, σxy and forcing profile f are related as (see [190, Proposition 1])

1
ρ

dσxy(y)
dy + γux(y) = f(y),

where we recall that γ > 0 is the friction parameter in the underdamped Langevin dynam-
ics (1.17), and ρ = N/L3 is the particle density.

Formally substituting in the Newton relation (1.66), one arrives at the following differential
equation for ux:

−R

ρ

d2ux(y)
dy2 + γux(y) = f(y),

from which a Fourier analysis gives the viscosity R as

R = ρ

(
f1
u1
− γ

)(
L

2π

)2
,

where f1, u1 are the first Fourier coefficients in y of the forcing profile f and the velocity linear
response profile ux respectively, on the periodic one-dimensional torus LT. The only unknown
quantity is the Fourier coefficient u1, but one can formally show that it is a transport coefficient
in its own right, for the “empirical Fourier flux”

R(q, p) = 1
Nm

N∑
j=1

pj,x exp
(2iπqj,y

L

)
,

whose linear response can be estimated from nonequilibrium trajectory averages, or using the
Green–Kubo formula with the conjugate flux

S(q, p) = β

m
F (q)⊤p.

Various other approaches, relying on discretized estimates of σxy, ux or transformations
thereof, via NEMD or equilibrium-fluctuation formulas, and based on the constitutive equa-
tion (1.66), are of course possible.

1.3 Mathematical descriptions of metastability

Metastability is characterized by a timescale gap between fast thermal fluctuations within
particular special regions of configuration space (metastable states) and the much slower
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x
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η

Figure 1.10: Schematic representation of the STF method. The black dashed square is the unit cell
of the configurational domain Q = (LT)3N . Particles, represented by black circles, are subjected to an
external forcing field in the longitudinal direction, represented by red arrows. The field is a function
of a periodic transverse profile, plotted in the solid red line, whose amplitude is proportional to the
forcing parameter η. Periodic images of the system are represented by dotted circles.
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timescale at which certain rare events occur, namely configurational transitions between these
states.

It is both the origin of the timescale problem in MD, as presented in Section 1.1, and the
structural property behind the accelerated MD methods presented in Section 1.2. Metastability
arises more generally whenever a dynamical system is subjected to random perturbations, giving
continuous stochastic dynamics navigating a hilly free-energy landscape. The concept itself
originates from attempts to understand the microscopic phenomenology of first-order phase
transitions, and the mathematical modeling has been a long-standing concern of statistical
physics, starting with Maxwell’s study of the liquid-vapor phase transition [244].

A central objective in the kinetic theory of chemical reactions is to provide a microscopic
foundation for the temperature dependence of reaction rates. This dependence is often
described by the Arrhenius law [16], which states that the rate kA→B of a transition event
from a reactant state A to a product state B, or reaction rate, scales as:

kA→B ≈ κ exp(−βEA→B),

where EA→B is an activation energy, κ is a pre-exponential factor, and we recall β = (kBT )−1.
It is of great practical interest to further derive quantitative estimates of EA→B and κ, which
lead to explicit Eyring–Kramers [122, 198] formulas (see (EK)).

Besides its interest in mathematical physics, metastability is a common feature of stochastic
dynamical systems in limiting regimes. Various mathematical theories of metastability have
been proposed since the 1950’s.

For the dynamics (1.16), a typical setting is the small-noise regime. We focus on this example
here, letting (Xε)ε>0 denote a family of solutions to the following SDEs on Rd:

dXε
t = b(Xε

t ) dt+
√
εσ(Xε

t ) dWt, (1.68)

where b : Q → Rd and σ : Q → Rd×d are regular coefficients, whose metastable behavior is
studied in the limit ε→ 0. When the dynamics is given by (1.19) (i.e. b = −∇V ), ε = 2β−1 is
proportional to the temperature. We assume for simplicity that b, σ are smooth and bounded
and that σ is uniformly elliptic, meaning σσ⊤ ⩾ cId for some c > 0, in the sense of symmetric
matrices. This excludes in particular the case of the underdamped Langevin dynamics (1.17)
which is important for applications, but we note that extensions to more general situations are
possible.

While we focus on small-noise SDEs, some of the techniques we describe can be succesfully
applied to other physical regimes (such as large system size) and other classes of models, such
as spin systems (see [260, Chapter 7] and [58, Parts VI–VIII]), stochastic partial differential
equations (SPDEs) (see for instance [58, Chapter IV.12] and [34]), and more.

We distinguish two distinct but related families of concerns for theories of the metastability
of (1.68).

◦ Global questions are concerned with characterizing the set of metastable states, obtaining
Eyring–Kramers formulas for mean first passage times between metastable states (see
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Equations (1.41)), identifying transition pathways, and deriving asymptotic estimates for
the rate of convergence to global equilibrium (see the discussion following Equation (1.29)).
Another important objective is the justification of various coarse-grained models related
to the continuous dynamics (such as Markovian models for the milestone-to-milestone
dynamics (1.45)).

◦ Local questions study the behavior of the system within a fixed metastable state Ω ⊂ Y .
Typical questions include quantifying the convergence (1.54) to να, and characterizing the
exit event (1.46) (from να or more general initial conditions), in particular establishing
Eyring–Kramers formulas for the exit time and/or exit point distribution. Such studies
provide theoretical foundations for the AMD methods of Section 1.2.1, and allow to
better understand their limitations and efficiency. They are therefore of great practical
interest for the measurement of dynamical properties in MD.

In Section 1.3.1, we review several theoretical approaches to these questions, namely the
pathwise approach, the potential-theoretic approach, the spectral approach, and related
numerical approaches. In Section 1.3.2, we focus on the quasi-stationary regime, reviewing
standard results concerning the QSD, and their link to the AMD algorithms of Section 1.2.1.

1.3.1 Review of approaches to metastability

Pathwise approach. The first approach is rooted in the theory of Freidlin & Wentzell. We
refer to the monograph [132] for this theory, to [260] for further applications of this approach
to metastability, and to [19, Course 1] for extensions to larger classes of stochastic processes.

The core of this approach is to view trajectories of Xε as a stochastic perturbation of an
ODE in the direction W . For any ε > 0, noise-induced fluctuations can drive the system along
paths that are forbidden to the deterministic evolution

x′(t) = b (x(t)) , (1.69)

known as the relaxation dynamics. When b = −∇V , this is the gradient descent dynamics
defining the energy basin (1.47).

The cornerstone of the Freidlin–Wentzell theory is a large deviation principle (LDP) on path
space (see [98, Section 1.2] for an introduction to LDPs). Let T > 0, and Cx,T = C([0, T ],Q)
denote the set of continuous functions φ such that φ(0) = x ∈ Q, endowed with the supremum
distance. We denote by Pεx,T ∈ P(Cx,T ) the path law of Xε on [0, T ], started from Xε

0 = x.

Theorem 1.17 ([132, Theorem 3.1 in Chapter 5], [260, Theorem 2.29]). For any T > 0, the
family (Pεx,T )ε>0 satisfies a LDP with rate ε on Cx,T , and good rate function

Ix,T (φ) =


1
2

∫ T

0

(
φ′(t)− b ◦ φ(t)

)⊤
a−1 ◦ φ(t)

(
φ′(t)− b ◦ φ(t)

)
dt, if φ ∈ AC ([0, T ],Q) ,

+∞ otherwise.
(1.70)

where AC([0, T ],Q) ⊂ C([0, T ],Q) denotes the set of absolutely continuous paths.
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The functional (1.70) is called the action functional associated with the SDE (1.68). Theo-
rem 1.17 has many interesting consequences for the study of rare events under the dynamics.

To give an example of how Theorem 1.17 can be used to study the behavior of the process
inside a metastable state, suppose that Ω ⊂ Q is an open bounded regular domain, which is
strictly confining for the deterministic flow. This means that trajectories of the relaxation
dynamics (1.69) satisfy x(t) ∈ Ω for all times t ⩾ 0 whenever x(0) ∈ Ω, and b(x)⊤n(x) < 0
for all x ∈ ∂Ω. Suppose also that x∗ ∈ Ω is such that b(x∗) = 0 and x(t) t→+∞−−−−→ x∗ for
all x(0) ∈ Ω. We define the quasipotential

Vb(x, y) = inf
T,φ
{Ix,T (φ) |T > 0, φ ∈ Cx,T , φ(T ) = y} , (1.71)

which, loosely, measures the cost of connecting x to y in arbitrarily long time for the LDP (1.17).

Let τ ε = inf {t ⩾ 0 : Xε
t ∈ ∂Ω} be the exit time from Ω. The following result can be

obtained.

Theorem 1.18 ([132]). For any x ∈ Ω,

lim
ε→0

ε log Ex [τ ε] = min
y∈∂Ω

Vb(x∗, y). (1.72)

When the minimum on the right-hand-side of (1.72) is realized at a single point y∗ ∈ ∂Ω,

∀ δ > 0, Px (|Xε
τε − y∗| > δ) ε→0−−−→ 0.

This result corresponds to the generalizations of [132, Theorems 2.4 & 4.1 in Chapter 4]
discussed in [132, Chapter 5].

Informally, Theorem 1.18 says that the mean exit time is exponentially small, of or-
der O

(
e

1
ε
Vb(x∗,y∗)

)
, and the exit point distribution concentrates on the quasipotential minimum

on the boundary. Moreover, it is possible to show that the exit path distribution concentrates
on a half-infinite deterministic trajectory φ̂ : (−∞, 0] → Ω ∪ {y∗} such that φ̂(−∞) = x∗,
the instanton, which obeys a variational principle related to the quasipotential (1.71) (see [132,
Theorem 2.3 in Chapter 4] and its generalization in Chapter 5). Finally, the LDP from Theo-
rem 1.17 was used by Day [93] to obtain the convergence in distribution τ ε/Ex [τ ε] in law−−−→

ε→0
E(1)

for any x ∈ Ω.

In the specific case of the overdamped Langevin dynamics (σ = Id, b = −∇V , ε = 2/β)
one can show (see [132, Section 3 in Chapter 4]) that Vb(x∗, y∗) = 2(V (y∗) − V (x∗)) 14

, and that φ̂ is a half-infinite gradient flow line for V , meaning that φ̂′(t) = ∇V (φ̂(t))
for t ∈ (−∞, 0). Therefore, the mean exit time is logarithmically equivalent to e−β(V (y∗)−V (x∗))

in the limit β → +∞, which is the expected Arrhenius behavior, and the instanton is a time-
reversed trajectory of the steepest descent dynamics x′(t) = −∇V (x(t)) started from x(0) = y∗.

14In this, case, the action functional (1.70) is given by

Ix,T (φ) = 1
2

∫ T

0
|φ′(t)+∇V (φ(t))|2 = 1

2

∫ T

0
|φ′(t)−∇V (φ(t))|2+2

∫ T

0
∇V (φ(t))⊤φ′(t) = H(φ)+2 [V (φ(T )) − V (φ(0))] ,

and H(φ) ⩾ 0 vanishes whenever φ′(t) = ∇V (φ(t)) for t ∈ [0, T ].
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The large deviations approach therefore gives precise pathwise information in a general
setting, but it fails to be fully quantitative, since (1.72) only gives a logarithmic equivalent of
the mean exit time, falling short of the Eyring–Kramers formula (EK).

Potential theory. To obtain sharper estimates than those provided by large deviations
principles, the potential-theoretic approach to metastability was developed starting in the early
2000s with works by Bovier & al. [59, 60]. This approach uses PDE techniques, expressing
various path statistics (see (1.41)) in terms of solutions to Dirichlet problems, drawing from an
analogy between reversible Markov processes and electrostatics, which is classical in the case
of Brownian motion. We borrow from the monograph [58, Chapter 7], and refer the reader
there for a complete introduction.

We restrict our scope to the reversible setting, and consider the case b = −∇V in (1.68),
corresponding to the overdamped Langevin dynamics (1.19). Assume that V satisifies the
condition (V -Conf), so that the dynamics (1.68) is positively ergodic. In this setting, we
recall that the generator and associated Dirichlet form are given respectively by

Lε = −∇V ⊤∇+ ε

2∆, Eε(f, g) = ε

2

∫
Q
∇f⊤∇g dνε, ∀ f, g ∈ H1(νε),

where νε(dx) = Z−1
ε e− 2

ε
V (x) dx is the Gibbs measure (1.12).

We consider two disjoint closed domains A,B with regular boundary. We recall the commitor
function for (Xε, A,B), namely the function hεA,B(x) = Px(τ εA < τ εB) already introduced
in (1.41). Using Dynkin’s formula [259, Theorem 7.4.1], one can show that hεA,B is the
solution u ∈ D(Lε) to the Dirichlet problem:


−Lεu(x) = 0, x ̸∈ A ∪B,

u(x) = 1, x ∈ A,
u(x) = 0, x ∈ B.

(1.73)

In this context, and by analogy with electrostatics, the function hεB→A is called the equilibrium
potential for the capacitor (A,B). Likewise, the mean hitting time T εA(x) = Ex[τ εA] solves the
Dirichlet problem −Lεv(x) = 1, x ̸∈ A,

v(x) = 0, x ∈ A.

Defining the equilibrium measure on ∂A:

ρεA,B(dx) = ε

2νε(x)∇hεA,B(x)⊤nA(x)σ∂A(dx),

where σ∂A is the surface measure on ∂A induced by the Lebesgue measure, νε abusively denotes
the Gibbs density, and nA is the unit outward normal to A, one arrives, after computations
using integration by parts, at the fundamental relationship [58, Corollary 7.30]∫

∂A
TB(y)θεA,B(dy) = 1

capε(A,B)

∫
Bc
hεA,B(x)νε(dx), (1.74)
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where θεA,B ∈ P(∂A) is a probability measure and capε(A,B) is the capacity, respectively
defined as

θεA,B =
ρεA,B

capε(A,B) , capε(A,B) = Eε(hεA,B, hεA,B) = ε

2

∫
Q
|∇hεA,B|2 dνε. (1.75)

The fact that the capacity is the correct normalizing constant for θεA,B is itself the result of a
computation, see [58, Lemma 7.26]. Moreover, the capacity satisfies the following variational
principle.

Theorem 1.19 ([58, Theorems 7.33]). The capacity capε(A,B) satisfies the Dirichlet principle

capε(A,B) = inf
f∈H1(Q,νε)

{Eε(f, f), f ⩾ 1 on A, f ⩽ 0 on B} . (1.76)

with minimum attained at f = hεA,B.

In fact, hεA,B can also be defined as the supremum of another functional, yielding a comple-
mentary variational principle known as the Thomson principle [58, Theorem 7.35].

The relation (1.74) can be used in some cases to obtain quantitative estimates of TA. We
give an example in the case of the simplest metastable system, the bistable energetic case in
the gradient case b = −∇V . We assume that V is smooth over Rd and goes to infinity at
infinity. Suppose that V has only two non-degenerate local minima, given by points m1,m2,
which satisfy V (m1) > V (m2). At low temperature, the neighborhood of m1 is a transient
metastable state, while the neighborhood of m2 corresponds to the most stable state. The
height of the energy barrier to go from m1 to m2 is determined by the minimum energy path
between m1 and m2. Defining

V ∗ = inf
γ∈Γ(m1,m2)

max
0⩽t⩽1

V ◦γ(t), Γ(m1,m2) =
{
γ ∈ C([0, 1];Rd), γ(0) = m1, γ(1) = m2

}
.

we see that, since V is smooth and has compact sublevel sets, it satisfies the conditions 15 of the
mountain-pass theorem (see [121, Section 8.5.1]). This result ensures that V ∗ is a critical value
of V . We make the simplifying (and generic) assumption that this critical value corresponds to
a unique, non degenerate, index-1 saddle point s ∈ Rd, meaning that V ∗ = V (s), ∇V (s) = 0
and ∇2V (s) has one negative eigenvalue and (d− 1) positive eigenvalue.

In other words, the energy landscape consists of two valleys, separated by a mountain. The
elevation gain to go from m1 to m2 is given by the altitude of the pass s minus that of the
valley m1, i.e. Em1→m2 = V (s) − V (m1) > 0. The following Eyring–Kramers formula is a
special case of a result by Bovier & al.

Theorem 1.20 (From [60, Theorem 3.2]). For any δ > 0,

Em1

[
τ ε
Bδ(m2)

]
= 2π
|λ−(s)|

( ∣∣det∇2V (s)
∣∣

det∇2V (m1)

) 1
2

e
2
ε

(V (s)−V (m1)) (1 +O
(√
ε| log ε|

))
, (1.77)

where Bδ(m2) denotes the closed unit ball with radius δ centered at m2, ∇2V denotes the
Hessian matrix of V , and λ−(s) denotes the unique negative eigenvalue of ∇2V (s).

15In particular, the Palais–Smale compactness condition.
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In dimension one, Theorem 1.20 can be proven directly by solving (1.73) for hεA,B in integral
form, using the relationship (1.74) with A = {m1}, and estimating the right-hand-side with
the Laplace method. This is the original method employed by Kramers [198], see also [33]
and [58, Section 7.2.5]. In higher dimensions, the proof is much more involved. Let us simply
sketch the main steps.

One takes A to be a small closed ball around m1, B = Bδ(m2), and one uses a priori
regularity estimates to control the variations oscA(T εB), allowing to replace the left-hand-side
of (1.74) by T εB(m1)(1 + O(1)). One then relies on an appropriate approximation of hεA,B and
control from the variational principle (1.76) to derive sharp estimates for capε(A,B). Very
roughly, this approximation is constructed in accordance with the probabilistic intuition: for
small ε > 0, hεA,B is nearly constant in the interiors of both A(m1) and A(m2), with respective
values 1 and 0, and with a sharp transition around s. The dominant contribution to capε(A,B)
in (1.75) is localized in a small neighborhood of s, where the Dirichlet problem (1.73) can
be linearized, and the linearized problem can be solved by separation of variables. This
construction gives an upper bound on the capacity using the variational principle (1.76), which,
together with rough estimates for hεA,B around m1 and the Laplace method, give an upper
bound on the mean transition time. The lower bound on the capacity is achieved by restricting
the integral (1.75) to a sufficiently small neighborhood of the saddle point, upon which delicate
computations and the Laplace method finally lead to the asymptotic estimate (1.77).

Contrarily to the results obtained with the pathwise approach, the results of [60] give sharp
estimates of the transition time with an explicit prefactor, but on the other hand give no
information on the transition path. Extensions of this approach to multiple minima and
multiple saddles [60], possibly degenerate [36], are also possible.

Recently, extensions of the potential-theoretic approach to non-reversible diffusions have
been used to extend the Eyring–Kramers formula to more general dynamical settings, see [212]
for the case of elliptic diffusions with Gibbs invariant measure, and [214] for an extension to
the underdamped Langevin dynamics (1.17). The analog of the Eyring–Kramers formula for
the general elliptic, non-Gibbsian, non-reversible case (1.68) was conjectured by Bouchet &
Reygner in [57], and justified with formal computations. First rigorous results in this direction
have been obtained very recently, see [210].

Finally, let us mention, that the potential-theoretic point of view suggests quantitative
characterizations of the metastability of a given family of core-sets (Cα)α∈I in terms of certain
capacity ratios, recalling the framework of Section 1.2.1. We refer to [58, Section 8.1] for a
presentation of these definitions in the case of countable state spaces. Such characterizations
could prompt questions regarding the shape-optimization of these criteria with respect to the
choice of core-sets.

Spectral approach. The third approach to metastability is the spectral point of view.
As mentioned in Section 1.1.2 above, the metastability of the dynamics, as an obstacle to
efficient sampling, is reflected in a small spectral gap for the infinitesimal generator. The
connections between metastability of the dynamics and structural properties of the spectrum
of the generator are rich, and can first be motivated on an intuitive level.
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◦ Invariant sets Ω ⊂ Y for the dynamics Y are in correspondence with invariant observables
under the evolution semigroup, i.e. etLY

1Ω = 1Ω. Together, they span the kernel of the
generator. For an ergodic Markov process, the kernel is limited to the space of constant
functions, corresponding to the global stable state Ω = Y. In a metastable system,
there exists some Ω ⊊ Y where the process remains trapped for very long times. The
corresponding indicators are nearly invariant under the evolution semigroup, and can be
loosely be seen as approximate eigenfunctions of the generator, with eigenvalues close to
zero.

◦ When the infinitesimal generator is self-adjoint, its spectrum consists of inverse timescales,
corresponding to rates of various relaxation processes. The spectrum of a reversible,
ergodic, metastable Markov process (i.e. of its infinitesimal generator) should consist of
the zero eigenvalue, as many small eigenvalues as there are transitions from metastable
states to longer-lived states, and finally higher eigenvalues corresponding to fast relaxation
within metastable states. Therefore, the separation of timescales in reversible metastable
systems is reflected in a gap in the spectrum of the generator, between inter-state
transition rates and intra-state relaxation rates.

◦ If physical (or any other) insight permits us to identify good metastable states, we
can approximate the low-lying spectrum by constructing approximate eigenfunctions,
and quantify the timescale gap. Conversely, if we can approximate the spectrum, the
structure of approximate eigenvectors can reveal metastable states. Eigenvectors for
low-lying eigenvalues, corresponding to slow modes of the system, can also be used to
build reaction coordinates. Variations around this principle are behind many modern
data-driven methods for spatial coarse-graining, model reduction and collective-variable
learning, some of which we discuss in the next paragraph.

Early results in this perspective are given by Davies [90, 91]. In particular, the main result
of [91] is the following theorem.

Theorem 1.21 ([91, Theorem 19]). Assume that the infinitesimal generator −LY is self-adjoint
on L2(π), satisfying the spectral gap assumption16

Sp(−LY ) ⊆ [0, δ] ∪ [1,∞).

for some δ > 0. We denote by Πδ the spectral projection on [0, δ]. Assume finally that ΠδL
2(π) ∈

L∞(Y).

Then, dim ΠδL
2(π) = n for some finite n ⩾ 1. If δ is sufficiently small, there exists a

partition (Ej)1⩽j⩽n of Y into n metastable states and a basis (uj)1⩽j⩽n of ΠδL
2(π) such that

∀ 1 ⩽ j ⩽ n, ∥uj − 1Ej∥L2(π) ⩽ 4n3/2√δ.

This result states that, in the limit of a large separation of timescales, eigenfunctions of LY

corresponding to small eignvalues can be well-approximated by piecewise-constant functions
on each metastable state, namely linear combinations of the indicators 1Ej . The strength of

16The existence of a spectral gap always implies a bound of this form by a change of time units.
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this result is that it is rather generic (in fact [91, Theorem 17] is an abstract result which
applies to more general Markovian dynamics), but it gives little quantitative information on
the timescales.

More precise estimates can be computed in the low-temperature regime. In the case of
the overdamped Langevin dynamics, where (b, σ) = (−∇V, Id), the spectral approach studies
the spectrum of the Witten Laplacian (1.34) on L2(Q). We recall its expression in terms
of ε = 2/β:

∆V,ε = 1
2ε
(
−ε2∆− ε∆V + |∇V |2

)
. (1.78)

The low-temperature regime corresponds to the semiclassical limit ε→ 0. It is convenient to
consider the case of energetic metastable states, corresponding to local minima of the energy
function. The analysis is also simpler if V is assumed to be a Morse function, meaning that
the Hessian ∇2V (x) is non-degenerate for each point x ∈ Q such that ∇V (x) = 0. Such points
are called critical points, and the Morse property implies that critical points are isolated.

In this context, one can obtain precise results on the spectrum Sp(∆V,ε) = Sp(−Lε). The first
result concerns the overall structure of the spectrum, and shows that ∆V,ε can be approximated
by a block-diagonal operator, with each block being a quantum harmonic oscillator attached
to a specific local minimum of V . We assume that the condition (V -Conf) is satisfied
and that ∇2V is uniformly bounded, so that Sp(∆V,ε) consists of finite-multiplicity isolated
eigenvalues (λk,ε)k⩾0 (see the discussion following equation (1.34)), and that V has finitely
many critical points (xj)1⩽i⩽N in Q. Then the following result holds.

Theorem 1.22 ([195, Theorem 11.1]). It holds, for any k ⩾ 0:

lim
ε→0

λk,ε = λHA
k ,

where λHA
k is the k-th eigenvalue, counted with multiplicity, of the direct sum of shifted harmonic

oscillators

∆HA
V,ε :=

N⊕
i=1

H(i), H(i) = −∆ + 1
4x

⊤
(
∇2V (xi)

)2
x− 1

2∆V (xi).

The operator ∆HA
V,ε is called the harmonic approximation, and its spectrum can be computed

from that of the local harmonic models:

Sp(∆HA
V,ε ) =

N⋃
i=1

Sp(H(i)).

when xi is a local minimum, the ground state energy min Sp(H(i)) is equal to 0, and if not, it
is strictly positive. Therefore, the harmonic approximation shows that Lε has as many small
eigenvalues in the limit ε → 0 as they are local minima of V . Furthermore, the harmonic
spectra (Sp(H(i)))1⩽i⩽N can be computed by diagonalizing ∇2V around each critical point.

In fact, it is possible to show with rather crude estimates that the small eigenvalues are of
order e− c

ε for some c > 0, and to prove the existence of asymptotic expansions with respect
to ε (see [157]). In the bistable case discussed in the previous paragraph (in which case there
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are two small eigenvalues, λ0,ε = 0 and λ1,ε → 0), the results of [157], in particular, imply the
following Eyring–Kramers formula for λ1,ε > 0:

λ1,ε = |λ
−(s)|
2π

(
det∇2V (m1)
|det∇2V (s)|

) 1
2

e− 2
ε

(V (s)−V (m1)) (1 +O (ε)) , (1.79)

which is consistent with the potential-theoretic result (1.77) and the interpretation of λ1,ε

as a relaxation rate corresponding to an inter-state transition. In fact, potential-theoretic
approaches also allow to recover results such as (1.79), but with a worse error term. See [61,
Theorem 1.2] and [58, Section 8.4.2] for a more general discussion of the link between spectral
properties and potential theory.

When there are multiple wells, an explicit formula can also be derived [61, 158], and explicitly
computed at the cost of a labelling procedure. Extensions to more general dynamical settings,
such as non-reversible or non-elliptic dynamics (in particular the underdamped Langevin
dynamics) are possible, see [166, 167, 168, 208, 55] for various results in this direction.

Numerical approaches. Many numerical methods, beyond the AMD algorithms discussed
in Section 1.2.1, have been proposed to address the problem of metastability. Statistical
learning methods for time-lagged propagators form a large class of methods, which aim to infer
timescales, metastable states, and proporse coarse-grained dynamics from sampled trajectory
data. We refer the reader to [298] for an extensive review of this type of approach.

The aim of these methods is in each case to construct a finite-dimensional approximation
for an infinite-dimensional operator, generally one of

Kτ = eτLY
, Tτ = eτLY †

, (1.80)

where the semigroupKτ is known in this context as the Koopman operator, and its dual Tτ Perron–
Frobenius or transfer operator.

We assume that we are in a metastable situation such as the one assumed in Theorem 1.21.
Namely, the generator is self-adjoint, with a spectral gap δ ≪ 1. For times τ = O(δ−1),
the operators (1.80) can be well-approximated with a rank-n operator, given by the spectral
projection Π[e−τ/δ,1]Kτ (and its L2-adjoint), where n is the number of metastable modes given
by Theorem 1.21. For non-reversible dynamics, a similar approximation can be constructed
using the singular value decomposition, see [298, Section 3.1.2].

Estimators for these finite-rank operators can be obtained from time-lagged samples of the
dynamics, X =

(
Y

(j)
0 , Y

(j)
τ

)
1⩽j⩽J

, where Y (j)
τ is a sample of the dynamics at time τ , started

from Y
(j)

0 for each 1 ⩽ j ⩽ J . The estimation task is generally performed in two steps. First,
a rank M ≫ n model for Aτ ∈ {Kτ , Tτ} is constructed, using feature transformation Ψ(X)
of the trajectory data, from which a matrix approximation Âτ,X ∈ RM×M is constructed.
Second, the dominant eigenvalues of Âτ,X are computed, and used to approximate relaxation
timescales. Corresponding eigenvectors may be reconstructed using the input features. If
a spectral gap is detected in the spectrum, the model Âτ,X itself can be truncated, giving
the final low-rank approximation, which can be used as a propagator for a coarse-grained,
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low-dimensional dynamics.

Specific instances of this general yield different methods. A popular family are Markov
state models (MSMs [272, 181]), which approximate the transfer operator with an empirical
transition matrix associated with a coarse-graining of configuration space, see [298, Section
4.2.3]. The variational approach to conformation dynamics (VAC [256]) and its non-reversible
extension, the variational approach to Markov processes (VAMP [341]), rely on variational
principles satisfied by the projected propagators, see [298, Section 4.3].

1.3.2 The quasi-stationary regime

In this section, we focus on a specific tool to study local questions regarding the metastability
of (1.68). As discussed in Section 1.2.1, and formalized in Assumption QSD, for typical initial
conditions inside a metastable state Ωα, a local equilibrium να is reached after some time.
Starting from this local equilibrium, the exit event (τα, Yτα) is Markovian: the exit time τα is
exponentially distributed with rate λα, and the exit point Yτα is independent from the exit
time.

Similarly to the previous paragraph, the degree of metastability of Ωα corresponds to
a local separation of timescales, timescales which in turn are encoded by the spectrum of
the infinitesimal generator, when endowed with appropriate boundary conditions. We begin
by introducing quasi-stationary distributions, as well as the spectral point of view on these
objects, focusing on the reversible setting, namely that of the overdamped Langevin dynamics.
Finally, we review how the spectral point of view, and in particular the use of semiclassical
methods, can justify the AMD methods introduced in Section 1.2.1 and provide insight into
how to optimize their efficiency.

Quasi-stationary distributions. The study of quasi-stationary behavior is attributed to
Yaglom [343] to study the behavior of some critical branching processes before their extinction.
QSDs are useful for instance in the mathematical modelling of ecosystems, where they allow to
study the behavior of populations in the pre-extinction regime. We refer to [245] for a survey
of QSDs with a focus on the applications to population dynamics, and to the book [84] for
extensive background material on QSDs.

Let Y be a continuous-time Markov process on some Polish configuration space S = Ω ∪ ∂,
and let τ∂ be the first hitting time of a cemetery point ∂. The stopping time τ∂ is called
the killing time. The cemetery point ∂ is absorbing, in the sense that P(∀t ⩾ τ∂ , Yt ∈ ∂) = 1
and Py(τ∂ < +∞) = 1 for all y ∈ S. For instance, Y could model the size of a population,
in which case Ω = (0,+∞) with ∂ = {0} corresponding to the state of extinction, or the
configuration of a metastable system, in which case Ω ⊂ E is a metastable state, whose
topological boundary is identified with the cemetery point: ∂ = ∂Ω. These following definitions
can be found in [245, Section 2]. A measure νΩ ∈ P(E) is called

◦ A Yaglom limit for Y starting from y ∈ Ω if for all measurable A ⊂ Ω,

lim
t→+∞

Py (Yt ∈ A | τ∂ > t) = νΩ(A).
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◦ A quasi-limiting distribution (QLD) for Y if there exists µ0 ∈ P(Ω) such that for all
measurable A ⊂ Ω,

lim
t→+∞

Pµ0 (Yt ∈ A | τ∂ > t) = νΩ(A).

◦ A quasi-stationary distribution (QSD) for Y if for all measurable A ⊂ Ω, and t ⩾ 0,

PνΩ (Yt ∈ A | τ∂ > t) = νΩ(A).

If there exists a unique Yaglom limit starting from any y ∈ E, it is the Yaglom limit for Y
inside Ω. One can then show [245, Proposition 1] that νΩ is a QLD if and only if it is a QSD.
Since a Yaglom limit is obviously a QLD, it is also a QSD.

QSDs are related to spectral properties. Defining, for f in the space B∞(Ω) of bounded
measurable functions defined on Ω, the family of operators

∀ t ⩾ 0, Ptf(x) = Ex [f(Yt)1t<τ∂
] ,

the Markov property entails that (Pt)t⩾0 forms a sub-Markovian semigroup, called the killed
semigroup. One can easily show (see [84, Chapter 2] or Section 1.2.1) that, for any QSD νΩ,
there exists λ(νΩ) > 0 such that

EνΩ (f(Yτ∂
)1t<τ∂

) = e−λ(νΩ)tEνΩ [f(Yτ∂
)] ,

so that starting under a QSD νΩ, the killing time is exponentially distributed with rate λ(νΩ),
and independent of the killing point. Moreover, any QSD is a left-eigenvector for the killed
semigroup, namely

∀ f ∈ B∞(Ω), t ⩾ 0, νΩ (Ptf) = e−λ(νΩ)tνΩ(f). (1.81)

A proof can be found in [84, Section 2.3].

Many works have focused on proving the existence of a unique QSD νΩ in increasingly
general settings, as well as obtaining criteria for the exponential convergence to νΩ of the
conditional distributions

µt = Pµ0 (Yt ∈ · | t < τ∂) = µ0Pt
µ0Pt1Ω

(1.82)

for any µ0 ∈ P(Ω). Probabilistic approaches by Champagnat & Villemonais, starting in [72],
finding suitable analogs of the Lyapunov and local minorization conditions used in Harris’
theorem (see [150]), establish the following result for elliptic SDEs.

Theorem 1.23 ([73, Theorem 1.1]). Let Y be a solution to the SDE (1.16) on Y = Rd

with Hölder-continuous coefficients b and σ, with σ uniformly elliptic. Assume that Ω is a
bounded, connected, open domain of Y. Then there exists a unique QLD νΩ ∈ P(Ω) (which is
therefore the unique QSD) and constants C, r > 0 such that for all µ0 ∈ P(Ω),

dTV (µt, νΩ) ⩽ C

µ0(η)e−rt ∀ t ⩾ 0, (1.83)

where η : Ω→ [0,+∞) is a C2-eigenfunction for the infinitesimal generator, with eigenvalue
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equal to the negative killing (or exit) rate, namely −LY η = λ(νΩ)η, defined by

η(y) = lim
t→+∞

eλ(νΩ)tPy(t < τ∂).

Exponential convergence bounds such as (1.83) have been obtained for elliptic diffusions on
compact Riemannian manifolds [71], general Feller processes in regular bounded domains [30],
and some kinetic SDEs in cylindrical domains [228, 145]. We refer to [30, Section 1.1] for a
recent survey.

Spectrum of the Dirichlet generator. Analytical methods, based on spectral analysis,
are also effective to study QSDs, obtain more explicit rates of convergence in (1.83), and
study the metastable exit distribution Pν(Xτ∂

∈ ·). Just as the rate of convergence to global
equilibrium is dictated by a spectral gap of the infinitesimal generator, so is convergence to
local equilibrium, when the infinitesimal generator is supplemented with Dirichlet boundary
conditions.

For simplicity, we consider here the case of reversible elliptic diffusions. A similar approach
can be followed, using the Krein–Rutman theorem for non-reversible elliptic diffusions, see [270]
and [271, Chapter 3]. We assume that X is a solution to the SDE (1.21) on Q = Rd, where V , σ
and γ are smooth, with σ uniformly elliptic. The fluctuation-dissipation relation (1.22) implies
in particular that γ is symmetric positive-definite. To use results of elliptic regularity, we
assume that Ω is a smooth, bounded, connected open domain of Rd. The generator, as a
formal operator, writes

Lβ = e−βV

β
div

(
e−βV γ∇

)
.

We use frequently the integration by parts formula

∀ f, g ∈ C∞(Ω),
∫

Ω
f (Lβg) e−βV = 1

β

∫
∂Ω
f
(
∇g⊤γn

)
e−βV− 1

β

∫
Ω
∇f⊤γ∇g e−βV , (1.84)

where n denotes the unit outward normal, and the boundary integral is with respect to the
Lebesgue (surface) measure on ∂Ω.

For f, g vanishing on the boundary of Ω, the boundary term is omitted from (1.84), so
that −Lβ defines a symmetric, positive, elliptic quadratic form on L2

β(Ω) := L2(Ω, e−βV dx).
We consider the Dirichlet realization of −Lβ on L2

β(Ω), defined as Friedrichs’ extension (see [276,
Theorem 10.23]) of the form (1.84) on C∞

c (Ω). It is by definition a strictly positive self-adjoint
operator, with domain contained in H1

0 (Ω), the closure of C∞
c (Ω) for the form-norm. Since the

injection H1
0 (Ω) → L2

β(Ω) is compact by the smoothness of V and the Rellich–Kondrachov
theorem (see [121, Theorem 1 in Section 5.7]), L−1

β is (L2
β(Ω) → L2

β(Ω))- compact, which
implies that the spectrum of −Lβ is given by a sequence of positive eigenvalues, which we
enumerate with multiplicity:

0 < λ1,β ⩽ λ2,β ⩽ · · · .

Each eigenvalue has finite multiplicity and there are no accumulation points in the spectrum,
so that λn,β

n→∞−−−→ +∞. To this sequence of eigenvalues, we associate an orthonormal



68 1.3. Mathematical descriptions of metastability

sequence (un,β)n⩾1 of eigenfunctions, satisfying

∀n,m ⩾ 1, −Lβun,β = λn,βun,β,

∫
Ω
un,βum,β e−βV = δnm. (1.85)

It is classical (see [121, Section 6.5.1]) that λ1,β < λ2,β and that u1,β is the unique signed
eigenfunction, and does not vanish inside Ω. We may assume without loss of generality
that u1,β > 0. Finally, elliptic regularity arguments (see [121, Theorem 6 in Section 6.3.2])
show that for all n ⩾ 1, un,β ∈ C∞(Ω).

The knowledge of a spectral decomposition allows for many explicit computations, using the
following Feynman–Kac representation. Writing τΩ = τ∂ for the hitting time of ∂Ω, we define

v(t, x) = Ex [1τΩ⩽tφ(XτΩ) + 1τΩ>tψ(Xt)] (1.86)

for some φ,ψ ∈ C∞(Ω). The function v is the smooth solution to the PDE problem

∂tv = Lβv, (t, x) ∈ (0,+∞)× Ω,
v = φ, (t, x) ∈ (0,+∞)× ∂Ω,
v = ψ, (t, x) ∈ {0} × Ω.

The fact that a unique smooth solution exists follows from the general theory of parabolic
evolution equations, see [121, Chapter 7], and the probabilistic representation (1.86) then
follows from Itô’s formula, see [206, Proposition 1].

It follows from this Feynman–Kac formula that the probability measure

νΩ(dx) = u1(x)e−βV (x)∫
Ω u1e−βV dx ∈ P(Ω)

is a QSD for X in Ω (see [206, Proposition 2]). Moreover, the exit rate λ(νΩ) is equal
to λ1,β, and its density (which we again denote νΩ) is an eigenfunction of the Fokker–Planck
operator L†

β with Dirichlet boundary conditions, for the same eigenvalue.

The formula (1.84) gives an expression for the exit point distribution starting from νΩ (see [206,
Proposition 3]) as

EνΩ [φ(XτΩ)] =
∫
∂Ω
φρ, ρ = −

(
βλ1,β

∫
Ω
u1,βe−βV

)−1 (
∇u⊤

1,βγn
)

e−βV . (1.87)

Since, starting from νΩ, τΩ ∼ E(λ1,β) is independent from XτΩ , the joint distribution of the
exit event is in this case completely explicit in terms of the principal Dirichlet eigenpair.

For φ = 0 in (1.86), the solution v(t, x) = Ptψ(x) can be expanded in the Dirichlet eigenbasis,
i.e.

Ptψ(x) =
+∞∑
n=1

e−λn,βt
(∫

Ω
ψun,βe−βV

)
un,β(x). (1.88)

Using this expansion, one can estimate the total variation distance between the conditional
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measure (1.82) and νΩ, and show (see for instance [305, Theorem 3.1]) that

∀ t ⩾ 0, dTV (µt, νΩ) ⩽ C(µ0)e−(λ2,β−λ1,β)t, (1.89)

for some constant C(µ0) > 0 independent from t, for a large class of initial distribu-
tions µ0 ∈ P(Ω) which includes Dirac distributions. In particular νΩ is the Yaglom limit
for X inside Ω. The uniqueness of the QSD is a consequence of the simplicity of λ1,β , the fact
that u1,β > 0 inside Ω, and the property (1.81).

The convergence bound (1.89) shows that the asymptotic convergence rate to the QSD is
given by the spectral gap λ2,β − λ1,β > 0. Furthermore this rate is essentially sharp: taking µ0

proportional to (u1,β + εu2,β)e−βV for a sufficiently small ε, we get an explicit initial condition
which converges at exactly this rate to the QSD in the L2(Ω)-norm.

Foundations and numerical analysis for AMD algorithms. The results reviewed
in the previous two paragraphs can be used to study the AMD algorithms of Section 1.2.1.
Existence and uniqueness results for the QSD justify Assumption (QSD). The convergence
bounds (1.83) and (1.89) justify Approximation (MS(tcorr(α))).

To justify the physical assumptions behind TAD and HMD, namely Approximations (EK)
and (TST), one has to study the metastable exit event in the low-temperature regime β → +∞,
so that energetic barriers are high relative to thermal fluctuations. This is equivalent to study
spectral properties of the Dirichlet realization of the Witten Laplacian (1.78) in the semiclassical
limit ε→ 0. The main difficulty lies in constructing sufficiently accurate approximations of the
principal eigenvector u1,β and its normal derivative ∇u⊤

1,βγn to get useful estimates on λ1,β

and the exit distribution (1.87). Such approximations are called quasimodes, and are the
central tool in semiclassical analysis.

Semiclassical techniques have been used in [14, 99, 100, 101, 224] to study the validity
Assumption (EK). In particular all these works assume some restrictions on the domain Ω. The
early results of [14] are in dimension 1, while positive results (justifying Approximation (EK))
for higher-dimensional systems exist under non-local assumptions on V , which may be hard to
verify in practice. Justifications for Approximation (TST) can be found in [225], again in the
low-temperature regime with various restrictions on V , δV and Ω.

Estimating the bias in AMD methods arising from choices of various approximation parame-
ters is also a natural question, see [14] for a numerical analysis of TAD and [206, 233] for a
numerical analysis of the Parallel Replica algorithm.

TAD and HMD are often valid and useful in the presence of high energetic barriers, but
fail when the metastability has an entropic origin. Recently, the semiclassical approach has
been extended to study models of entropic confinement. In these so-called narrow escape
problems, high-energy transition states around an energetic basin are replaced with narrow
exit pathways at the boundary of a domain Ω. In this setting, the dynamics consist in a simple
Brownian motion, which is reflected on the boundary ∂Ω, except on a subset Γε ⊂ ∂Ω, on
which absorption occurs. The spectral approach to the QSD leads to eigenvalue problems
for the Laplacian with mixed Dirichlet–Neumann boundary conditions. The probabilistic
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interpretation of the principal eigenpair and spectral gap allows to study quasistationarity in
a toy model of entropic barriers. Analogs of the Eyring–Kramers formula, when Γε consists
of multiple regions of varying size, have been established in a two-dimensional situation,
when |Γε|

ε→0−−−→ 0, see [227]. The question has also been considered from a potential-theoretic
point of view, see [124]. The question of formulating entropic equivalents of TAD in a general
setting is a natural question, which has yet to be studied.

The spectral point of view is helpful in parameter selection for AMD methods. For instance,
the bound (1.89) suggests one should choose the decorrelation time tcorr(Ω) > C

λ2,β−λ1,β
for

some C > 0. For Ω to be a “good” metastable state (see Problem 1.12), the local separation
of timescales should be maximized, ensuring that the timescale on which the conditionned
process converges to the QSD is small compared to the timescale on which is subsequently
transitions. This naturally leads to the question of maximizing (λ2,β − λ1,β)/λ1,β with respect
to Ω, which itself is a parameter of the algorithm. This objective was initially proposed by
practitioners of AMD simulations, see [268] for example. Questions of parameter selection for
AMD methods are a core motivation for the contributions of Chapters 2 and 3 of this thesis,
and will be further motivated there.

1.4 Contributions of this thesis

In this section, we summarize the contributions of the following chapters. In Section 1.4.1,
we present our contributions pertaining to the study of metastability reviewed in Section 1.3,
motivated by applications to the accelerated MD methods of Section 1.2.1. In Section 1.4.2,
we present our other contributions to the sampling of trajectorial properties, in particular the
nonequilibrium properties of Section 1.2.2

1.4.1 Analysis and optimization of quasistationary timescales

The results we introduced in this section correspond to Chapters 2 and 3 of this thesis.
The overarching motivation for these contributions is a problem of parameter selection for
the accelerated MD algorithms of Section 1.2.1, particularly the most generic of Voter’s
methods, namely the parallel replica algorithm. This is the metastable state design problem
(Problem 1.12). In [268], for the case of reversible elliptic diffusions, the authors argue that
metastable states should be chosen as local maxima of the ratio

N∗(Ω) = λ2,β(Ω)− λ1,β(Ω)
λ1,β(Ω) , (1.90)

where λk,β(Ω) denotes the k-th Dirichlet eigenvalue of the infinitesimal generator inside Ω,
see (1.85), where we make the dependence on Ω explicit. In this context, N∗(Ω) roughly
measures the number of replicas one can use in the Parallel Replica algorithm (Algorithm 1.10
in Section 1.2.1) inside Ω while maintaining a proportionate speedup in wall-clock time,
therefore warranting its name of scalability metric.

This ratio also measures a separation of timescales, between the exit rate when the dynamics
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is initially distributed according to the QSD νΩ and the slowest relaxation timescale of the
renormalized killed semigroup, according to the representation (1.88), which is the asymptotic
rate of convergence to the local equilibrium νΩ. Therefore N∗(Ω) can also be understood as a
natural local measure of metastability associated to the state Ω.

It is neither true nor expected that standard energetic definitions for Ω (see Example 1.5
in Section 1.2.1) are particularly good at maximizing N∗. This is particularly true at high
temperature, or in the presence of low energy barriers, where thermal fluctuations make
transitions between energy basins rather frequent. Besides, when entropic effects significantly
contribute to metastability, these definitions make it impossible to separate metastable states
(see Problem 1.12 in Section 1.2.1).

A core contribution of this thesis is to propose two complementary approaches to tackle the
state definition problem, with the aim of locally maximizing N∗(Ω) with respect to Ω, which
we regard as a shape-optimization problem.

◦ The first approach is based on theoretical results obtained in Chapter 2, computing
spectral asymptotics for the generator

Lβ = −∇V ⊤∇+ 1
β

∆

of the overdamped Langevin dynamics (1.19) with Dirichlet boundary conditions at the
boundary of a temperature-dependent domain, in the low-temperature limit β → +∞.
A set of geometric assumptions is considered concerning the temperature dependence of
the domain geometry, which ensures that i) the asymptotics are sensitive to the choice
of the boundary geometry and ii) the leading asymptotic behavior can be computed in
practice. These shape-sensitive asymptotics may be plugged into (1.90) to optimize the
leading-order asymptotic of the scalability metric N∗ in the low-temperature regime,
within the class of domains satisfying our geometric assumptions.

◦ The second approach, presented in Chapter 3, is a numerical shape-optimization method
for the Dirichlet eigenvalues for the generator(

−γ∇V + 1
β

div γ
)⊤
∇+ 1

β
γ : ∇2

of the general reversible elliptic dynamics (1.21). To make the optimization tractable in
a high-dimensional system, we propose a dynamical coarse-graining approach.

Before giving details on these contributions, let us briefly comment on the implications of
these results for the AMD algorithms of Section 1.2.1. These two approaches offer strategies
to address Problem 1.12 in different situations.

◦ The low-temperature analysis applies in situations where energetic barriers are by
definition the main contributors to metastability, in which case the energetic definitions
of Example 1.5 are known to lead to significantly accelerated sampling via AMD methods.
In fact, the geometric setting of the analysis restricts the class of domains to variations
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(in a sense to be made precise later) of the energetic basin A(z0) associated with a local
minimum z0 for V . Therefore the asymptotic optimization approach can be viewed as
a fine-tuning strategy for the state definition, to maximize the scalability in a situation
where reasonable performance is already guaranteed. Besides, a byproduct of the analysis
is an asymptotically exact estimate of the spectral gap λ2,β(Ω)−λ1,β(Ω), which is directly
relevant to Problem 1.14.

◦ By contrast, the numerical shape-optimization approach makes no assumption on the
origin of metastability, and therefore also applies to situations where the separation of
timescales is induced by entropic effects. As such, it is more general, and should be viewed
as an enabling strategy, for situations where no reasonable state definitions are available.
However, it is also generically inexact for realistic systems, as it relies on approximation
parameters which are hard to control. In particular, its practical implications with
regards to Problem 1.14 are still unclear, and should be further investigated.

Finally, although the guiding objective is the maximization of N∗, both approaches can be
applied to any functional of the Dirichlet eigenvalues.

Low-temperature spectral asymptotics. Chapter 2, which was preprinted as [50] and is
currently under review, provides new asymptotic results concerning the Dirichlet eigenvalues
of Lβ, where V is a smooth Morse function, β → +∞, and Dirichlet boundary conditions
are imposed at the boundary of a regular bounded domain representing a metastable state.
The novelty with respect to previous analyses in this setting [158, 14, 99, 100, 101, 224, 209]
is that the domain is not a fixed set Ω ⊂ Rd, but rather a temperature-dependent family of
domains (Ωβ)β>0.

Besides the shape-optimization problem, another more theoretical motivation to study
spectral asymptotics in this non-standard setting is the fact that the leading-order asymptotic
formulas for Dirichlet eigenvalues obtained in the case of fixed domains (such as those given
in [209]) are discontinuous with respect to the boundary geometry. In particular, discontinuities
in the leading-order term appear when the boundary crosses certain critical points of V . On
the other hand, results of perturbation theory (for instance those given in Chapter 3) show
that the spectrum is continuous with respect to deformations of the boundary. Studying the
Dirichlet spectrum in temperature-dependent domains allows to better understand these sharp
spectral transitions which must occur at low-temperature.

The contributions of Chapter 2 are as follows.

◦ We construct a set of geometric assumptions under which the asymptotics can be shown
to be valid and computed in practice. The main geometric assumption states that, for a
fixed set (zi)0⩽i<NV

of critical points for V , and for all β sufficiently large, the domain Ωβ

can be approximated locally around each zi by a half-space. Moreover, the boundary of
the approximating half-space around each critical point zi is assumed to be orthogonal
to an eigenvector of the Hessian ∇2V (zi), and at a signed distance α(i)/

√
β from zi in

this eigendirection, for some α(i) ∈ (−∞,+∞].
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The leading order asymptotics of the Dirichlet spectrum are derived as a function
of the parameter α = (α(i))1⩽i⩽NV

and the temperature parameter β. This has the
major advantage of replacing the infinite-dimensional shape functional N∗ by a finite-
dimensional function in the asymptotic regime.

Other critical points of V are assumed to be far from all the domains Ωβ and therefore
do not enter into the analysis.

◦ Under these assumptions, we show the counterpart of the harmonic approximation
(Theorem 1.22) in our setting, namely that, for each k ⩾ 1, we have the limit

lim
β→+∞

λk,β(Ωβ) β→+∞−−−−−→ λH
k (α),

where λH
k (α) is the k-th eigenvalue of some temperature-independent, block-diagonal

operator, the harmonic approximation, given by a direct sum of local harmonic models,
endowed with appropriate Dirichlet boundary conditions. Crucially, the λH

k (α) can be
computed numerically as a function of α, at a negligible computational cost.

◦ Under an additional set of assumptions ensuring, amongst other technical conditions,
that the principal eigenvalue λ1,β(Ωβ) is exponentially small as β → +∞, and that
the second eigenvalue λ2,β(Ωβ) is bounded away from zero uniformly in β, we prove a
shape-sensitive Eyring–Kramers formula:

λ1,β(Ωβ) = e−β(V ∗−V (z0))

 ∑
i∈Imin

|ν(i)
1 |

2πΦ
(
|ν(i)

1 |
1
2α(i)

)√ det∇2V (z0)
|det∇2V (zi)|

 (1 + O(1)) , (1.91)

where
Φ(x) = 1√

2π

∫ x

−∞
e− t2

2 dt, Φ(+∞) = 1,

the critical point z0 is a distinguished local minimum of V , and the (zi)i∈Imin are index-1
saddle points of V bordering the basin of attraction A(z0) (see Example 1.5) at the
energy level V ∗. In the formula (1.91), ν(i)

1 is the sole negative eigenvalue of ∇2V (zi)
for i ∈ Imin, and corresponds to the eigenvector perpendicular to the approximating
half-space around zi.

◦ From a technical perspective, the proofs of these two results adapt well-established
strategies for approximating eigenvectors in the semiclassical analysis of the Witten
Laplacian, such as the construction of harmonic quasimodes performed in [195], or
the construction of Gaussian quasimodes used in [61, 209]. However one aspect of the
analysis is significantly different from previous works. While prior approaches to the
Eyring–Kramers formula on fixed domains relied on local changes of variables around
critical point to reduce the analysis to the study of a model operator in a simple geometric
situation. While this is always possible in the case of a fixed domain, this approach cannot
be adapted in the case of temperature-dependent boundaries without making additional
regularity assumptions on the family (Ωβ)β>0, which would restrict the genericity of
the result. Instead, our approach relies heavily on deformations of the domain itself,
combined with well-known domain monotonicity principles for Dirichlet eigenvalues to
control the error induced by these deformations. In fact, when applied to the case of
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a constant domain Ωβ = Ω for all β > 0, our method gives an alternative proof of
these classical Eyring–Kramers formulas, with a slightly degraded error term. Another
technical contribution is the derivation of a suitable Laplace method for the case of
moving integration domains.

Shape-optimization of metastable states. Chapter 3, which was preprinted as [51] and is
currently under review, studies the shape optimization problem from a numerical perspective.
It proposes a novel framework to define metastable states by directly optimizing a spectral
metric for timescale separation, which is closely related to the efficiency of accelerated sampling
algorithms. The contributions are as follows.

◦ We argue that the scalability metric (1.90) indeed quantifies the efficiency of the Parallel
Replica algorithm, using an idealized choice of the decorrelation time tcorr, and a specific
implementation of the dephasing step (step A in Algorithm 1.10).

◦ To optimize the domain, we require gradients of Dirichlet eigenvalues with respect
to geometric perturbations of the domain. A known difficulty in the optimization of
eigenvalue functionals is the loss of differentiability which occurs at points where the
eigenvalues become degenerate. We devise the necessary regularity results for the Dirichlet
eigenvalues λk,β(Ω) with respect to shape-perturbations, and compute in particular
analytical formulas giving the Gateaux derivatives for clusters of degenerate eigenvalues.
As for the Dirichlet Laplacian, this directional derivative is given by the spectrum of a
small, symmetric matrix MΩ,k(θ) (Theorem 3.2), where θ is a shape-perturbation field.

◦ Using these formulas, we construct a robust ascent algorithm (Algorithm 3.5) to locally
maximize N∗(Ω). The algorithm is based on a finite-element (FEM) discretization of the
domain and the Dirichlet eigenproblem. Its robustness stems from its ability to handle
degenerate eigenvalues: it uses a numerical criterion to detect near-degeneracies, and
adaptively chooses a steepest ascent direction θ∗ by formulating a secondary optimiza-
tion problem related to the spectrum of some matrix-valued functional SΩ(θ), which
fortunately can be efficiently solved. This effectively avoids oscillations and the slow
convergence that would otherwise plague the optimization procedure.

◦ For realistic high-dimensional molecular systems, where a direct FEM discretization
is computationally intractable, we propose a coarse-graining strategy. Given a low-
dimensional collective variable (CV) ξ : Rd → Rm (with m ⩽ 3), states are defined
as preimages Ω = ξ−1(Ωξ). The optimization problem is approached by performing
a Galerkin approximation, restricting the variational search space for the Dirichlet
eigenproblem to functions of the form φ ◦ ξ, considering the subspace{

φ ◦ ξ, φ ∈ H1
0,β(Ωξ)

}
⊂ H1

0,β(Ω).

This reduces the intractable high-dimensional PDE on Ω to an effective, low-dimensional
Dirichlet eigenproblem on Ωξ ⊂ Rm, which can be readily solved with FEM. In fact, this
eigenproblem is precisely the Dirichlet eigenproblem for the generator Lξβ of another
reversible elliptic dynamics in Rm, which is again of the form (1.21). Its coefficients are



Chapter 1. Introduction 75

given by the free energy Fξ and an effective diffusion tensor aξ, whose expressions are

Fξ(z) = − 1
β

log
(∫

Σz

e−βV
(
det∇ξ⊤∇ξ

)−1/2
dσΣz

)
∈ R,

aξ(z) =
∫

Σz

∇ξ⊤γ∇ξ dνz ∈ Rm×m,

where Σz = ξ−1(z), σΣz denotes the surface Lebesgue measure, and νz denotes the
conditional Gibbs measure on Σz, given by

νz(dy) =
e−βV (y)

(
det∇ξ(y)⊤∇ξ(y)

)−1/2∫
Σz

e−βV
(
det∇ξ⊤∇ξ

)−1/2
dσΣz

σΣz (dy).

These effective dynamics have been considered previously for dynamical coarse-graining,
see for instance [346], but never in the context of absorbing boundary conditions. While
any reversible model for the low-dimensional dynamics ξ(Xt) could be used instead, this
particular choice has the advantage that its coefficients Fξ, aξ can be efficiently estimated
from sample configurations, with no need for statistically correct trajectories.

◦ We first validate our approach on small numerical examples, showing that when the
reaction coordinate is able to resolve the relevant free-energy basins, the coarse-grained
optimization procedure is in very good agreement with the optimum domain of the
form ξ−1(Ωξ), in a toy two-dimensional potential. We also validate the semiclassical
asymptotics of Chapter 2 on a one-dimensional potential, and find that the asymptotics-
optimization problem (as a function of the shape parameter α) resembles the true
shape-optimization problem, and can be solved at a fraction of the computational cost.

◦ We finally deploy our methodology on a biophysical system, solvated alanine dipeptide
(see Figure 1.2), a system with 1857 configurational degrees of freedom. We show
through numerical experiments that the shape-optimization procedure increases the
local separation of timescales, compared to a natural ad-hoc definition of states, for
the underdamped Langevin dynamics, in a range of dynamical settings, and for several
choices of the core-set.

1.4.2 Nonequilibrium sampling and pathwise properties

A dual approach to computing transport coefficients. Chapter 4, which was published
in [52], provides a generalization to the setting of the NEMD stochastic dynamics (1.55)
of ideas from works of Evans & Morriss [118, 117, 120, 116, 115] and [119, Section 6.7] in
nonequilibrium statistical mechanics. The goal is to compute linear response properties such
as (1.61), using a constant-flux approach, named the Norton method. This name comes from
an analogy with electrical-circuit theory, because the Norton method measures a resistance,
contrarily to the constant-forcing NEMD (or Thévenin) method which measures a current.

The spirit of this method is based on the observation that, although physical intuition
suggests that the steady-state response is caused by the nonequilibrium driving force – this
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is indeed reflected in the choice of terminology – from the macroscopic point of view, there
is no reason to suppose this is the case. Instead, the flux and the forcing co-occur, and one
could equivalently think of the nonequilibrium flux as creating a resisting force opposing the
drive out of equilibrium. This shift in perspective suggests the following approach: instead of
fixing the magnitude of the nonequilibrium perturbation, and measuring the average flux in
the nonequilibrium steady-state, as in standard NEMD methods, one could fix the flux, and
measure the average forcing magnitude needed to sustain it. The average forcing is therefore
measured in a constant-flux ensemble. The Norton and NEMD nonequilibrium ensembles
are in a dual relationship with respect to the pair of flux/forcing variables: one’s value is
fixed exactly, while the other’s is fixed on average by the nonequilibrium steady-state. This
duality is analogous to the relationship between the NVE and NVT equilibrium ensembles
with respect to the Hamiltonian/temperature pair of thermodynamic variables.

One objective of this work is to place this dual approach in a clear stochastic setting, in
which one could subsequently hope to obtain rigorous theoretical results concerning its validity
and efficiency, contrarily to the original deterministic framework of Evans & Morriss. Another
objective is to ascertain with numerical experiments whether the approach is promising for
applications, beyond academic toy models.

This results in the following contributions.

◦ We derive a formal framework for these constant-flux nonequilibrium dynamics in the
case of perturbations of the drift, i.e. bη = b + ηF for some F : Q → Rd and ση = σ

in (1.55). This allows to cover the relevant examples of mobility and shear viscosity
discussed in Examples 1.15 and 1.16. The framework is based on the constrained SDE

dZrt = b(Zrt ) dt+ σ(Zrt )dWt + F (Zrt ) dΛrt , (1.92)

which has same basic form as the NEMD dynamics (1.55), except that the perturbation
parameter η has been replaced by the increment of a stochastic process (Λt)t⩾0, where
the forcing magnitude process Λrt is determined by the constant-flux constraint

R(Zrt ) = R(Zr0) = r, ∀ t ⩾ 0,

and the parameter r > 0 fixes the value of the flux. In fact, Λr is a W -adapted Itô
process, satisfying the SDE

Λrt =
∫ t

0
λ(Zrs ) ds+

∫ t

0
λ̃(Zrs ) dWs,

for explicit observables λ : Y → R and λ̃ : Y → R1×d. We also derive explicit Norton
dynamics in the case of multiple and time-dependent flux constraints.

As a result, one may measure the average forcing magnitude using an ergodic average

1
T

∫ T

0
λ(Zrt ) dt T→∞−−−−→ Eπr [λ] , (1.93)

where πr denotes the Norton steady-state, defined as the invariant probability distribution
of the dynamics (1.92).
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Because the trajectory average on the left-hand side of (1.93) neglects the contribution of
the observable λ̃, corresponding to the martingale component of Λr, the dual approach
incorporates variance reduction in its estimation of nonequilibrium response properties.
It amounts to using the predictable process − 1

T

∫ T
0 λ̃(Zrt ) dWt as a control variate in the

estimation of the average forcing magnitude.

By analogy with the macroscopic transport law, we define the Norton linear response as
the reciprocal derivative of the forcing with respect to the flux, provided the following
limit exists:

α∗ = lim
r→0

r

Eπr [λ] .

◦ Specializing this framework to the case where the equilibrium dynamics is given by the
underdamped Langevin SDE (1.17), we give a physical interpretation of the Norton
dynamics as satisfying an “oblique” version of Gauss’ principle of least constraints, which
itself had been previously proposed as a principled way to construct nonequilibrium
ensembles [117, 173].

◦ Drawing on (A,B,O) splitting schemes for Langevin dynamics (see (1.36)), we construct
a family of flux-preserving numerical schemes for the underdamped Langevin–Norton
dynamics, and explain how to efficiently construct an estimator for the average forcing
directly from the integration procedure, incorporating variance reduction and avoiding
the potentially costly evaluation of λ. These schemes were implemented in the molecular
simulation package Molly [143].

◦ We perform various numerical experiments on Lennard–Jones fluids, which reveal that
the dual approach allows to compute both mobility and shear viscosity in these systems.
Furthermore, this equivalence extends beyond the linear regime for the pairs (F,R) we
consider, suggesting that the dual approach provides an alternative way to compute
response properties far from equilibrium in some systems.

◦ We show that in the case of shear viscosity, the dual method is more efficient, and
that the efficiency gap increases with the system size. This is caused by the fact that
the fluctuation behavior of the forcing process λ(Zrt ) is often quite different from that
of response process R(Y η

t ) in NEMD. Roughly speaking, the former tends to display
large instantaneous fluctuations over short correlation times, while in NEMD, smaller
fluctuations occur, but which dissipate over much longer times. In Lennard–Jones fluids,
we show evidence of anomalous concentration for the forcing distribution; namely the
variance of the shear forcing distribution, which is the pushforward measure λ∗π

r ∈ P(R),
scales as N−5/3 as the number of particles N → +∞, at fixed density and temperature.
The variance of its NEMD counterpart, the Fourier flux distribution R∗πη, on the other
hand, scales as N−1, which is the expected CLT behavior. A possible explanation of this
phenomenon lies in the fact that, for typical choices of (R,F ), the forcing variable λ
is coupled to the system through a mean-field-type interaction, but a rigorous analysis
remains an open question.

Finally, we raise several theoretical questions regarding the dual method for future work. In
particular, the method suggests an approach to the equivalence of nonequilibrium ensembles
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results, which is expected to hold in specific, but nevertheless practically relevant, limiting
regimes. The upcoming work [89] addresses some of these questions in a mean-field setting.

Since publication, our framework has been specialized to dissipative particle dynamics
(DPD, [342]), and similar numerical results have been obtained therein regarding the efficiency
of the Norton dynamics and the anomalous scaling of the variance in the constant-shear-
flow ensemble. The qualitative difference in fluctuation behavior between constant-force
and constant-flux ensembles has also been observed in recent simulations [315, 296] using
deterministic Norton dynamics with Nosé-Hoover thermostats.

More generally, the idea of choosing from equivalent statistical ensembles those which possess
the most desirable fluctuation behavior for a target property is classical in equilibrium statistical
mechanics [211, 66]. Norton dynamics aim to extend this possibility to the nonequilibrium
setting by proposing an equivalent nonequilibrium ensemble to sample from, with different
fluctuation properties. Overall, variance reduction for constant-flux ensemble estimators of
various transport coefficients have indeed been observed in [118, 315, 52, 296, 342].

A hypocoercive approach to the overdamped approximation of the Langevin dy-
namics with position-dependent friction matrices. Chapter 5 corresponds to contents
of an upcoming research note [48]. The purpose of this note is to study the dynamical behavior
of the general underdamped Langevin dynamics

dqλt = M−1pλt dt,

dpλt = −∇V (qλt )dt− λD(qλt )−1M−1pλt dt+
√

2λ
β
D(qλt )−1/2 dW λ

t ,
(1.94)

which corresponds to (1.20) with γ = λD−1, in the large friction regime λ → +∞. In this
equation, D−1 : Q → S++

d is a position-dependent, matrix-valued friction coefficient.

Under suitable assumptions on the coefficients of these dynamics and the initial data, we
show that the rescaled position process (qλλt)0⩽t⩽T converges in law to the solution (Xt)0⩽t⩽T

of the SDE

dXt = −
[
D(Xt)∇V (Xt)−

1
β

divD(Xt)
]

dt+
√

2
β
D1/2(Xt)dWt, (1.95)

which corresponds to (1.21) with γ = D, and is the dynamics studied in Chapter 3.

While similar results are well-known in the small-mass regime M → 0, and have been
shown to hold in very general settings [130, 131, 177, 339], the main contribution of this
work is the method of proof, which relies on the control of a well-chosen Poisson problem
via L2-hypocoercivity estimates. As a result, the structure of the argument is very simple,
and gives an intuitive explanation for the form of the limiting dynamics. As an intermediate
technical step, the proof involves extending known hypocoercivity results to a setting with
multiplicative noise, and obtaining uniform in λ estimates for the inverse generator, results
which may be of independent interest. Along the way, we identify a gap in the proof of a
previous result in the small-mass case ([339, Lemma 3.1]), and provide a correct argument for
an analogous step in our setting.
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The second contribution of the work consists in the application of the result to a case where
the kinetic energy, given by 1

2p
⊤M−1(q)p, where M : Q → S++

d is itself position-dependent.
These dynamics are for instance useful when considering molecular dynamics in internal
coordinates, see [326]. We show, under suitable assumptions on M , that the main result can
be applied, via an appropriate change of coordinates, to derive the overdamped limit. This
allows in particular the treatment of the general one-dimensional case.



Chapter 2
Quantitative spectral asymptotics for
reversible diffusions in
temperature-dependent domains.

At the still point of the turning world.
. . . at the still point, there the dance is . . .

—T.S. Eliot, Burnt Norton, 1936

Abstract. We derive novel low-temperature asymptotics for the spectrum of
the infinitesimal generator of the overdamped Langevin dynamics. The novelty
is that this operator is endowed with homogeneous Dirichlet conditions at the
boundary of a domain which depends on the temperature. From the point of view of
stochastic processes, this gives information on the long-time behavior of the diffusion
conditioned on non-absorption at the boundary, in the so-called quasi-stationary
regime. Our results provide precise estimates of the spectral gap and principal
eigenvalue, extending the Eyring–Kramers formula. The phenomenology is richer
than in the case of a fixed boundary and gives new insight into the sensitivity of
the spectrum with respect to the shape of the domain near critical points of the
energy function. Our work is motivated by–and is relevant to–the problem of finding
optimal hyperparameters for accelerated molecular dynamics algorithms.

80
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2.1 Introduction

We study characteristic timescales of the diffusion process defined as the strong solution (Xβ
t )t⩾0

to the stochastic differential equation

dXβ
t = −∇V (Xβ

t ) dt+
√

2
β

dWt, (2.1)

where (Wt)t⩾0 is a standard Brownian motion on Rd, V : Rd → R is a smooth function,
and β > 0 is a parameter modulating the magnitude of the noise. In the context of atomistic
simulation, the process (2.1) is called the overdamped Langevin dynamics, and is commonly
used to model the motion of particles subject to an interaction potential V at thermal
equilibrium with inverse temperature β = (kT )−1.

More generally, the function V is, up to an additive constant, the log-likelihood of the Gibbs
measure

µ(dx) = Z−1
β e−βV (x) dx, (2.2)

which is a probability measure with respect to which the dynamics (2.1) is known to be
reversible, and, under a general set of assumptions, ergodic. We refer the reader to [280] for
sufficient conditions ensuring the well-posedness and ergodicity of (2.1) with respect to µ.

As it allows sampling from probability measures whose densities are explicit up to the
normalization constant Zβ, the dynamics (2.1) is also used in Bayesian statistics to sample
from the posterior distribution. In theoretical machine learning, the process (2.1) can also be
seen as an idealized model for the stochastic gradient descent algorithm, after an appropriate
normalization of the data, in which case V plays the role of the loss function.

The local approach to metastability. In many cases, the trajectories of (2.1) are subject
to the phenomenon of metastability, which is indicated by the presence of a wide range of well-
separated timescales, often exponentially wide in the inverse temperature. This corresponds to
the regime in which the Arrhenius law (see [16]) applies. Longer timescales correspond to rare
transitions between attractive regions of the configuration space Rd, which trap the dynamics
into long-lived local ensembles of configurations, which we refer to as metastable states. The
shorter timescales correspond to thermal fluctuations inside these states.

The nature of the trapping mechanism itself may vary. It may be that energetic barriers
tend to confine the dynamics inside a potential well for long times, which is the case on which
we focus in this work. It may also happen that different subdomains are joined by low-energy
paths, but in narrow configurational corridors, which require well-coordinated collective motion
of the system’s degrees of freedom to successfully navigate. In this case, the obstacle is of an
entropic nature, and the dynamics is in fact confined in a free-energetic rather than purely
energetic well.

Moreover, in molecular dynamics (MD) simulations, monitoring the long-time behaviour
of the dynamics (2.1) is of crucial importance to reliably estimate macroscopic dynamical
properties of materials and biomolecules, as well as parametrizing models on larger scales,
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such as discrete Markov models or PDEs.

Drawing meaningful long trajectories from metastable dynamics is however challenging with
naive techniques. To alleviate this, so-called accelerated dynamics methods [332, 334, 312]
have been proposed by Arthur Voter in the late 1990’s, all of which rely on a local approach
to metastability.

In this local approach, the notion of metastable state can be formalized using the quasi-
stationary distribution (QSD), which, given an arbitrary bounded subset of configuration
space Ω ⊂ Rd, can be loosely understood as the long time limiting distribution of the process
conditioned on staying trapped inside Ω. Defining the so-called Yaglom limit:

ν = lim
t→∞

µt, µt := Law
(
Xβ
t

∣∣∣∀ 0 ⩽ s ⩽ t, Xβ
s ∈ Ω

)
,

it can be shown under mild assumptions (see [245]) that the limit ν is well-defined, and that
it is the unique QSD for the process (2.1) in Ω, with moreover µt converging exponentially
fast to ν in total variation norm. Local metastability inside Ω can then be understood as a
large separation between two natural timescales related to the QSD. The first timescale is the
average exit time from Ω for the dynamics Xβ

t with initial distribution ν:

τ1(Ω) = Eν
[
inf{t > 0 : Xβ

t ̸∈ Ω}
]
.

The second timescale τ2(Ω) is that at which µt reaches the QSD and the process Xβ
t thus

forgets its initial distribution conditionally on not exiting Ω. If τ1(Ω)≫ τ2(Ω), then the domain
Ω acts as a metastable trap for the dynamics Xβ

t . Conditionally on {Xβ
s ∈ Ω, ∀ 0 ⩽ s ⩽ t},

for τ2(Ω)≪ t≪ τ1(Ω), the state of the dynamics at time t is distributed according to the local
equilibrium ν, and remains distributed according to ν before the dynamics exits once again.

It is possible to show (see [206] and Propositions 2.2 and 2.3 below) that the two local
timescales associated with the metastable behavior of the process Xβ

t inside Ω can be related
to the spectrum of the infinitesimal generator of the dynamics (2.1), supplemented with
Dirichlet boundary conditions on ∂Ω. Namely, writing −λk,β(Ω) for the k-th smallest Dirichlet
eigenvalue, the following holds:

◦ The metastable exit rate is given by λ1,β(Ω).

◦ The asymptotic convergence rate to the QSD is given by λ2,β(Ω)− λ1,β(Ω).

Strictly speaking, Proposition 2.3 only provides an upper bound on the convergence rate,
which we expect in practice to depend on the initial condition. Nevertheless, these spectral
characterization provide us with a natural and tractable measure of the local metastability
associated with Ω, namely the separation of timescales

J(Ω) := λ2,β(Ω)− λ1,β(Ω)
λ1,β(Ω) . (2.3)

If J(Ω) ≫ 1, i.e. λ2,β(Ω) − λ1,β(Ω) ≫ λ1,β(Ω), then Ω acts as highly locally metastable
trap for the dynamics (2.1). The link between characteristic timescales for conformational
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dynamics and the spectrum of various operators has been widely discussed in the literature,
see [178, 256, 157] for an overview of various approaches.

Shape optimization for the timescale separation. A natural question arises: how to
choose the shape of the domain Ω in order to maximize J(Ω) ? In other words: how to
choose Ω in order for the process (Xβ

t )t⩾0 to be as locally metastable as possible ? This line of
investigation is interesting from a theoretical point of view, as it generalizes the problem of
finding extremal shapes for ratios of eigenvalues of the Dirichlet Laplacian (which corresponds
to setting V = 0 in our context), which has been addressed with tools from spectral geometry,
see for example the Payne–Polyá–Weinberger conjecture [263] and its solution by Ashbaugh
and Benguria in [18].

It is, in addition of practical interest, since it has recently been shown in [2, 13] that
metastable diffusions such as (2.1) may be described with an arbitrary accuracy by coarse-
grained dynamics consisting of Markov renewal processes. In this context, the timescale
separations (2.3) associated with each coarse state appears as a parameter governing the
convergence of this approximation. More generally, it is expected that a large separation of
local timescales in Ω will lead to dynamics which are prone to be approximated by simpler
processes to simulate and analyze, such as jump Markov processes. From the point of view of
acceleration algorithms in MD simulation, the timescale separation has also been related to
the efficiency of the parallel replica algorithm (ParRep) (see [206, 305, 268]), and thus, finding
definitions of metastable subsets Ω for which the separation of timescales is large has relevance
to applications in MD. In particular, deriving quantitative estimates of λ1,β(Ω) and λ2,β(Ω) is
an important question in the numerical analysis of ParRep and its variants.

In low-dimensional settings, or when low-dimensional representations of the dynamics are
available, it is possible to locally optimize the shape of an initial domain Ω, using shape
perturbation results for eigenvalues see [152, 153, 154, 164, 165]. Indeed, it is possible to
show that the ratio (2.3) is shape-differentiable with respect to Ω, by adapting arguments
developed to treat the case of the Dirichlet Laplacian (see [165, 164] for the Laplacian, and
the companion work [51], treating the case of a general V with a position-dependent diffusion
matrix, as well as a Galerkin approximation method given a reaction coordinate).

However, the exact computation of shape perturbations of eigenvalues is generally intractable
for systems of practical interest, because it involves solving a high-dimensional boundary value
problem, and the numerical representation of the shape itself is a non-trivial question. To
circumvent these difficulties, an alternative approach relies on choosing a limiting regime,
and finding asymptotically optimal shapes within a low-dimensional parametric family of
shapes. In this work, we perform the mathematical analysis necessary to realize this strategy
in the low-temperature regime β →∞, for a class of parametrizations which allow for explicit
computations.

This problem motivates the study of eigenvalue asymptotics for temperature-dependent
domains, in which the dependence of the shape of the boundary depends on only a handful
of relevant parameters. In fact, numerical experiments, as well as our theoretical results,
suggest that, in the limit β →∞ and at dominant order, the low-lying eigenvalues are rather
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insensitive to the geometry of the domain far away from critical points of V , so that the shape
optimization problem may become tractable in the limit β → ∞. The relevant parameters
should fix the shape of the boundary near critical points of V . This is the framework in which
we work, and which we make precise in Section 2.2.3.

Let us finally mention that the application of shape-differentiation methods and spectral
asymptotics to the state optimization problem is the subject of an upcoming work [51].

Low-temperature spectral asymptotics for metastable stochastic processes. In
the low-temperature limit, methods from semi-classical analysis, potential theory and large
deviations have been successfully leveraged in previous works to address the problem of finding
quantitative spectral estimates for the dynamics (2.1) as well as the associated Dirichlet
eigenvalue problem on a fixed domain Ω, see for instance [157, 61, 159, 225, 223, 100, 209, 224].
In particular, many efforts have been dedicated to rigorously derive precise asymptotics for
the principal eigenvalue:

λ1,β(Ω) β→∞∼ C(Ω, β) e−βE(Ω),

where E(Ω) is analogous to the activation energy in the Arrhenius law, and C(Ω, β) is a
pre-exponential factor whose expression generally depends on both the temperature and the
domain, but which can, under various sets of assumptions, be computed, at least to first order
in β. Such results are known as Eyring–Kramers formulæ, following first proposals concerning
the behavior of reaction rates [122] guided by chemical intuition, and early computations [198]
supported by physical modeling. Eyring–Kramers type results have, since the early 2000s, been
rigorously proven and generalized in the mathematical community, using tools from dynamical
systems, quantum theory, and stochastic processes. We refer to [33] for an overview.

The link with the classical Eyring–Kramers formula, which concerns the closely related
problem of computing asymptotics for the exit rate Ex[τΩ]−1 for some deterministic initial
condition x ∈ Ω, requires some discussions. It is justified by the interpretation of 1/λ1,β(Ω) as a
metastable exit time, i.e. 1/λ1,β(Ω) =

∫
Ω Ex[τΩ]dν (see Proposition 2.2 below). The connection

can be made fully rigorous by exploiting exponential leveling results, see for instance [252].
In the context of deterministic initial conditions, let us mention that tools from the theory
of Freidlin and Wentzell (see [132]) relying on large deviations are capable of identifying the
activation energy E(Ω) under very general conditions, including non-reversible diffusions,
and these techniques have also been recently extended to a class of non-Markovian processes
(so-called self-interacting diffusions, see [5]).

Let us stress that our results are limited to the setting of the overdamped Langevin
dynamics (2.1), but various extensions to other dynamics would be of practical interest but are
not addressed in this work. For instance, extending the computation of quantitative spectral
asymptotics with absorbing boundaries to the case of the underdamped Langevin dynamics
(see [166, 167, 168, 55] for the case without boundary), or treating the case of non-reversible
diffusions with non-degenerate noise, as in [57, 205, 208, 212].

Because of the fact that energetic barriers contribute exponentially to the slowest timescales
in the small-noise limit β → ∞, the literature has focused on the case where metastability
occurs in the presence of energetic barriers, and this is also the case for this work. However,
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entropic barriers are often relevant to applications, most notably in the context of cellular
biology, and recent works have started to tackle rigorously spectral asymptotics for the so-called
narrow escape problem, for systems in which the asymptotic parameter is not the temperature
but instead the size of a vanishing exit region for a Brownian motion in a confining spatial
domain (which corresponds to a purely entropic trapping mechanism). For rigorous results in
this direction, we cite [124] where coarse asymptotics of the spectrum of the Laplacian with
mixed Dirichlet–Neumann boundary conditions are given in the limit of a vanishing absorbing
region, as well [9, 227] where finer asymptotics of low-lying eigenvalues and normal derivatives
of the associated eigenmodes are derived, in a model two-dimensional situation.

We finally mention that the previous works [225, 100] have applied semiclassical techniques
to the Witten Laplacian, motivated by the numerical analysis of Arthur Voter’s accelerated
dynamics methods, respectively Hyperdynamics and Temperature Accelerated Dynamics.
In this work, we pursue this path, deriving useful results to analyze the third and last of
the accelerated dynamics methods of Voter, namely the Parallel Replica method, in the
low-temperature regime.

Contributions and outline. The purpose of this work is to extend previous results on
low-temperature spectral asymptotics for the dynamics (2.1) in the framework of temperature-
dependent Dirichlet boundary conditions. We develop a set of geometric assumptions on
these temperature-dependent boundaries which ensure that these asymptotics can be easily
computed. This allows to asymptotically optimize various functionals of the spectrum with
respect to the shape of the boundary, within a particular class of domains. We then identify
the first-order behavior of the spectrum (Theorem 2.16), extending to β-dependent Dirichlet
boundary conditions the so-called harmonic limit from the semi-classical analysis of the Witten
Laplacian. We finally generalize the Eyring–Kramers formula (Theorem 2.17) to the case of
temperature-dependent boundaries and a single-well domain, and obtain an explicit expression
for the prefactor.

This work is organized as follows. In Section 2.2, we introduce the necessary notation and
present our geometric framework. In Section 2.3, we state and discuss our main results. In
Section 2.4, we construct the harmonic approximation and prove the first spectral asymptotics.
We finally prove in Section 2.5 the modified Eyring–Kramers formula.

2.2 Setting and notation

In this section, we introduce various notation (see Section 2.2.1), define the QSD in Section 2.2.2,
and present in 2.2.3 the geometric framework which will be used throughout this work. In
Section 2.2.4, we motivate these assumptions, discuss their genericity and compare them with
previous related works.
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2.2.1 Notation

We introduce various notation and classical properties which will be used throughout this
work.

Temperature-dependent domains. The basic setting we work in, and the main novelty
compared to previous related works, is the presence of a temperature-dependent boundary. To
this end, we introduce a family of domains (Ωβ)β>0 which will be considered throughout this
work, and which we will always assume to be smooth, open and bounded. In fact, we make
the following stronger assumption.

Assumption 2.1. For all β > 0, the domain Ωβ is a smooth open set, and there exists a
compact set K ⊂ Rd such that

∀β > 0, Ωβ ⊂ K. (H0)

We denote by σΩβ
the signed Euclidean distance to the boundary of Ωβ:

σΩβ
(x) =

 d(x, ∂Ωβ) for x ∈ Ωβ,

−d(x, ∂Ωβ) for x ̸∈ Ωβ.
(2.4)

While the opposite sign is sometimes preferred in the definition of the signed distance, our
choice of convention is motivated by the identities A ∩B = (σA ∧ σB)−1(R∗

+),
A ∪B = (σA ∨ σB)−1(R∗

+) for two open sets A,B ⊂ Rd. We denote the unit outward normal
at a point x ∈ ∂Ωβ by nΩβ

(x) = −∇σΩβ
(x).

Various other assumptions which will enter in the statement of our results are given in
Section 2.2.3.

Critical points of the potential. We assume throughout this work that the potential V is
a smooth Morse function over Rd, meaning that at each point z such that ∇V (z) = 0, the
Hessian ∇2V (z) is non-degenerate. This condition implies in particular that critical points
of V are isolated, and are therefore finitely many inside K. We also assume that V is globally
bounded from below. We recall that the index of a critical point z ∈ Rd for V is the number
of negative eigenvalues of ∇2V (z):

Ind(z) = #
[
Spec(∇2V (z)) ∩ (−∞, 0)

]
.

For 0 ⩽ k ⩽ d, denote by Nk the number of critical points of index k located in K:

Nk = # {z ∈ K |∇V (z) = 0, Ind(z) = k} , N :=
d∑

k=0
Nk.

Thus, V has N critical points in K, and, for instance, N0 local minima. Finally, we fix an
enumeration (zi)0⩽i<N of the critical points of V in K, chosen so that (with the convention N0 +
· · ·+Nk−1 = 0 for k = 0):

{zi |N0 + · · ·+Nk−1 ⩽ i < N0 + · · ·+Nk} = {z ∈ K |∇V (z) = 0, Ind(z) = k} .
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Such a finite enumeration is guaranteed to exist, owing to the Morse property of V and the
compactness of K. In particular, the local minima of V in K are enumerated as z0, . . . , zN0−1.

We also fix an eigendecomposition of the Hessian ∇2V at each critical point zi, letting

Spec(∇2V (zi)) =
{
ν

(i)
1 , ν

(i)
2 , · · · , ν(i)

d

}
(2.5)

denote the spectrum of ∇2V at zi, with an associated orthonormal eigenbasis:

U (i) =
(
v

(i)
1 · · · v

(i)
d

)
∈ Rd×d, diag(ν(i)

1 , · · · , ν(i)
d ) = U (i)⊺∇2V (zi)U (i). (2.6)

Since V has the Morse property, ν(i)
j ̸= 0 for all 1 ⩽ j ⩽ d and 0 ⩽ i < N . Let us also assume

that, in the case where Ind(zi) = 1, ν(i)
1 < 0 is the unique negative eigenvalue of ∇2V (zi).

The orientation convention for the first eigenvector v(i)
1 is either fixed by the geometry of the

domains Ωβ (see Assumption (H2) below), or else plays no role in the analysis.

The eigenrotation induces a unitary transformation in L2, via:(
U (i)f

)
(x) = f

(
U (i)⊺x

)
,
(
U (i)∗f

)
(x) = f

(
U (i)x

)
. (2.7)

We will make repeated use of the following half-spaces associated with each critical point,
defined for θ ∈ (−∞,+∞] by:

E(i)(θ) = U (i)
[
(−∞, θ)× Rd−1

]
. (2.8)

Of course, one simply has E(i)(+∞) = Rd.

For notational convenience, we also introduce the following local coordinates, adapted to
the quadratic behavior of V near zi:

y(i)(x) = U (i)⊺(x− zi) =
(
y

(i)
1 (x), y(i)′(x)

)
∈ R× Rd−1. (2.9)

Note that y(i) is a linear isometry, with ∇y(i)
j = v

(i)
j and ∇2y(i) = 0.

Gradient flow and invariant manifolds. We denote by (ϕt)t∈R the flow associated with
the dynamics X ′(t) = −∇V (X(t)), which can be seen as the formal limit of the process (2.1)
as β → +∞. For 0 ⩽ i < N , we introduce the following sets:

W±(zi) =
{
x ∈ Rd

∣∣∣∣ lim
t→±∞

ϕt(x) = zi

}
. (2.10)

The stable manifold theorem (see [317, Section 9.2]) asserts that these sets are smooth
submanifolds with boundary. The manifold W+(zi) is called the stable manifold and W−(zi)
is called the unstable manifold. Moreover their tangent spaces at zi are given by

Tzi(W±) = Vect
{
v

(i)
j , 1 ⩽ j ⩽ d : ±ν(i)

j > 0
}
,

so that W+(zi) and W−(zi) are of dimensions d− Ind(zi) and Ind(zi), respectively.
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For 0 ⩽ i < N0, we alternatively denote

A(zi) :=W+(zi), (2.11)

which we refer to as the basin of attraction for the critical point zi.

Weighted Sobolev spaces. Let us introduce the following Hilbert spaces, defined for an
open set Ω ⊂ Rd by

L2
β(Ωβ) =

{
u measurable

∣∣∣∣∣ ∥u∥2L2
β

(Ωβ) :=
∫

Ωβ

u2 e−βV < +∞
}
,

Hk
β(Ωβ) =

{
u ∈ L2

β(Ωβ)
∣∣∣ ∂αu ∈ L2

β(Ωβ), ∀ |α| ⩽ k
}
,

where ∂α = ∂α1
x1 . . . ∂

αd
xd

denotes the weak differentiation operator associated to a multi-
index α = (α1, . . . , αd) ∈ Rd. For the flat case (i.e. when V ≡ 0), we simply write L2(Ωβ)
and Hk(Ωβ). As in the flat case, we let Hk

0,β(Ωβ) denote the Hk
β (Ωβ)-norm closure of C∞

c (Ωβ).

Dirichlet realizations of the generator. The infinitesimal generator Lβ of the evolution
semigroup associated with the dynamics (2.1) is formally defined by:

∀u ∈ C∞
c (Rd), −Lβu = − 1

β
∆u+∇V · ∇u. (2.12)

A direct computation shows that −Lβ is a symmetric positive operator on L2
β(Rd), with

associated quadratic form:

⟨−Lβu, u⟩L2
β

(Rd) = 1
β

∫
Rd
|∇u|2 e−βV . (2.13)

This identity is the analytic formulation of the reversibility of the dynamics (2.1) with respect
to µ.

For bounded open domains Ωβ ⊂ Rd with Lipschitz boundary, we will still denote by Lβ
the Dirichlet realization of the generator, defined as the Friedrichs extension (see [276]) of the
quadratic form (2.13) on C∞

c (Ωβ). This is a self-adjoint operator, with domain

D(Lβ) = H1
0,β(Ωβ) ∩H2

β(Ωβ) ⊂ L2
β(Ωβ).

We will also consider the Dirichlet realization of the differential operator Lβ on other domains
than Ωβ, this will be made precise when needed.

The compact injection H1
0,β(Ωβ)→ L2

β(Ωβ) (which follows immediately from the Rellich–
Kondrachov theorem since V is smooth and Ωβ is smooth and bounded) implies that −Lβ
seen as an operator on L2

β(Ωβ) has a compact resolvent, so that its spectrum consists of
non-negative, isolated eigenvalues of finite multiplicity tending to +∞:

0 ⩽ λ1,β ⩽ λ2,β ⩽ · · · ⩽ λN,β
N→∞−−−−→ +∞,
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where for k ⩾ 1, λk,β denotes the k-th smallest eigenvalue counted with multiplicity. Further-
more, standard arguments (see [206]) show that the first eigenvalue is strictly positive and
non-degenerate, so that 0 < λ1,β < λ2,β, with an associated eigenmode u1,β > 0 on Ωβ.

We also consider eigenmodes uk,β associated with λk,β with, for any integers i, j ⩾ 1, the
normalization convention: ∫

Ωβ

ui,βuj,βe−βV = δij .

When considering the Dirichlet realization of Lβ on a domain A ⊂ Rd other than Ωβ, we
will explicitly denote the dependence of the eigenelements on A as follows: for all k, ℓ ⩾ 1,

−Lβuk,β(A) = λk,β(A)uk,β(A),
∫
A
uk,β(A)uℓ,β(A) e−βV = δkℓ.

Witten Laplacian. It it sometimes convenient to change representations to a flat L2

setting, using the unitary map u 7→ e− βV
2 u from L2

β(Ωβ) to L2(Ωβ). The conjugated operator
associated to −Lβ is proportional to the celebrated Witten Laplacian [340] acting on 0-forms
(or functions):

Hβ = −βe− βV
2 Lβe

βV
2 · = −∆ + Uβ, Uβ = β2

4 |∇V |
2 − β

2 ∆V, (2.14)

with domain D(Hβ) = H1
0 (Ωβ) ∩H2(Ωβ) ⊂ L2(Ωβ). The operator β−2Hβ closely resembles a

Schrödinger operator (with the semiclassical parameter h proportional to 1/β), and a potential
perturbed by an order h term. For convenience, we give the correspondence with the notation
commonly used in the semiclassical literature for the Witten Laplacian, following [157]:

β−2Hβ = ∆(0)
f,h := −h2∆ + |∇f |2 − h∆f, with h := 1/β and f := V/2.

We finally denote by

Qβ(u) = ⟨Hβu, u⟩L2(Ωβ) = ∥∇u∥2L2(Ωβ) + ⟨Uβu, u⟩L2(Ωβ) ,

the quadratic form associated with Hβ, with form domain D(Qβ) = H1
0 (Ωβ).

2.2.2 Quasi-stationary distributions and the Dirichlet spectrum

Given a subdomain Ωβ ⊂ Rd, define the first exit time out of Ωβ by

τΩβ
= inf

{
t ∈ R+

∣∣∣Xβ
t ̸∈ Ωβ

}
.

A QSD in Ωβ is a probability measure ν satisfying:

∀ t > 0, ∀A ∈ B (Ωβ) , Pν
(
Xβ
t ∈ A

∣∣∣ τΩβ
> t
)

= ν(A).

In other words, the QSD is stationary for the process Xβ
t conditioned on not being absorbed

at the boundary of Ωβ up to the time t. Under generic assumptions, ν may also be defined by
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the Yaglom limit:

∀x0 ∈ Ωβ, ν(A) = lim
t→∞

Px0
(
Xβ
t ∈ A

∣∣∣ τΩβ
> t
)
.

Quasi-stationary distributions were initially introduced to study long-lived phases of populations
in the pre-extinction time regime. We refer to [245] for a review and examples on this topic,
as well as [84] for general background material on QSDs.

It happens that the QSD inside a smooth bounded domain Ωβ is directly related to the
spectrum of the Dirichlet realization of the infinitesimal generator (2.12). More precisely, the
following result, adapted from [206], holds.

Proposition 2.2 ([206]). Let (λ1,β, u1,β) be the principal Dirichlet eigenpair of −Lβ in Ωβ

(which is unique up to the sign of u1,β), i.e.

λ1,β = inf
u∈H1

0,β
(Ωβ)

⟨−Lβu, u⟩L2
β

(Ωβ)

∥u∥2L2
β

(Ωβ)
= 1
β

∫
Ωβ

|∇u1,β|2 e−βV .

Then the probability measure

A 7→ ν(A) =

∫
A
u1,β e−βV∫

Ωβ

u1,β e−βV

is the unique QSD for the process (2.1) on Ωβ. Moreover, the exit time τΩβ
is exponentially

distributed with rate λ1,β when the initial conditions follow ν, and is independent from the exit
point:

∀φ ∈ L∞(∂Ωβ), Eν
[
φ(Xβ

τΩβ
)1τΩβ

>t

]
= e−λ1,βtEν

[
φ(Xβ

τΩβ
)
]
.

The Dirichlet spectrum also provides an upper bound on the relaxation timescale to the
QSD. Let us define the total variation distance between signed measures ν, ν ′ ∈M(Ωβ) by

∥ν − ν ′∥TV = sup
A∈B(Ωβ)

|ν(A)− ν ′(A)|.

We have the following result, adapted again from [206].

Proposition 2.3 ([206]). Assume that the initial law µ0 := Law(Xβ
0 ) has an L2

β(Ωβ) Radon–
Nikodym derivative with respect to e−βV (x) dx. Then there exist C1, C2 > 0 such that, for
all t > 0, ∥∥∥Lawµ0

[
Xβ
t

∣∣∣ τΩβ
> t
]
− ν

∥∥∥
TV

⩽ C1e−(λ2,β−λ1,β)t, (2.15)∥∥∥∥Lawµ0

[(
Xβ
τΩβ

, τΩβ
− t
) ∣∣∣∣ τΩβ

> t

]
− Lawν

[(
Xβ
τΩβ

, τΩβ

)]∥∥∥∥
TV

⩽ C2e−(λ2,β−λ1,β)t. (2.16)

Equation (2.15) states that the time-marginal of the process Xβ
t , conditioned on remaining in

the domain during a positive time t converges to the QSD exponentially fast, and Equation (2.16)
states an analogous result for the law of the exit event. The requirement on the initial condition
can be considerably weakened by using estimates on the heat semigroup for the diffusion
process (2.1), see for example [305].
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2.2.3 Geometric assumptions

We now discuss the geometric setting and basic assumptions which will be used in the remainder
of this work. When considering a Gaussian approximation of the Gibbs measure (2.2) around
a minimum of V , one finds that the covariance matrix scales as β−1 when β → +∞. Thus, it
appears that the relevant scale to analyze the localization of low-temperature distributions
is β− 1

2 . This heuristic is justified by analysis, and motivates the scaling with respect to β in
the following geometric hypothesis.

Assumption 2.4. The following limit is well-defined in R ∪ {+∞} for each 0 ⩽ i < N :

α(i) = lim
β→∞

√
βσΩβ

(zi) ∈ (−∞,+∞]. (H1)

Let 0 ⩽ i < N . We distinguish two regimes depending on the nature of α(i):

◦ If α(i) = +∞, we say that zi is far from the boundary.

◦ If α(i) is finite, we say that zi is close to the boundary.

Remark 2.5. Note that (H1), excludes the case α(i) = −∞, so that critical points which are
far from the boundary but outside the domain do not appear. This is merely for convenience,
since the forthcoming analysis would be unaffected by the presence of such points. Notice in
particular that if z is a critical point of V such that d(z,Ωβ) > c for some c > 0 and all β
sufficiently large, one may ignore it by considering K \B(z, c) instead of K.

If a critical point zi ∈ Ωβ is far from the boundary, Ωβ contains a ball centered around zi

of radius much larger than β− 1
2 , namely of radius

σΩβ
(zi)

2 . When zi is close to the boundary,
this is not the case. In order to make quantitative statements on the spectrum, we need to
constrain the local geometry of ∂Ωβ around zi.

Assumption 2.6. There exist functions δ, γ : R∗
+ → R+ such that the following holds for β

large enough and each 0 ⩽ i < N :
√
βδ(β) β→∞−−−→ +∞,√
βγ(β) β→∞−−−→ 0,
O−
i (β) ⊆ B(zi, δ(β)) ∩ Ωβ ⊆ O+

i (β),

(H2)

where we denote
O±
i (β) = zi +

[
B(0, δ(β)) ∩ E(i)

(
α(i)
√
β
± γ(β)

)]
, (2.17)

recalling the definition (2.8) of the half-space.

In the case α(i) = +∞, one has O±
i (β) = B(zi, δ(β)), and so Assumption (H2) only

imposes B(zi, δ(β)) ⊂ Ωβ . We schematically represent in Figure 2.1 the local geometry of ∂Ωβ

under Assumption (H2), in a case where zi is close to and inside the boundary.

Geometrically, the sets (2.17) correspond to hyperspherical caps centered around zi and cut
in the eigendirection v(i)

1 of ∇2V (zi). Thus, the condition (H2) fixes the orientation convention
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for v(i)
1 in the case where zi is close to the boundary, namely that v(i)

1 always points outwards
from ∂Ωβ (including when zi is outside the domain). The content of Assumption (H2) is
that the boundary can be approximated by a hyperplane normal to v

(i)
1 , up to negligible

perturbations relative to β− 1
2 , in a local neighborhood of size δ(β) around zi. Note that in the

case d = 1, Assumption (H2) is a direct consequence of Assumption (H1). Moreover, from
the boundedness (H0), O−

i (β) ⊂ K and δ(β) is necessarily uniformly bounded with respect
to β under Assumption (H2).

Remark 2.7. We will sometimes need δ(β) to be sufficiently small so that various local ap-
proximations are sufficiently precise. This desideratum is not restrictive, as Assumption (H2)
remains valid upon reducing δ or augmenting γ by a constant multiplicative factor. Conse-
quently, we will often assume at no cost to generality that δ is sufficiently small or that γ is
sufficiently large for the purposes of the analysis.

Let us also note that since K contains only finitely many critical points, (H2) needs only to
be verified locally around each critical point in order to hold globally.

The second geometric assumption we make is more technical in nature and relates to the
scaling of the quantity δ constraining the local geometry of the domains in (2.17). More
precisely, we will sometimes need

√
βδ(β) to grow sufficiently fast for the neighborhoods (2.17)

to contain the bulk of the support for various quasimodes.

The rather mild growth condition on
√
βδ(β) we will require is the following.

Assumption 2.8. The following limit holds for any 0 ⩽ i < N :

lim
β→∞

δ(β)
√

β

log β = +∞. (H3)

We stress that (H3) forces in particular critical points which are far from ∂Ωβ to be sufficiently
far relatively to 1/

√
β, namely further than

√
log β/

√
β. Slower rates of divergence lie outside

the scope of our analysis. We summarize relevant length scales of Assumptions (H2), (H3) by
the following chain of scaling inequalities:

γ(β)≪ β− 1
2 ≪

√
log β
β
≪ δ(β).

Assumptions (H0), (H1), (H2) and (H3) are assumed to hold for the remainder of this work.

Additional assumptions in Theorem 2.17. For the purpose of deriving asymptotics for
the metastable exit time λ−1

1,β, we will restrict our setting to the case of domains containing
essentially a unique local minimum z0 far from the boundary (see (EK1) below), which
moreover contains sufficiently large sublevel sets of V (see (EK3) below). Let us make this
precise. Formally, we first assume the following.

Assumption 2.9. The point z0 is the only local minimum of V in K which is far from the
boundary:

N0 ⩾ 1, α(0) = +∞, ∀ 1 ⩽ i < N0, α(i) < +∞. (EK1)



Chapter 2. Quantitative spectral asymptotics for reversible diffusions in
temperature-dependent domains. 93

∂Ωβ

zi

2γ(β)

β− 1
2α(i)v

(i)
1

δ(β)

Figure 2.1: Local geometry of Ωβ in the neighborhood of a critical point zi close to the boundary
and inside the domain Ωβ . The relevant length scales are γ(β)≪ β− 1

2 ≪ δ(β).

Note that the basin of attraction A(z0) (see Equation (2.11)) is a natural candidate for the
metastable state associated with the potential well around z0. It is also a convenient implicit
definition from a numerical perspective, since determining whether x belongs to A(z0) is as
simple as estimating the gradient flow ϕt(x) for a sufficiently long time. The definition Ωβ =
A(z0) is actually commonly used in accelerated MD, see [334]. However, in the context of the
ParRep algorithm (see [334]), this definition is not expected to be optimal, and one of the
motivations of this work is to rigorously show this and derive improved definitions for the
metastable well associated with an energy minimum.

Our analysis almost applies to this special case, with the slight caveat that A(z0) is typically
not a smooth domain, but is instead piecewise smooth (see the proof of Lemma 2.28 below).
However, the points at which the boundary ∂A(z0) fails to be smooth are critical points
of V of index greater than 1, which are typically too high in energy to be visited by the
dynamics (2.1) in any reasonable amount of time. Thus, one can often circumvent this technical
obstacle by considering a local regularization of the boundary excluding higher index saddle
points from Ω. In our geometric setting, this situation corresponds to the following parameter
values: N0 = 1, N = N0 +N1, α(0) = +∞ and α(i) = 0 for 1 ⩽ i < N .

It is shown in [100, 224] that when the domain coincides with the basin A(z0) (up to a
local regularization), the exit distribution starting from the QSD concentrates on the index 1
saddle points of lowest energy separating A(z0) from the basin of attraction of another local
minimum for V . These so-called separating saddle points will also play a distinguished role in
our analysis, as in [160, 157, 61, 209, 224].

Indeed, we relate the asymptotic behavior of the eigenvalues with local perturbations of the
domain near critical points, as formalized by the geometric assumptions (H1) and (H2). In
this context, the asymptotic behavior of the smallest eigenvalue will be especially sensitive to
the shape of the boundary near separating critical points with the lowest energy, which turn
out to be index 1 saddle points.

Let M(V ) denote the set of local minima of V over Rd, which is discrete since V is Morse.
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It is natural to introduce the following quantity

V ∗ = inf
z∈S(z0)

V (z), S(z0) = ∂A(z0) ∩

 ⋃
m∈M(V )\{z0}

∂A(m)

 , (2.18)

so that V ∗−V (z0) gives the height of the energy barrier separating z0 from some other basin of
attraction for the steepest descent dynamics. The set S(z0) loosely coincides with ∂A(z0), up to
a submanifold consisting of the union of the stable manifolds for critical points separating A(z0)
from itself. We refer to [246, Theorem B.13] or the proof of Lemma 2.28 below for more
precision on this point. In particular, it holds that

S(z0) = ∂A(z0). (2.19)

We refer to Figure 2.2 for a schematic representation of the set S(z0) in a two-dimensional
setting. We will make the following boundedness assumption.

Assumption 2.10.
The set A(z0) ∩ {V < V ∗} is bounded. (EK2)

In the case V ∗ < +∞ (which is of course the case of interest), a natural sufficient condition
to ensure (EK2) is to assume growth conditions on V at infinity, which are standard in the
theoretical study of the stochastic process (2.1).

In turn, by the regularity of V , (EK2) implies that V ∗ < +∞, and thus the set

Argmin
z∈S(z0)

V (z)

is non-empty. In fact, by virtue of Lemma 2.28 below and the Morse property satisfied by V ,
the infimum in (2.18) is attained at index 1 saddle points of V . Let us denote by Imin the
indices associated with these low-energy saddle points, so that we may also write

Imin = Argmin
1⩽i<N1
zi∈S(z0)

V (zi), V ∗ = min
1⩽i<N1
zi∈S(z0)

V (zi). (2.20)

Notice that, for i ∈ Imin such that α(i) = +∞, the orientation convention for v(i)
1 has not

yet been fixed. However, since in this case zi ∈ ∂A(z0) ∩ ∂
[
Rd \ A(z0)

]
, the stable manifold

theorem implies that the outward normal nA(z0)(zi) to ∂A(z0) is well-defined at zi, and is
furthermore a unit eigenvector of ∇2V (zi) for the negative eigenvalue ν

(i)
1 . We therefore

convene that in this case v(i)
1 = nA(z0)(zi).

We require that the domains Ωβ contain a small energetic neighborhood of the principal
energy well A(z0) ∩ {V < V ∗}.

Assumption 2.11. There exists CV , β0 > 0 such that, for all β > β0,[
A(z0) ∩ {V < V ∗ + CV δ(β)2}

]
\
⋃

i∈Imin

B(zi, δ(β)) ⊂ Ωβ. (EK3)
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Assumption (EK3) serves as a counterpart to (H2), mildly constraining the geometry
of ∂Ωβ away from the low-energy saddle points. We schematize its meaning in Figure 2.3.

For technical reasons, we finally require that the quantity δ(β) appearing in Assumption (H2)
to be sufficiently small asymptotically, namely smaller than a positive constant ε0(V, z0) > 0
depending only on V and z0, whose expression is given in the proof of Proposition 2.30 (see
Section 2.5.1 below).

Assumption 2.12. There exists β > β0 such that for all β > β0,

δ(β) < ε0(V, z0), (EK4)

where ε0(V, z0) is introduced in Proposition 2.30 below. Additionally, for each 0 ⩽ i < N , zi is
the unique critical point of V in B(zi, 2ε0(V, z0)).

The role of this hypothesis is to ensure that V is sufficiently well approximated by its
second-order expansion on the δ(β) scale around each (zi)i∈Imin . Since (H2) only constrains
the geometry on the scale δ(β), Assumption (EK4) is rather non-restrictive.

Remark 2.13. Let us note that, together with the regularity of Ωβ , Assumption (EK3) may
force critical points which are low in energy to be far from the boundary, i.e. α(i) = +∞. This
may occur when the set

X (z0) = { 1 ⩽ i < N | zi ∈ ∂A(z0) \ S(z0) : V (zi) < V ∗} (2.21)

is non-empty. Indeed, recall that ∂A(z0) has Lebesgue measure 0 (see the proof of Lemma 2.29
below). It follows that for i ∈ X (z0), there exists h > 0 such that almost all points in B(zi, h)
are contained in A(z0). If not, zi ∈ A(m) for some local minimum m ̸= z0 (since V is bounded
from below), which is forbidden by the definitions of X (z0) and S(z0). By continuity, we may
assume that B(zi, h) ⊂ {V < V ∗} and h < ε0(V, z0), so that, for sufficiently large β, almost
all points in B(zi, h) are contained in Ωβ by Assumption (EK3) (because h < ε0(V, z0) =⇒
B(zi, h) ∩

⋃
i∈Imin B(zi, δ(β)) = ∅ by Assumption (EK4)). Thus zi ∈ Ωβ, but since Ωβ is a

smooth manifold with boundary, it must in fact hold that B(zi, h) ⊂ Ωβ. This obviously
implies α(i) = +∞.

Note that, since minima lie in the interior of their basin of attraction, i ⩾ N0 for any i ∈ X (z0),
so that Assumption (EK3) can never lead to a situation in which Assumption (EK1) cannot
be verified. In Figure 2.2, we depict a situation in which X (z0) ̸= ∅.

2.2.4 Genericity of the assumptions and comparison with previous work

Let us briefly discuss how the assumptions listed in Sections 2.2.1 to 2.2.3 relate to previous
works on the spectral asymptotics of the Witten Laplacian. We stress that our choice of
geometric setting is heavily biased towards the optimization problem for (2.3) mentioned in
the introduction. A such, it would be possible to obtain Eyring–Kramers-type asymptotics in
more general settings, but for which the separation of timescales (2.3) would be asymptotically
smaller than those domains to which we restrict ourselves, and so we filter out many such
cases through our choice of geometric framework.
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z0
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z3

z4
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z6

z7

z8 z9

z10

Figure 2.2: Depiction of a basin A(z0) in dimension d = 2. In solid lines, the set S(z0) defined
in (2.18). The dotted line is the set ∂A(z0) \ S(z0). The dashed line is the level set {V = V ∗}. There
are eleven critical points including the minimum z0, five index 1 saddle points z1, z2, z3, z4 and z5.
The point z1 is a non-separating saddle point. The remaining points are index-2 saddle points (local
maxima). Here Imin = {2, 3, 4}, and X (z0) = {1}. Under (EK3), it holds α(1) = +∞. Note however
that one could even change the sets K and Ωβ to have z6 ̸∈ K and hence not be considered as a critical
point.

Euclidean setting. First, we stress that our results are for the time being restricted to
the case of parameter dependent subsets of the Euclidean space Rd, whereas many works
from the semiclassical literature [157, 207, 225, 209, 100] consider the more general setting of
Riemannian manifolds, with or without boundaries. The distinction is not entirely anecdotal,
since the presence of a metric introduces another technical difficulty, which is typically taken
care of by a suitable choice of local coordinates.

Since the natural counterpart of the main geometric assumption (H2) would most likely
involve expressing the asymptotic shape of the boundary in such a system of local coordinates,
this would lead to conditions which would be difficult to verify in practice. We avoid this
difficulty by considering for now the Euclidean case. However, extending the results to the
genuine Riemannian case would be of practical interest, since many atomistic trajectories
evolve on manifolds (a minima, flat tori), and would also allow to analyze the case of effective
metastable dynamics in free-energy wells, which involve multiplicative noise in the associated
diffusion process, see for instance the discussion in [346, Section 2.3].

On the choice of the local geometry. Assumption (H2) is of course restrictive, since it
states that the shape of the boundary may be roughly parametrized in the local neighborhood
of a critical point zi close to the boundary by a single scalar parameter α(i). If zi is far from the
boundary, there is no particular assumption on the local shape of the boundary, except that it
must be sufficiently far from zi, according to (H3). However, all works on spectral asymptotics
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z∗

δ(β)
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1
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1
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(4)
1

Figure 2.3: Illustration of the hypothesis (EK3) around the basin depicted in Figure 2.2. In red,
the boundary of a domain satisfying the geometric constraint (H2) (at a fixed value of β), but
violating (EK3) is depicted. The boundary crosses the level set {V = V ∗}, and z∗ is therefore a
low-energy generalized saddle point (see Section 2.2.4 below) for this domain. The critical points z8
and z10 are assumed not to be in the englobing set K. The points z0, z1, z2 and z4 are far from the
boundary, while the others are close. Note that the orientation convention for v(4)

1 is fixed by the
geometry of A(z0).

of the Witten Laplacian dealing with boundary conditions impose geometric restrictions at
the boundary, either for technical reasons, or for the sake of obtaining analytical formulæ. To
assess the restrictiveness of the condition (H2), and compare it to previous works, it is thus
helpful to consider the standard case Ωβ = Ω for all β > 0, where Ω ⊂ Rd is a fixed smooth,
bounded and open domain. Let zi ∈ Ω be a critical point. We may ignore all critical points
in Rd \ Ω by considering K to be a sufficiently small closed neighborhood of Ω in (H0). We
distinguish two cases.

1. If zi ∈ Ω, then σΩ(zi) > 0 and zi is thus far from the boundary. Then, (H2) and (H3)
hold locally without restriction by setting δ(β) = σΩ(zi)

2 , and γ(β) = 0 for all β > 0.

2. If zi ∈ ∂Ω, then zi is close to the boundary with α(i) = 0. This is the case of critical
points on the boundary analyzed in [209, 224]. In [209], it is assumed that for each
zi ∈ ∂Ω such that Ind(zi) = 1, the outward normal nΩ(zi) is an eigenvector for the unique
negative eigenvalue of HessV (zi). As we show in Lemma 2.14 below, this requirement is
equivalent to (H2) in the case of a fixed domain for the order-one saddle points lying
on the boundary. In [224], for the purpose of obtaining finer estimates on the normal
derivative of low-lying eigenmodes, this condition is replaced with the much stronger
requirement that ∂Ω coincides with the stable manifold W+(zi) in a neighborhood of zi.

Lemma 2.14. Let Ω ⊂ Rd be a smooth open domain, and set Ωβ = Ω for all β > 0.
Then (H0), (H1), (H2) and (H3) hold if and only if Ω is bounded, and for each zi ∈ Ω such
that ∇V (zi) = 0, either zi ∈ Ω or nΩ(zi) = v

(i)
1 .
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Proof. Assume that (H0)–(H3) hold. Then Ω is bounded, according to (H0). We only need
to check the case of a critical point zi ∈ ∂Ω, in which case α(i) = 0. Since Ω is smooth,
nΩ(zi) = −∇σΩ(zi) ̸= 0. Let u ∈ Rd with |u| = 1 and u⊺v

(i)
1 = 0. According to (H2),

for β > β0 such that β− 1
2 < δ(β) for all β > β0, the ball B(zi + β− 1

2u, 2γ(β)) intersects
both O−

i (β) ⊂ Ω and B(zi, δ(β)) \ O+
i (β) ⊂ Ωc. It follows that d(zi + β− 1

2u, ∂Ω) ⩽ 2γ(β),
hence:

|u⊺∇σΩ(zi)| ⩽ lim sup
β→∞

d(zi + β− 1
2u, ∂Ω)

β− 1
2

⩽ lim sup
β→∞

2
√
βγ(β) = 0.

Since u was arbitrary orthogonal to v
(i)
1 , and ∇σΩ(zi) ̸= 0, v(i)

1 is collinear with the unit
outward normal nΩ = −∇σΩ, so that they are in fact equal, according to the orientation
convention imposed by (H2).

For the reverse implication, since Ω is bounded, (H0) holds with K = Ω. For a critical
point zi ∈ Ω, (H1), (H2) hold locally with α(i) = +∞, δ(β) = σΩ(zi)/2 and γ(β) = 0.

If zi ∈ ∂Ω, (H1) holds locally with α(i) = 0, and by hypothesis nΩ(zi) = v
(i)
1 . We once again

rely on the smoothness of ∂Ω to write the Taylor expansion

σΩ(zi + h) = σΩ(zi) +∇σΩ(zi)⊺h+Ri(h) = −h⊺v(i)
1 +Ri(h),

where there exists Ci, h0,i > 0 such that |Ri(h)| ⩽ Ci|h|2 for all |h| < h0,i. Set δ(β) =
βs−

1
2 , γ(β) = βt−1 with 0 < 2s < t < 1

2 . Then δ, γ satisfy the scaling assumptions of (H2)
and (H3). Recalling the definition of the capped balls (2.17), we have σΩ(O−

i ) ⊂ [γ(β) −

Ciδ(β)2,+∞) for β > h
1

s−1/2
0,i , and likewise σΩ(B(zi, δ(i)(β))\O+

i ) ⊂ (−∞,−γ(β)+Ciδ(β)2]. It

is thus clear that the inclusion (H2) holds locally around zi for β > β0,i := max{h
1

s−1/2
0,i , C

1
t−2s

i }.

Since V has finitely many critical points in Ω, the functions δ and γ satisfy by construction
the requirements of Assumption (H2) with β0 := max

0⩽i<N
β0,i.

Lemma 2.14 shows that our setting can be understood as a generalization of that of [209] in
the case of temperature-dependent domains in Euclidean space.

Remark 2.15. In the general case, the geometry of the boundary ∂Ωβ may be quite degenerate
under (H2), even close to critical points, as no particular restrictions on ∂Ωβ are imposed
in the strip O+

i (β) \ O−
i (β), except for its smoothness at each β > 0. In particular, the

curvature at any point in the strip may diverge arbitrarily fast as β →∞, and it may happen
that zi ∈ ∂Ωβ for all β > 0 and some 0 ⩽ i < N , but that nΩβ

(zi) ̸= v
(i)
1 for any β > 0. In

this respect, our analysis goes beyond the standard setting used for example in [209].

On Assumptions (EK1) and (EK3). A phenomenon of interest in the semiclassical
approach to metastability is the interaction between potential wells, see [160, 102, 157, 61,
225, 224]. However, we consider here, as in [100], the case where the unique local minimum
of V in K which is far from the boundary is z0 (we stress however that this minimum need
not be global nor unique on K, provided the other local minima are close to the boundary),
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and thus there is in some sense only one potential well. The motivation for concentrating on
this setting is the conclusion of Theorem 2.17 below, which shows that the modification to the
standard Eyring–Kramers formula arises when low-lying index 1 saddle points are close to the
boundary, which therefore prevents any interaction between energy wells separated by these
critical points.

Besides, from the perspective of the shape optimization problem mentioned in the intro-
duction, the more interesting situation occurs when both the first and second eigenvalues
are sensitive to the position of the boundary. In the context of MD, domains containing
multiple energy minima can be seen as energy superbasins, for which the relaxation timescale
is related to the crossing of energy barriers internal to the domain, and which will therefore
be insensitive to the position of the boundary. We believe however that the analysis can be
extended to handle the case of multiple energy wells, by adapting standard arguments (see for
instance [209]) to our temperature-dependent setting.

In the analysis of the Witten Laplacian with Dirichlet boundary [159, 225, 100, 209], the
interesting phenomenon of so-called generalized saddle points (which are not genuine critical
points) also plays a role. These are local minima z of V |∂Ωβ

for which the normal derivative
of V is positive, i.e. ∇V (z) · nΩβ

(z) > 0. In particular, such points are not critical points
of V , and can be seen informally as index-one saddle points for the extension of V by −∞
outside of Ωβ . The role of Assumption (EK3) is to ensure that generalized saddle points are
sufficiently high in energy so that their contribution to the smallest eigenvalue is negligible,
and that the main contribution comes from intrinsic low-lying saddle points, indexed by Imin.

Since the definition of generalized saddle points depends on the geometry of ∂Ωβ which
varies as β →∞, one way to analyze their contribution would be to place strong geometric
constraints on the domains, using analogs of Assumption (H2) and Proposition 2.36 in the 1/β
scaling around a predetermined limiting geometry. However, we do not pursue this direction.
Besides, the contribution of non-critical generalized saddle points to the pre-exponential factor
is of order

√
β rather than 1 in the case of a usual saddle point (see for example [159]), while

they do not contribute to the harmonic spectrum. From the point of view of maximizing
the separation of timescales (2.3), it is therefore always asymptotically preferable to consider
domains Ωβ which do not contain generalized order 1 saddle points at the energy level V ∗.

2.3 Statement of the main results

We present in this section the main results of this work, giving the leading-order asymp-
totics of the eigenvalues of −Lβ in the small temperature limit. The resulting formulas
are explicit in terms of easily computable functions, and give in particular quantitative es-
timates for crucial timescales related to the dynamics (2.1) conditioned on non-absorption
at the boundary, namely the metastable exit timescale λ1,β(Ωβ)−1, and the local relaxation
timescale (λ2,β(Ωβ)− λ1,β(Ωβ))−1. As noted in the introduction, this is of practical interest
for assessing the efficiency of acceleration methods in MD, such as ParRep [334, 268, 206]
and ParSplice [266], as well as providing quantitative estimates for the decorrelation time. To
estimate λ2,β(Ωβ), we make use of a harmonic approximation result (Theorem 2.16), which
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we state in Section 2.3.1. Under (EK1), the harmonic approximation shows that λ1,β → 0
in the limit β → ∞, but without any estimate on the asymptotic rate of decay. To get
useful estimates of the separation of timescales (2.3), we therefore derive finer asymptotics
for λ1,β(Ωβ), extending the Eyring–Kramers formula (Theorem 2.17). This result is discussed
in Section 2.3.2. In Section 2.3.3, we briefly discuss the main implications of these two results
for the optimization of the efficiency of parallel replica methods from accelerated MD, with
respect to the definitions of the metastable states.

2.3.1 Harmonic approximation of the Dirichlet spectrum

We generalize the harmonic approximation of [303, 195] to the case of a homogeneous Dirichlet
conditions in a temperature-dependent domain, treating the case in which the asymptotic
geometry near critical points is prescribed by the assumptions of Section 2.2.3. More precisely,
we show the following result.

Theorem 2.16. Assume that (H0) (H1), (H2) and (H3) hold. For any k ⩾ 1, the following
limit holds:

lim
β→∞

λk,β = λH
k,α, (2.22)

where
α =

(
α(i)

)
0⩽i<N

(2.23)

where the α(i) are defined in (H1) and λH
k,α is defined in (2.45), while λk,β is the k-th Dirichlet

eigenvalue of the operator (2.12) considered on L2
β(Ωβ).

In the above, λH
k,α denotes the k-th eigenvalue of some operator with a temperature-

independent spectrum defined in (2.44), the so-called harmonic approximation. The vec-
tor α ∈ (−∞,+∞]N = (α(i))0⩽i<N encodes the asymptotic distance to the boundary of
each critical points in the semiclassical scaling, where we recall Assumption (H1). Crucially,
the limiting eigenvalue λH

k,α can be expressed in terms of the eigenvalues of one-dimensional
harmonic oscillators on the real-half line, with homogeneous Dirichlet boundary conditions,
which makes their numerical approximation computationally feasible.

In fact, the proof Theorem 2.16 relies on the estimation of Dirichlet eigenvalues for the
operator Hβ defined in (2.14), which grow linearly in β in the low-temperature limit (as
suggested by the conjugation (2.14)).

The proof of Theorem 2.16, which relies on the construction of approximate eigenvectors for
the Witten Laplacian, or so-called harmonic quasimodes, is given in Section 2.4.

In the case where there is only one minimum far from the boundary (i.e. (EK1) is satisfied),
then λH

2 > 0, and Theorem 2.16 is sufficient to determine the leading-order asymptotic of the
second eigenvalue λ2,β . However, λH

1 = 0, and so a finer analysis is necessary to treat the first
eigenvalue.
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2.3.2 A modified Eyring–Kramers formula

The second main result provides exact asymptotics of the smallest eigenvalue λ1,β , up to a mul-
tiplicative factor converging to 1, under the additional assumptions discussed in Section 2.2.3.

Theorem 2.17. Assume that the hypotheses of Theorem 2.16 hold, as well as (EK1), (EK2), (EK3)
and (EK4). The following estimate holds in the limit β → +∞:

λ1,β = e−β(V ∗−V (z0))

 ∑
i∈Imin

|ν(i)
1 |

2πΦ
(
|ν(i)

1 |
1
2α(i)

)√ det∇2V (z0)
|det∇2V (zi)|

(1 + εi(β))

 , (2.24)

where
Φ(x) = 1√

2π

∫ x

−∞
e− t2

2 dt, Φ(+∞) = 1, (2.25)

and

εi(β) =

O(β−1δ(β)−2), α(i) = +∞,
O(
√
βγ(β) + β−1δ(β)−2 + β− 1

2 ), α(i) < +∞.
(2.26)

According to Proposition 2.2, Theorem 2.17 gives an asymptotic equivalent for the inverse
of the mean exit time of the dynamics (2.1) initially distributed according to the QSD in Ωβ .

Remark 2.18. By restricting oneself to the geometric setting in which the boundary is flat in
a positive neighborhood of each (zi)i∈Imin (that is γ(β) = 0 and δ(β) = η in (H2) for some
small η > 0), one recovers the optimal error terms

εi(β) =

O(β−1), α(i) = +∞
O(β− 1

2 ), α(i) < +∞,

in accordance with the analysis performed in [209]. On the other hand, aiming for maximum
geometric flexibility, Assumptions (H2) and (H3) only imply that, in the limit β →∞,

√
βγ(β) = O(1), β−1δ(β)−2 = O(| log β|−1),

and thus the remainder (2.26) is O(| log β|−1) in the case α(i) = +∞, and not quantitative in
the case α(i) < +∞.

Remark 2.19. The modification with respect to the Eyring–Kramers formula obtained in
the boundaryless case in [160, 61, 157] and in the case with boundary in [159, 209] concerns
the prefactor which depends on the asymptotic distances of the low-lying saddle points to the
boundary. Let us fix a family of domains (Ωt)t∈[−1,1] and i ∈ Imin such that σΩt(zi) = at for
all −1 ⩽ t ⩽ 1, i.e. the boundary crosses zi in such a way that the geometry of the boundary is
prescribed by (H2) (say with α(i)(t) = at

√
β, δ(β) = ε > 0 and γ(β) = 0) for some large β. One

can informally see Theorem 2.17 as an analysis of the transition in the pre-exponential factor
of λ1,β(Ωt) as the saddle point crosses the boundary. Assuming for simplicity that Imin = {i},
writing λ1,β(Ωt) = C(t)e−β(V ∗−V (z0)), and formally substituting α(i)(t) in (2.24), Theorem 2.17
suggests that

C(t) ≈ |ν(i)
1 |

2πΦ
(
|ν(i)

1 |
1
2at
√
β
)√ det ∇2V (z0)
|det ∇2V (zi)|

.
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We stress this is only a formal interpretation, since the remainder term (2.26) depends non-
uniformly on t. The prefactor is halved as t goes from 0 to 1, with a sharp transition occurring

on the scale
(
β|ν(i)

1 |
)− 1

2 . This is in accordance with the probabilistic interpretation of λ1,β,
since half of the trajectories of the dynamics (2.1) which reach zi are expected to return to a
small neighborhood of z0 before transitioning to another potential well. On the other hand,
the asymptotic estimate, in the limit x→ −∞,

Φ(x) = 1 +O(|x|−2)
|x|
√

2π
e− x2

2 (2.27)

suggests again that

λ1,β(Ω−1) ≈ a

√
β

2π |ν
(i)
1 |

3
2

√
det ∇2V (z0)
|det ∇2V (zi)|

e−β(V ∗− 1
2 |ν(i)

1 |a2−V (z0)).

Although the case α(i) = −∞ is not covered in this work (we nevertheless expect that our
setting can be extended to handle this case as well), we note that this heuristic is in agreement
with the results of [159]. Indeed, writing z∗(a) = zi − av(i)

1 , for small a, this approximation
corresponds to

λ1,β(Ω−1) ≈

√
β

2π |∇V (z∗(a))|

√√√√ det ∇2V (z0)
det ∇2

∂Ω−1
V (z∗(a))

e−β(V (z∗(a))−V (z0)),

where ∇2
∂Ω−1

denotes the Hessian on the submanifold ∂Ω−1. This corresponds to the standard
asymptotic behavior in the case where z∗(a) ∈ ∂Ω−1 is a so-called generalized saddle point
(see for instance [159, 209]).

The proof of Theorem 2.17, which relies on the construction of accurate quasimodes for the
principal Dirichlet eigenvector inspired by [209], and a modified Laplace method (Proposi-
tion 2.36), is performed in Section 2.5.

Before proving Theorems 2.16 and 2.17, we briefly and informally discuss some implications
of these results for the problem of maximizing the timescale separation (2.3).

2.3.3 Practical implications of the asymptotic analysis.

In this section, we briefly and informally highlight the key implications of our results for the
selection of metastable states and the estimation of associated timescales in MD simulations.
For this purpose, we assume in this section that Assumptions (H0)–(H3) and (EK1)–(EK4)
are satisfied.

Theorems 2.16 and 2.17 give asymptotic equivalents for the metastable exit rate λ1,β and the
convergence rate λ2,β−λ1,β to the QSD inside Ωβ (also known as the decorrelation rate). In the
small temperature regime, λ1,β converges exponentially fast to zero, and λ2,β is asymptotically
bounded from below. Explicitly, we obtain from the statement of Theorem 2.17 and the proof
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of Theorem 2.16 (see Equation (2.47) in Section 2.4.3 below) that

λ1,β
β→∞∼ e−β(V ∗−V (z0))

 ∑
i∈Imin

|ν(i)
1 |

2πΦ
(
|ν(i)

1 |
1
2α(i)

)√ det∇2V (z0)
|det∇2V (zi)|

 ,
λ2,β

β→∞∼ min

 min
1⩽j⩽d

ν
(0)
j , min

1⩽i<N

∣∣∣ν(i)
1

∣∣∣µi(α(i))− ν
(i)
1
2 +

∑
2⩽j⩽d

∣∣∣ν(i)
j

∣∣∣1
ν

(i)
j <0

 ,
(2.28)

where µi(α(i)) is the principal eigenvalue of the canonical harmonic oscillator −1
2
(
∂2
x − x2)

acting on the spatial domain
(
−∞, α(i)

√
|ν(i)

1 |/2
)

with homogeneous Dirichlet boundary
conditions. Both these quantities can therefore be easily computed in practice, given the
knowledge of all the critical points of V inside K and the eigenvalues of the Hessian ∇2V at
these points. The formulas (2.28) provide insight into how to tune acceleration methods such
as ParRep in the limit of small temperature.

Harmonic approximation of the decorrelation time. A key choice in ParRep-like
algorithms is the selection of a decorrelation time associated to a domain Ωβ (which here we
take for the sake of generality to be temperature-dependent). Heuristically, Proposition 2.2
suggests that a natural decorrelation time is given by ncorr/(λ2,β − λ1,β), where ncorr > 0
is a tolerance hyperparameter of our choosing. This choice is common in materials science,
and λ2,β is then usually further approximated by modelling the basin of attraction A(z0) as a
harmonic potential well, see for instance [268, Section 2.10]. In our setting, this corresponds
to the approximation λ2,β ≈ min

1⩽j⩽d
ν

(0)
j . The formula (2.28) shows that this approximation is

however not valid in general (even in the case Ωβ = A(z0)), but that it is possible to get a
valid approximation by taking into account the eigenvalues of harmonic oscillators at the other
critical points.

Optimization of the asymptotic timescale separation (2.3) with respect to
(
α(i)

)
i∈Imin

.
The formulas (2.28) also provide insight into the problem of maximizing the separation of
timescales (λ2,β − λ1,β)/λ1,β with respect to the shape of the domain. Equivalently, we aim
to maximize λ2,β/λ1,β. As mentioned in the introduction, this optimization problem can be
addressed using numerical methods, at least in cases where low-dimensional representations of
the system can be used, see [51]. Here we focus on the optimization in the semiclassical limit.
Obviously, there is a caveat in the fact that our geometric assumptions (see Section 2.2.3)
restrict the class of domains with respect to which we optimize, and our results only give
asymptotically optimal prescriptions in the limit β →∞ for the choice of (α(i))0⩽i<N . We can
nevertheless make some observations.

Note firstly that the ratio λ2,β/λ1,β diverges at an exponential rate which is independent of
the parameter α in the limit β →∞. However, the prefactor e−β(V ∗−V (z0)λ2,β/λ1,β converges
to a finite limit, which is a function of α, and thus it is in fact this quantity that we wish
to maximize. Second, the parameters

(
α(i)

)
i∈{0}∪X (z0)

are set to +∞ by our geometric
assumptions, where we recall the definition (2.21) of the set X (z0). Next, each critical point zi
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with 1 ⩽ i < N contributes a lowest eigenvalue

λi(α(i)) :=
∣∣∣ν(i)

1

∣∣∣µi(α(i))− ν
(i)
1
2 +

∑
2⩽j⩽d

∣∣∣ν(i)
j

∣∣∣1
ν

(i)
j <0

to the harmonic spectrum. These last two facts imply that there is an upper bound on the
asymptotics of λ2,β, with respect to (α(i))i∈Imin , namely

ℓ(z0) = min
{

min
1⩽j⩽d

ν
(0)
j , min

i∈X (z0)
λi(+∞)

}

= min

 min
1⩽j⩽d

ν
(0)
j , min

i∈X (z0)

∑
1⩽j⩽d

∣∣∣ν(i)
j

∣∣∣1
ν

(i)
j <0

 > 0.

In many cases, the set X (z0) is empty, and so ℓ(z0) is in this case simply given by the
smallest eigenvalue of the Hessian ∇2V (z0) at the minimum. If, for i ∈ Imin, it holds
that λi(+∞) = |v(i)

1 | ⩾ ℓ(z0) (i.e. when the unstable mode at the saddle point is sharp
enough), then the choice α(i) = +∞ is in fact optimal, since it maximally decreases the
asymptotic behavior of λ1,β without affecting that of λ2,β . If for one or more zi with i ∈ Imin, it
holds that λi(+∞) < ℓ(z0), then there is a genuine optimization problem, but which typically
involves a small number of parameters.

In the latter case, there exists indeed an optimal value
(
α(i)⋆

)
i∈Imin

∈ (−∞,+∞]|Imin|. To
see this, we rely on the Gaussian tail estimate (2.27) and Lemma 2.22 to show that, as α(i)

tends to −∞, the value λi(α(i)) will eventually become larger than ℓ(z0), whereas the prefactor
for λ1,β will tend to +∞. This implies that any maximizing sequence of parameters is bounded
from below by some C > −∞ in each of its components. We endow (−∞,+∞] with the one-
point compactified topology at +∞. In this topology, the claim then follows from compactness
of [C,+∞]|Imin|, the continuity at +∞ of Φ (defined in (2.25)) and of the principal Dirichlet
eigenvalue µi of the harmonic oscillator (which follows from (2.36) in Lemma 2.22).

Optimization with respect to the other parameters. The remaining tunable parameters
are those not corresponding to low-lying separating saddle points. These are given by the vector
of parameters P(α) =

(
α(i), i ̸∈ {0} ∪ X (z0) ∪ Imin

)
. Indeed for i ∈ {0}∪X (z0), it necessarily

holds that α(i) = +∞ (see Remark 2.13 above), and the case i ∈ Imin is treated in the previous
paragraph. Noticing that the asymptotic behavior of λ1,β is only a function of (α(i))i∈Imin , it
follows that the asymptotic optimization problem reduces to a maximization of limβ→∞ λ2,β

with respect to the parameter P(α). By domain monotonicity (see Proposition 2.33), all the
quantities λi(α(i)) are decreasing functions of α(i). In particular, the components of P(α) may
be sent to −∞ without affecting the asymptotic prefactor e−β(V ∗−V (z0))λ2,β/λ1,β.

One option is to entirely disregard the corresponding critical points by not including them
in K from the start. This reduces the problem to that of finding an asymptotically optimal
perturbation of the set A(z0) ∩ {V < V ∗}.

However, in general, many values of P(α) will yield asymptotically optimal parameters. We
now describe a full optimization procedure using the following steps.
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◦ First, solve the optimization problem with respect to (α(i))i∈Imin , following the procedure
described in the previous paragraph, and neglecting the contribution of critical points
which are not low energy separating saddle points. In other words, find

α⋆Imin ∈ Argmax
α∈(−∞,+∞]|Imin|

min
{
ℓ(z0), min

i∈Imin
λi(α(i))

}
∑
i∈Imin

|ν(i)
1 |

2πΦ
(
|ν(i)

1 |
1
2α(i)

)√ det∇2V (z0)
|det∇2V (zi)|

.

For each optimum α⋆Imin
= (α(i)⋆)i∈Imin , there exists an associated optimal harmonic

eigenvalue
λ
(
α⋆Imin

)
= min

{
ℓ(z0), min

i∈Imin
λi(α(i)⋆)

}
.

◦ Then, any value of α(i) ∈ P(α) for which λi(α(i)) is larger than λ(α⋆Imin
) is optimal. In

other words, the structure of the set of optimal parameters with respect to P(α) is
particularly simple: it is simply the Cartesian product∏

i ̸∈{0}∪X (z0)∪Imin

(−∞, α(i)⋆], where λi(α(i)⋆) = λ(α⋆Imin).

The full set of optimal α can be deduced by taking a union over the set of optimizers α⋆Imin
.

For a system which is reasonably isotropic (in the sense that the ν(i)
j do not span many orders

of magnitude), it is sensible to expect that for many saddle points zi such that α(i) ∈ P(α),
any α(i)⋆ ∈ (−∞,+∞] is optimal, particularly if Ind(zi)≫ 1. For such points, the asymptotic
separation of timescales is insensitive at leading order to the choice of α(i).

The effect of other minima. In the particular case that zi is a local minimum (i.e.
1 ⩽ i < N0), it holds from the second item in Lemma 2.22 that lim

α(i)→+∞
λi(α(i)) = 0, and

thus α(i)⋆ is finite. This indicates that, in the low-temperature regime, the separation of
timescales ultimately degrades when moving from a domain containing one minimum far
from the boundary (such as a neighborhood of A(z0)) to one containing several, such as an
energy superbasin. This suggests the existence of a locally optimal domain around A(z0),
which is indeed observed numerically in [51]. This observation also motivates a posteriori the
choice of Assumption (EK1), which restricts the class of considered domains to the vicinity
of A(z0) ∩ {V < V ∗}.

2.4 Proof of Theorem 2.16

In this section, we perform the construction of the harmonic approximation to the Witten
Laplacian (2.44), and give the proof of Theorem 2.16. The construction relies on the definition
of local models for the Witten Laplacian Hβ defined in (2.14), and a family of approximate
eigenmodes, or quasimodes, thereof. These quasimodes correspond in fact to exact eigenmodes
of the harmonic approximation, or of a carefully chosen realization thereof, pointwise multiplied
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by a smooth cutoff function to localize the analysis. The harmonic approximation itself is
obtained by considering a direct sum of local models around each critical point zi, which are
quantum harmonic oscillators supplemented with appropriate Dirichlet boundary conditions,
depending on the value of the limit α(i) ∈ (−∞,+∞].

In Section 2.4.1, we define formally the local models serving in the construction of the
harmonic approximation, before discussing in Section 2.4.2 their Dirichlet realization and
obtaining the required properties of their spectral decomposition. In Section 2.4.3, we define
the global harmonic approximation and the associated harmonic quasimodes in Section 2.4.4,
obtaining also crucial localization estimates. In Section 2.4.5, we derive a key technical result
related to the construction of an extended domain with a precise control on the shape of the
boundary near critical points, and finally prove Theorem 2.16 in Section 2.4.6.

2.4.1 Local harmonic models

The potential part of Hβ = −∆ + Uβ, given by Uβ = 1
2

(
β2 |∇V |2

2 − β∆V
)

is, at dominant
order in β, comprised of wells centered around the critical points of V , which become steeper
as β →∞. The purpose of the harmonic approximation is to approximateHβ using independent
local models consisting of shifted harmonic oscillators centered around each one of these wells,
with frequencies prescribed by the eigenvalues of the Hessian ∇2V at zi. This very simple
approximation is sufficient to estimate the first-order behavior of the bottom of the spectrum
of −Lβ.

Introduce

Σ(i) = 1
2∇

2
(1

4 |∇V |
2
)

(zi) = 1
2

[1
2D

3V∇V + 1
2
(
∇2V

)2
]

(zi) = 1
4
(
∇2V

)2
(zi).

We define local harmonic approximations to Hβ around each critical point as

H
(i)
β = −∆ + β2(x− zi)⊺Σ(i)(x− zi)− β

∆V (zi)
2 . (2.29)

Remark 2.20. The operators H(i)
β have a natural interpretation in terms of the original

stochastic dynamics (2.1). Indeed, a direct computation shows that β−1H
(i)
β is formally

conjugate (up to an additive constant) to

−L(i)
β = − 1

β
∆ + x⊺∇2V (zi)∇,

under the change of representation u 7→ e−βV (i)/2u(zi+·) to the flat L2 coordinates, where V (i)(x)
is the local harmonic approximation to V , namely V (i)(x) = V (zi) + x⊺ ∇2V (zi)

2 x. Hence, L(i)
β

may be seen as the generator of a diffusion of the form (2.1), in which the potential has been
replaced by its harmonic approximation around zi, so that the resulting stochastic process is a
generalized Ornstein–Uhlenbeck process. We stress that this interpretation is merely formal,
as the operator L(i)

β is typically not well-behaved, since the measure e−βV (i)(x) dx is not even
finite if i ⩾ N0, due to the presence of repulsive modes in the harmonic approximation.
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We then define the shifted harmonic oscillators:

K(i) = −∆ + x⊺D(i)x− ∆V (zi)
2 ,

where D(i) denotes the diagonal matrix D(i) = diag
(
ν

(i)2
j /4

)
j=1,...,d

. By dilation Dλf(x) =

λd/2f(λx), translation Tbf(x) = f(x−b) and rotation U (i), where we recall the notation (2.7), a
direct computation shows that the Dirichlet realization of H(i)

β on L2(Ωβ) is unitarily equivalent
to that of βK(i) on L2(

√
βU (i)⊺(Ωβ − zi)):

H
(i)
β = TziD

√
β
U (i)

(
βK(i)

)
U (i)∗D1/

√
β
T−zi . (2.30)

This is precisely the construction performed in [195] on L2(Rd), up to our choice of conjugat-
ing H(i)

β by U (i) to simplify the explicit form of tensorized eigenmodes. We next proceed in
Section 2.4.2 to compute the eigendecomposition for a family of self-adjoint realizations of the
harmonic oscillators K(i), corresponding to specific Dirichlet boundary conditions in which the
boundary is a hyperplane transverse to the eigendirection v

(i)
1 whenever α(i) < +∞. These

operators in turn will serve as local approximations of Hβ around each critical point, allowing
the construction of approximate low-temperature quasimodes for Hβ.

Before this, we recall standard results concerning the full one-dimensional harmonic oscillator,
see for instance [318], and introduce some notation. The operator 1

2
(
−∂2

x + x2) considered
on L2(R), the canonical oscillator, which we denote by H∞, is self-adjoint as the Friedrich
extension of a positive quadratic form. We denote, for k ∈ N,

vk,∞(x) = 1√
2kk!
√
π

e− x2
2 Hk(x), Hk(x) = ex2

∂kx e−x2 (2.31)

where Hk is the k-th Hermite polynomial. The function vk,∞ is the k-th eigenstate of H∞,
with

H∞vk,∞ = µk,∞vk,∞, µk,∞ = k + 1
2 .

The full harmonic oscillator will serve, as in [195, Chapter 11], as the base operator to construct
local models for Hβ associated with critical points which are far from the boundary, and
will also be useful to capture the behavior of modes transverse to the first eigendirection of
the Hessian for critical points which are close to the boundary. For the first eigendirection,
however, we need to use another model, which is a harmonic oscillator with a Dirichlet boundary
condition on the asymptotic hyperplane zi + ∂E(α(i)/

√
β). In fact, to handle the possibly

irregular nature of ∂Ωβ in the vicinity of critical points which are close to the boundary, we
need to define these Dirichlet oscillators for a range of boundary conditions.

2.4.2 Dirichlet oscillators

In this section, we introduce the appropriate Dirichlet realizations for the harmonic oscillator,
which serve as the basis for the construction of local models for Hβ around critical points
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which are close to the boundary. We consider the following dense subspace of L2(R∗
+):

D(H̃0) =
{
f : x2f ∈ L2(R∗

+), f ∈ C1(R∗
+), f ′ ∈ AC(R∗

+), f ′′ ∈ L2(R∗
+), f(0) = 0

}
.

We first recall classical properties of the Dirichlet harmonic half-oscillator (see for instance [276,
Chapter X.1] or [32, Section 5.1.2] for a closely related construction): the symmetric operator

H̃0 = 1
2(−∂2

x + x2)

with domain D(H̃0) is essentially self-adjoint. Its closure, denoted by H0, has a complete family
of eigenfunctions which are given explicitly by the odd states of the full harmonic oscillator:

H0v2k+1,∞ =
(

2k + 3
2

)
v2k+1,∞, k ∈ N.

The family (
√

2v2k+1,∞)k⩾0 is an orthonormal eigenbasis for H0, where the factor
√

2 enforces
normalization in L2(R+). Furthermore, H0 has compact resolvent, with D(H0) ⊂ H1

0 (R+).
Our aim is to make precise, for θ ∈ R, the spectrum of a self-adjoint realization of the canonical
oscillator 1

2(−∂2
x + x2) with Dirichlet boundary conditions on [−θ,+∞). Specifically, we show

that the spectrum is well-defined, purely discrete, and depends continuously on the position of
the boundary θ. To this end, we use analytic perturbation theory, noticing that by translation,
the spectral properties of the operator

H̃θ = 1
2(−∂2

x + x2), D(H̃θ) = T−θD(H̃0)

can be deduced from those of the conjugate operator

TθH̃θT−θ = 1
2(−∂2

x + x2)− θx+ θ2

2 , (2.32)

with domain D(H̃0). Since the constant θ2

2 only shifts the spectrum by an analytic function
of θ, it is sufficient to study the operator

G̃θ = H̃0 − θx.

We show the following result.

Lemma 2.21. The operator G̃θ is essentially self-adjoint, and its closure Gθ has compact
resolvent. For any k ⩾ 0, the normalized eigenpairs (µ̃k,θ, ṽk,θ) ∈ R× L2(R+) are defined by

Gθṽk,θ = µ̃k,θṽk,θ, ∥ṽk,θ∥2L2(R+) = 1, (2.33)

furthermore, the eigenpairs (µk,θ, ṽk,θ) can be chosen to be holomorphic functions of θ. Their
enumeration convention is fixed by the condition that ṽk,0 is an eigenstate of the half-harmonic
oscillator: ṽk,0 =

√
2v2k+1,∞.

Proof. We check that θx is H̃0-bounded with relative bound 0. In the following, norms and
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inner products are for L2(0,∞). For φ ∈ C∞
c ([0,+∞)) and any M > 0, we compute:

∥θxφ∥2 = θ2⟨x2φ,φ⟩

⩽ 2θ2
〈
H̃0φ,φ

〉
⩽ θ2M2∥φ∥2 + θ2

M2 ∥H̃0φ∥2,

using Cauchy–Schwarz and Young inequalities in the last line. It follows that

∥θxφ∥ ⩽ |θ|M∥φ∥+ |θ|
M

∥∥∥H̃0φ
∥∥∥ , (2.34)

and the claim follows by taking M →∞.

Since θx is H̃0-bounded with relative bound 0, by the Kato–Rellich theorem (see for in-
stance [318, Theorem 6.4]), the operator G̃θ = H̃0 + θx is essentially self-adjoint on D(H̃0),
and its unique self-adjoint extension has domain D(Gθ) = D(H0) ⊂ H1

0 (R+) independently
of θ. We denote by Gθ the closure of G̃θ. A straightforward consequence of the relative
bound (2.34) (which extends to the closures of the operators at play) and the compactness of
the resolvent of H0 is that, for fixed θ ∈ R and Imλ ̸= 0, the resolvent (Gθ−λ)−1 is a compact
operator. Hence Gθ also has a compact resolvent, and therefore purely discrete a spectrum.
Since this spectrum is manifestly bounded from below, it consists of isolated eigenvalues of
finite multiplicity tending to +∞. Standard results of perturbation theory (see [192, Chapter
VII]) apply. In particular, we get from (2.34) and [192, Theorems VII.2.6 and VII.3.9] that Gθ

defines a self-adjoint holomorphic family of type (A) for θ ∈ R, and that there exists, for
every k ∈ N, holomorphic functions of θ µ̃k,θ, ṽk,θ satisfying (2.33).

Let us denote by Hθ the self-adjoint operator on L2([−θ,+∞)) obtained by translating back
and appropriately shifting the spectrum by θ2/2 (recalling (2.32)):

Hθ := T−θGθTθ + θ2

2 .

We compute its eigenpairs µk,θ = µ̃k,θ + θ2

2 , and vk,θ = T−θṽk,θ, satisfying the relation:

Hθvk,θ = µk,θvk,θ,

where (vk,θ)k∈N is a dense orthonormal family in L2([−θ,+∞)). Moreover, the enumeration of
these eigenpairs is fixed by the convention chosen for the harmonic half-oscillator, namely:

vk,0 =
√

2v2k+1, µk,0 = 2k + 3
2 ,

and the eigenvalues µk,θ depend holomorphically, hence continuously, on θ.

We provide the following estimates on the principal eigenvalue µ0,θ in the regimes θ → ±∞,
which are useful for the application of our results to asymptotic shape optimization (see
Section 2.3.3).
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Lemma 2.22. It holds

µ0,θ = θ2

2 +O(|θ|2/3) in the limit θ → −∞, (2.35)

and lim
θ→+∞

µ0,θ = µ0,∞ = 1
2 . (2.36)

Proof. By unitary transformation, we equivalently estimate the principal Dirichlet eigenvalue
of Hθ on L2(−θ,+∞).

Let us show (2.35). Note first that, since x2/2 is bounded from below by θ2/2 on (−θ,+∞), it
clearly holds that µ0,θ ⩾ θ2/2, so there is a trivial lower bound. The proof of the estimate 2.35
given below does not rely on a variational argument, but rather on a connection with the
asymptotics of Hermite polynomials. Let, for any n ⩾ 1, ζn ⩾ 0 be the largest root of the n-th
Hermite polynomial Hn, where we recall the definition (2.31) of the eigenmodes for the full
harmonic oscillator H∞. Then, it holds that µ0,−ζn = n+ 1

2 . Indeed, the restriction of the n-th
eigenfunction wn,∞ to the nodal domain (ζn,+∞) is a signed eigenfunction of H−ζn , with
eigenvalue ωn,∞ = n+ 1

2 . By standard arguments, it must in fact be a principal eigenfunction.
Indeed, if u minimizes the quadratic form, so does |u|, hence there exist a signed principal
eigenfunction. If v is an eigenfunction for some higher eigenvalue, it may therefore not be
signed without violating the orthogonality condition.

From the domain monotonicity property of Dirichlet eigenvalues (see Proposition 2.33), it
holds for −ζn+1 ⩽ θ ⩽ −ζn, that n+ 3

2 ⩾ µ0,θ ⩾ n+ 1
2 . Therefore, n(θ) + 3

2 ⩾ µ0,θ ⩾ n(θ) + 1
2 ,

where n(θ) = max {n ⩾ 1 : θ ⩽ −ζn}.

In [311, Theorem 6.32], Szegö gives the estimate ζn =
√

2n+ 1 +O(n−1/6), from which we
get√

2n(θ)(1 + O(1)) = |θ| and θ2/C ⩽ n(θ) ⩽ Cθ2 for some C > 0. Using Szegö’s estimate once
again, √

2n(θ) + 1 +O(|θ|−1/3) ⩽ |θ| <
√

2n(θ) + 3 +O(|θ|−1/3),

from which n(θ) = θ2

2 +O(|θ|2/3) and the final estimate (2.35) easily follows.

We now show (2.36). The domain monotonicity principle yields the lower bound µ0,θ ⩾

µ0,∞ = 1
2 . Let us show an asymptotic upper bound. We introduce χθ : R → R a C∞ cutoff

function such that
1(−θ+1,+∞) ⩽ χθ ⩽ 1(−θ,+∞),

and denote by χθ =
√

1− χ2
θ. We may choose χθ such that ∥∂xχθ∥L∞(R), ∥∂xχθ∥L∞(R) ⩽ C

for some C > 0 independent of θ. This may be enforced simply by setting χθ = χ0(·+ θ) for a
suitably chosen χ0.

Consider the trial quasimode uθ = χθv0,∞ ∈ D(Hθ), where v0,∞(x) = π−1/4e− x2
2 is defined

in (2.31). It first holds that

1 = ∥v0,∞∥2L2(R) = ∥uθ∥2L2(R) + ∥χθv0,∞∥2L2(R),

using χ2
θ + χ2

θ = 1. Then, since χθ ⩽ 1(−∞,−θ+1), we obtain ∥χθv0,∞∥2L2(R) = O
(
e−(θ−1)2

)
=
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O
(
e−θ2/2

)
as θ → +∞ by a Gaussian tail bound. Hence, ∥uθ∥2L2(−θ,+∞) = ∥uθ∥2L2(R) =

1 +O(e−θ2/2).

The IMS localization formula (see [303, 195]) then gives

1
2 = ⟨H∞v0,∞, v0,∞⟩L2(R)

= ⟨H∞uθ, uθ⟩L2(R) + ⟨H∞χθv0,∞, χθv0,∞⟩L2(R) −
1
2

∥∥∥∥√(∂xχθ)2 + (∂xχθ)
2v0,∞

∥∥∥∥2

L2(R)
.

Since supp ∂xχθ, supp ∂xχθ ⊂ (−θ,−θ + 1) and these derivatives are uniformly bounded in θ,

it holds that
∥∥∥∥√(∂xχθ)2 + (∂xχθ)

2v0,∞

∥∥∥∥2

L2(R)
= O(e−θ2/2) by the same Gaussian estimate.

Finally,

⟨H∞χθv0,∞, χθv0,∞⟩L2(R) = 1
2∥∂x(χθv0,∞)∥2L2(R) + 1

2∥xχθv0,∞∥2L2(R) = O(e−θ2/3),

using again supp ∂xχθ ⊂ (−θ,−θ + 1), χθ ⩽ 1(−∞,−θ+1) and ∥∂xχθ∥2L∞(R) ⩽ C. The loss of
a multiplicative constant in the exponent is due to the absorption of the x2

2 term from the
potential.

It follows that

µ0,θ ⩽
⟨Hθuθ, uθ⟩L2(−θ,+∞)
∥uθ∥2L2(−θ,+∞)

=
⟨H∞uθ, uθ⟩L2(R)
∥uθ∥2L2(R)

= 1
2
(
1 +O(e−θ2/3)

)
,

and (2.36) follows upon taking the lim sup as θ → +∞ on both sides of this inequality.

Note that the strategies to show (2.35) and (2.36) can easily be adapted to treat the
asymptotics of higher eigenvalues µk,θ of the Dirichlet oscillators Hθ, using respectively
estimates on the k-th largest root of the Hermite polynomials, and the trial family of quasi-
modes {χθv0,∞, . . . , χθvk,∞}. We now construct the local harmonic oscillators entering in
the harmonic approximation to the Witten Laplacian (2.14), by considering tensorized eigen-
modes of one-dimensional oscillators. As many notations are used, we provide for convenience
Table 2.1, which summarizes the notations used for the various operators at play.

One-dimensional case. In view of the change of variables z =
√

|ν(i)
1 |
2 x which is such

that ν
(i)2
1
4 x2 − ∂2

x = |ν(i)
1 |12

(
z2 − ∂2

z

)
, we denote, for k ⩾ 0 and θ ∈ R ∪ {+∞},

K
(i)
θ = |ν(i)

1 |RD|ν(i)
1 /2|

1
2
H
θ|ν(i)

1 /2|1/2D|ν(i)
1 /2|−

1
2
R− ν

(i)
1
2 ,

where Ru(x) = u(−x) denotes the reflection operator, which accounts for the orientation
convention chosen for v(i)

1 . The spectrum of K(i)
θ is explicit in terms of the µk,θ, with the
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following expressions for the eigenpairs:

w
(i)
k,θ(x) =

(
|ν(i)

1 |
2

) 1
4

v
k,θ(|ν(i)

1 |/2)
1
2

−
√
|ν(i)

1 |
2 x

 , ω
(i)
k,θ = |ν(i)

1 |µk,θ(|ν(i)
1 |/2)

1
2
− ν

(i)
1
2 . (2.37)

It is immediate, from the construction performed above, that (w(i)
k,θ)k⩾0 forms a complete

orthonormal eigenbasis for the Dirichlet realization of the oscillator K(i)
θ on L2((−∞, θ)),

hence K(i)
θ is self-adjoint with

D(K(i)
θ ) ⊂ H1

0 (−∞, θ).

Multidimensional case. The higher dimensional case is obtained by considering a separable
Schrödinger operator acting on the first coordinate as a one-dimensional Dirichlet oscillator,
and on the (d− 1) transverse coordinates as full one-dimensional (scaled) harmonic oscillators.
More precisely, we define K(i)

θ as the closure of the essentially self-adjoint operator (see e.g. [276,
Chapter X] for background on self-adjoint extensions)[

|ν(i)
1 |RD|ν(i)

1 /2|
1
2
H
θ|ν(i)

1 /2|1/2D|ν(i)
1 /2|−

1
2
R

]
1
⊗ I1

+
d∑
j=2

[
|ν(i)
j |D|ν(i)

j /2|
1
2
H∞D|ν(i)

j /2|−
1
2

]
j

⊗ Ij −
∆V (zi)

2 ,

where we define, given d Hilbert spaces (Hj)j=1,...,d and an unbounded operator A on Hj , the
operator Aj ⊗ Ij acting on

⊗d
j=1Hj via

Aj ⊗ Ij(f1 ⊗ · · · ⊗ fj) = f1 ⊗ · · · ⊗ fj−1 ⊗Afj ⊗ fj+1 ⊗ · · · ⊗ fd.

We naturally identify K(i)
θ with a self-adjoint operator on L2((−∞, θ)× Rd−1). Its eigende-

composition is explicit, and enumerated by n = (n1, . . . , nd) ∈ Nd:

λ
(i)
n,θ = ω

(i)
n1,θ

+
d∑
j=2

|ν(i)
j |µnj ,∞ −

ν
(i)
j

2

 ,
ψ

(i)
n,θ(x) = w

(i)
n1,θ

(x1)
d∏
j=2


 |ν(i)

j |
2

 1
4

vnj ,∞


√√√√ |ν(i)

j |
2 xj


 .

(2.38)

Moreover, the domain satisfies the inclusion

D(K(i)
θ ) ⊂ H1

0

[
(−∞, θ)× Rd−1

]
.

It is often more convenient to enumerate the spectrum of K(i)
θ with integers instead. Here we

slightly abuse notation, and again write the spectrum

Spec(K(i)
θ ) =

(
λ

(i)
n,θ

)
n⩾1

(2.39)

in a non-decreasing sequence of eigenvalues. The indexing convention used will be clear from
the context.
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Operator Spatial domain Eigenstates Eigenvalues

1
2(−∂2

x + x2) (−θ,+∞) vk,θ µk,θ

K
(i)
θ , d = 1, θ ∈ R ∪ {+∞} (−∞, θ) w

(i)
k,θ, k ⩾ 0 ω

(i)
k,θ, k ⩾ 0

K
(i)
θ , d ⩾ 2, θ ∈ R ∪ {+∞} (−∞, θ)× Rd−1 ψ

(i)
k,θ, k ∈ Nd or N∗ λ

(i)
k,θ, k ∈ Nd or N∗

H
(i)
β,θ, θ ∈ R ∪ {+∞} zi + E(i)

(
θ√
β

)
ψ

(i)
β,k,θ, k ⩾ 1 βλ

(i)
k,θ, k ⩾ 1

HH
β,α, α ∈ (R ∪ {+∞})N

N−1∏
i=0

[
zi + E(i)

(
αi√
β

)]
ψH
β,k,α = ψ

(ik)
β,nk,αik

, k ⩾ 1 βλH
k,α = βλ

(ik)
nk,αik

, k ⩾ 1

Table 2.1: Notations used in the definition of the harmonic approximation

When the need arises, we will consider ψ(i)
n,θ as an element of L2(Rd) by extending it by

zero outside of (−∞, θ)× Rd−1. A crucial tool in our analysis is the following pointwise decay
estimate for these harmonic Dirichlet eigenmodes.

Lemma 2.23. For any n ∈ Nd, θ ∈ (−∞,∞] and 0 ⩽ i < N , there exists a constant Ci,n,θ > 0
such that the following inequality holds for every x ∈ Rd:

|ψ(i)
n,θ(x)| ⩽ Ci,n,θ e

− |x|2
Ci,n,θ . (2.40)

Proof. The proof relies on a probabilistic estimate obtained in [67], and a reflection argument.
We consider the following anti-symmetrization of the eigenmode ψ(i)

n,θ:

ψ̃
(i)
n,θ(x) = ψ

(i)
n,θ(x)1x1⩽θ − ψ

(i)
n,θ(ιθx)1x1>θ,

where ιθ(x) = (2θ− x1, . . . , xd) denotes the reflection with respect to the {x1 = θ} hyperplane.
Then, it is easy to check that ψ̃(i)

n,θ is also an eigenmode (for the same eigenvalue λ(i)
n,θ) of the

Schrödinger operator associated with the symmetrized potential:

K̃
(i)
θ = −∆ + W̃ (i), W̃ (i)(x) = W (i)(x)1x1⩽θ +W (i)(ιθx)1x1>θ,

where W (i)(x) = x⊺Σ(i)x. Note that there exist ε > 0 and a compact set B ⊂ Rd such that

W̃ (i) ⩾ ε|x|2, ∀x ∈ Rd \B, (2.41)

owing to the strict positivity of Σ(i) (recalling that zi is a non-degenerate critical point). We
consider K(i)

θ,sym to be the self-adjoint operator obtained by the Friedrichs extension of the
lower-bounded quadratic form associated with K̃

(i)
θ . Then, it immediately follows from [67,

Proposition 3.1] and the lower bound (2.41) that the pointwise estimate (2.40) holds for ψ̃(i)
n,θ and

some constant Ci,n,θ > 0. The proof is concluded, in view of the inequality |ψ(i)
n,,θ(x)| ⩽ |ψ̃(i)

n,θ(x)|
for all x ∈ Rd.



114 2.4. Proof of Theorem 2.16

2.4.3 Global harmonic approximation

We now define global harmonic approximations to Hβ defined in (2.14). Because of the geomet-
ric flexibility afforded by Assumption (H2), we will in fact use this harmonic approximation
for a variety of Dirichlet boundary conditions. Each of these boundary conditions will be
encoded with a vector of extended real numbers α′ = (α′

i)0⩽i<N ∈ (−∞,∞]N . In this context,
a distinguished role is played by α′ = α, where we recall the definition (2.23). Its components
correspond to the asymptotic signed distance of each critical point to the boundary, on the
scale β− 1

2 , in view of Assumption (H1).

For general α′, we define local oscillators H(i)
β,α′

i
from the definition K(i)

α′
i

(in the d-dimensional

case) using the unitary equivalence (2.30). In particular, the domain of H(i)
β,α′

i
is given by

D(H(i)
β,α′

i
) = TziD

√
β
U (i)D

(
K

(i)
α′

i

)
⊂ H1

0

[
zi + E(i)

(
α′
i√
β

)]
. (2.42)

We denote, for n ∈ Nd,

ψ
(i)
β,n,α′

i
(x) = β

d
4ψ

(i)
n,α′

i

(√
βU (i)⊺(x− zi)

)
, (2.43)

the eigenmode of H(i)
β,α′

i
with the eigenvalue βλ(i)

n,α′
i

associated with ψ(i)
n,α′

i
under this correspon-

dence. Notice that we introduce a prefactor β in the definition of the eigenvalues of H(i)
β,α′

i
,

which is related to the fact that Lβ is unitarily equivalent to −Hβ/β, see (2.14). Note the β
d
4

factor in (2.43), which accounts for L2 normalization.

The global approximation is formed by a direct sum of these local oscillators:

HH
β,α′ =

N−1⊕
i=0

H
(i)
β,α′

i
, D(HH

β,α′) =
N−1∏
i=0
D(H(i)

β,α′
i
), (2.44)

hence the harmonic spectrum is given by

Spec(HH
β,α′) =

{
βλ

(i)
n,α′

i

}
0⩽i<N
n∈Nd

.

Let us specify the convention we use to enumerate the various spectra at play. First, we
enumerate the spectrum of K(i)

α′
i

in non-decreasing order, according to the convention (2.39),

with corresponding eigenmodes (ψ(i)
m,α)m⩾1. We then enumerate the full harmonic spectrum in

non-decreasing order, by defining two integer-valued sequences

(nj)j⩾1 ∈ (N∗)N
∗
, (ij)j⩾1 ∈ {0, . . . , N − 1}N∗

,

defined by the condition that the j-th largest eigenvalue of HH
β , counted with multiplicity, is

given by
βλH

j,α′ = βλ
(ij)
nj ,α′

ij

, (2.45)

where we first defer to the ordering on {0, . . . , N−1} and then to the ordering on each Spec(K(i)
α′

i
)
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to resolve ambiguities due to degenerate eigenvalues. We note that this choice is arbitrary,
since the ordering convention plays no particular part in the analysis. For convenience, we
also define, for each 0 ⩽ i < N , the function which gives for a n ⩾ 1 the number of states with
energy lower than λH

n,α′ and localized around zi:

Ni(n) = #{1 ⩽ j ⩽ n : ij = i}.

To lighten the notation, we have omitted to include the dependence of Ni, ij and nj in α′,
which will be clear from the context. We also note the following equalities, valid by definition
for any n ⩾ 1:

max
0⩽i<N

λ
(i)
Ni(n),α′

i
= λH

n,α′ , min
0⩽i<N

λ
(i)
Ni(n)+1,α′

i
= λH

n+1,α′ ,
N−1∑
i=0

Ni(n) = n. (2.46)

In particular, an expression for the second eigenvalue of the harmonic approximation is
available.

Remark 2.24. In the case where the bottom eigenvalue is associated to a local minimum z0,
i.e. N0(1) = 1, Ni(1) = 0 for 0 < i < N , then it holds

λH
2,α′ = min

{
λ

(0)
1,α′

0
, min

0<i<N
λ

(i)
0,α′

i

}
.

In the particular case α′
0 = +∞, this gives, using the expression (2.38) and µ0,∞ = 1/2,

λH
2,α′ = min

 min
1⩽j⩽d

ν
(0)
j , min

0<i<N
ω

(i)
0,α′

i
+

d∑
j=2
|ν(i)
j |1ν(i)

j <0


= min

 min
1⩽j⩽d

ν
(0)
j , min

0<i<N
|ν(i)

1 |µk,θ(|ν(i)
1 |/2)

1
2
− ν

(i)
1
2 +

d∑
j=2
|ν(i)
j |1ν(i)

j <0

 ,
(2.47)

using equation (2.37) in the last line.

Finally, we note that the analyticity of the map α 7→ µk,α obtained for all k ∈ N in
Lemma 2.21 implies the continuity of the mapping α′ 7→ λH

n,α′ for any n ⩾ 1.

2.4.4 Construction of harmonic quasimodes and associated localization
estimates

Approximate eigenmodes of Hβ may be obtained by localizing the eigenmodes of the harmonic
approximation around the corresponding critical point, in such a way that the Dirichlet
boundary conditions in Ωβ are met. We consider, for θ ∈ R ∪ {+∞}, so-called quasimodes of
the form

ψ̃
(i)
β,n,θ =

χ
(i)
β ψ

(i)
β,n,θ

∥χ(i)
β ψ

(i)
β,n,θ∥L2(Ωβ)

, (2.48)

where ψ(i)
β,n,θ is a harmonic mode of H(i)

β,θ, defined in (2.43) multiplied by the cutoff function χ(i)
β ,

and normalized in L2(Ωβ). The role of χ(i)
β is to localize the quasimode in the vicinity of zi.
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To this effect, we fix a reference C∞
c (R) cutoff function χ such that

1[− 1
2 ,

1
2 ] ⩽ χ ⩽ 1[−1,1]. (2.49)

We furthermore require that ∥∥∥∥ d
dx

[√
1− χ2

]∥∥∥∥
L∞(R)

< +∞. (2.50)

Let us next define the localized cutoff function:

χ
(i)
β (x) = χ

(
δ(β)−1|x− zi|

)
. (2.51)

Recalling that
√
βδ(β) β→∞−−−→ +∞, we have that suppχ(i)

β is contained in a ball around zi

whose radius is large with respect to 1√
β

, while supp∇χ(i)
β is contained in a hyperspherical

shell around zi:

suppχ(i)
β ⊂ B(zi, δ(β)), supp∇χ(i)

β ⊂ B(zi, δ(β)) \B
(
zi,

1
2δ(β)

)
. (2.52)

In fact we will assume in the proof of the Theorem 2.16 that (H2) is satisfied with δ(β)≪ β− 1
3

(this comes at no cost of generality), so that the support of χ(i)
β is localized around zi. We

have the bounds ∥∥∥∂pχ(i)
β

∥∥∥
∞

= ∥∂pχ∥∞δ(β)−|p|, (2.53)

for any multi-index p ∈ Nd, and thus ∥∂pχ(i)
β ∥∞ = O

(
β

|p|
2

)
.

We stress that, assuming that β is large enough for (H2) to hold, although χ
(i)
β does not

necessarily vanish on ∂Ωβ when α(i) < +∞, we still have ψ̃(i)
β,k,θ ∈ H1

0 (Ωβ) (the form domain
of Qβ) provided θ < α(i) −

√
βγ(i)(β) and for β large enough.

The following result records some crucial localization estimates.

Lemma 2.25. We consider, for n ∈ Nd, eigenvectors ψ(i)
β,n,θ of H(i)

β,θ normalized in L2
(
zi + E(i)( θ√

β
)
)

,

extended by 0 in L2(Rd), and define the associated quasimodes ψ̃(i)
β,n,θ according to (2.48). Then,

for any n,m ∈ Nd, there exists β0 > 0 and constants Mi,n,θ,Mi,n,m,θ > 0, independent of β
such that the following estimates hold for any β > β0.

∥∥∥(1− χ(i)
β

)
ψ

(i)
β,n,θ

∥∥∥
L2(Rd)

= O
(

e
− βδ(β)2

Mi,n,θ

)
, (2.54)

∣∣∣∣〈ψ̃(i)
β,n,θ, ψ̃

(i)
β,m,θ

〉
L2(Rd)

− δnm
∣∣∣∣ = O

(
e

− βδ(β)2
Mi,n,m,θ

)
, (2.55)

∣∣∣∣〈H(i)
β (1− χ(i)

β )ψ(i)
β,n,θ, (1− χ

(i)
β )ψ(i)

β,m,θ

〉
L2(Rd)

∣∣∣∣ = O
(
βe

− 2βδ(β)2
Mi,n,m,θ

)
. (2.56)
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If the scaling (H3) holds, the upper bounds decay superpolynomially in β.

Proof. We begin by proving (2.54). Changing coordinates with y =
√
βU (i)⊺(x− zi), we get,

in view of (2.43),

∥∥∥(1− χ(i)
β )ψ(i)

β,n,θ

∥∥∥2

L2(Rd)
=
∫
Rd

(1− χ)
( 1√

βδ(β)

∣∣∣U (i)y
∣∣∣)ψ(i)

n,θ(y)2 dy

⩽
∫
Rd\B

(
0, 1

2

√
βδ(β)

) ψ(i)
n,θ(y)2 dy

⩽ |Sd−1|C2
i,n,θ

∫ ∞

1
2

√
βδ(β)

sd−1e
− 2s2

Ci,n,θ ds,

= O
(∫ ∞

1
2

√
βδ(β)

e
− s2

Ci,n,θ ds
)
,

where we used respectively the lower bound in (2.49) and the pointwise exponential decay
estimate (2.40) to obtain the first and second inequalities. Applying, for t > 1, a standard
Gaussian tail bound ∫ ∞

t
e−s2/2 ds ⩽ t−1

∫ ∞

t
se−s2/2 ds ⩽ e−t2/2

yields the desired bound (2.54) for β sufficiently large, since
√
βδ(β)→ +∞, and where we

set Mi,n,θ = 2Ci,n,θ.

Unless otherwise specified, the norms and inner products in the remainder of the proof are
on L2(Rd). To show (2.55), we first note that, since ∥ψ(i)

β,n,θ∥ = 1 and 0 ⩽ χ
(i)
β ⩽ 1, a triangle

inequality gives
0 ⩽ 1−

∥∥∥χ(i)
β ψ

(i)
β,n,θ

∥∥∥ ⩽ ∥∥∥(1− χ(i)
β )ψ(i)

β,n,θ

∥∥∥ ,
so that

1 ⩽
1∥∥∥χ(i)

β ψ
(i)
β,n,θ

∥∥∥ ⩽
1

1−
∥∥∥(1− χ(i)

β )ψ(i)
β,n,θ

∥∥∥ ⩽ 1 + 2
∥∥∥(1− χ(i)

β )ψ(i)
β,n,θ

∥∥∥ (2.57)

for β sufficiently large, where we use (2.54) to obtain the final inequality.

For convenience, we write ψ(i)
β,n,θ = ψn, ψ(i)

β,m,θ = ψm and χ
(i)
β = χ. Then,

⟨χψn, χψm⟩ = ⟨ψn, ψm⟩ − 2 ⟨ψn, (1− χ)ψm⟩+
〈
ψn, (1− χ)2ψm

〉
.

Thus, by Cauchy–Schwarz inequalities, and using the orthonormality of ψn and ψm, we obtain:

|⟨χψn, χψm⟩ − δn,m| ⩽ 2∥ψn∥∥(1− χ)ψm∥+ ∥ψn∥∥(1− χ)2ψm∥ ⩽ 3∥(1− χ)ψm∥,

since (1− χ)2 ⩽ (1− χ). It follows by symmetry that

|⟨χψn, χψm⟩ − δn,m| ⩽
3
2 (∥(1− χ)ψn∥+ ∥(1− χ)ψm∥) . (2.58)

Denoting by ψ̃n = χψn∥χψn∥−1 and ψ̃m = χψm∥χψm∥−1, we obtain∣∣∣〈ψ̃n, ψ̃m〉− δnm∣∣∣ ⩽ |⟨χψn, χψm⟩ − δn,m|+ ∣∣∣1− (∥χψn∥ ∥χψm∥)−1
∣∣∣ |⟨χψn, χψm⟩| ,
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and it follows from (2.57), (2.58) that∣∣∣〈ψ̃n, ψ̃m〉− δnm∣∣∣ = O (∥(1− χ)ψn∥+ ∥(1− χ)ψm∥)

in the limit β →∞. The estimate (2.54) then implies (2.55) withMi,n,m,θ = max{Mi,n,θ,Mi,m,θ}.

For (2.56), we start with an algebraic computation for a Schrödinger operator H = −∆ + V

with domain D(H) ⊂ H1(Rd), two eigenstates u, v with respective eigenvalues λu, λv, and η ∈
C2(Rd) with uniformly bounded derivatives. Using the relation

H(ηu) = ηHu− 2∇η · ∇u− u∆η = λuηu− 2∇η · ∇u− u∆η,

we get by integrating against ηv,

⟨Hηu, ηv⟩ = λu
〈
u, η2v

〉
− ⟨u, (η∆η) v⟩ − 2 ⟨∇u, (η∇η) v⟩ .

Thus, by symmetry and an integration by parts,

⟨Hηu, ηv⟩ =
〈
u,

(
λu + λv

2 η2 − η∆η
)
v

〉
− 1

2
〈
∇[uv],∇[η2]

〉
D′(Rd)×D(Rd)

=
〈
u,

(
λu + λv

2 η2 + |∇η|2
)
v

〉
.

(2.59)

Applying (2.59) to H = H
(i)
β,θ with η = 1− χ(i)

β , we get, noting that the function λu+λv
2 η2 +

|∇η|2 is supported in S
(i)
β := Rd \ B

(
zi,

1
2
√
βδ(β)

)
and using (2.53), that there exists a

constant Cn,m > 0 such that∥∥∥∥λn + λm
2 (1− χ(i)

β )2 + |∇(1− χ(i)
β )|2

∥∥∥∥
L∞(Rd)

⩽
Cn,m
δ(β)2 .

By a Cauchy–Schwarz inequality, it follows that

∣∣∣〈H(i)
β (1− χ(i)

β )ψ(i)
β,n,θ, (1− χ

(i)
β )ψ(i)

β,m,θ

〉∣∣∣ ⩽ Cn,m
δ(β)2 ∥ψ

(i)
β,n,θ∥L2

(
S

(i)
β

)∥ψ(i)
β,m,θ∥L2

(
S

(i)
β

),
and identical arguments as the ones leading to (2.54) give

∥ψ(i)
β,n,θ∥L2

(
S

(i)
β

)∥ψ(i)
β,m,θ∥L2

(
S

(i)
β

) = O
(

e
− 2βδ(β)2

Mi,n,m,θ

)
,

which implies (2.56) upon using the scaling δ(β)≫ β− 1
2 .

The following lemma, adapting [195, Equations 11.5–7] to the Dirichlet context, justifies the
local approximation of Hβ by H(i)

β around zi to the order β.

Lemma 2.26. Fix 0 ⩽ i < N , u ∈ L2(Ωβ), and assume that δ(β) < βs−
1
2 for some 0 < s < 1

6
in (H2). For any θ ∈ (−∞,+∞], the operator Hβ − H

(i)
β,θ extends to a bounded operator

in L2(Ωβ), and there exist C > 0 and β0 > 0 independent of θ such that, for all β > β0, the
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following estimate holds:∥∥∥(Hβ −H
(i)
β,θ)χ

(i)
β u

∥∥∥
L2(Ωβ)

⩽ Cβ3s+ 1
2 ∥χ(i)

β u∥L2(Ωβ) = O(β)∥χ(i)
β u∥L2(Ωβ).

Proof. Since Hβ − H
(i)
β is a multiplication operator by a smooth function over a bounded

domain, it is bounded in L2(Ωβ), and we therefore only need to control the L∞-norm of the
difference in the potential parts

Uβ − β2(x− zi)⊺Σ(i)(x− zi) + β
∆V (zi)

2

on Ωβ ∩ suppχ(i)
β ⊂ B(zi, δ(β)). We estimate separately the two contributions

β2
(
|∇V (x)|2

4 − (x− zi)⊺Σ(i)(x− zi)
)
− β

2 (∆V (x)−∆V (zi)).

Using a second-order Taylor expansion around zi, there exist β0 > 0 and C1 > 0 depending
only on V and i such that, for all β > β0 and every x ∈ suppχ(i)

β ,∣∣∣∣∣ |∇V (x)|2

4 − (x− zi)⊺Σ(i)(x− zi)
∣∣∣∣∣ ⩽ C1|x− zi|3 ⩽ β3s− 3

2 .

For the Laplacian term, since V is C∞ and ∆V is thus locally Lipschitz, we have, for β large
enough, and for some constant C2 > 0,

|∆V (x)−∆V (zi)| ⩽ C2|x− zi| ⩽ C2β
s− 1

2 .

By gathering these estimates and setting C = max{C1, C2},∥∥∥(Hβ −H
(i)
β )χ(i)

β u
∥∥∥
L2(Ωβ)

⩽ C max{β3s+ 1
2 , βs+

1
2 }∥χ(i)

β u∥L2(Ωβ),

which yields the desired bound. Note that β3s+ 1
2 = O(β) since 0 < s < 1

6 .

2.4.5 Local perturbations of the boundary

In both the proofs of the harmonic approximation (Theorem 2.16) and of the modified
Eyring–Kramers formula (Theorem 2.17), we make use of the following technical result, which
guarantees the existence of local extensions and contractions of the domains Ωβ , whose geometry
around each critical point close to the boundary is precisely that of a half-space. More precisely,
the existence of such an extension is used in the proof of Theorem 2.16 to obtain a lower
bound on the spectrum, using a domain monotonicity result (see Proposition 2.33 below). In
the proof of Theorem 2.17, both the extension and contraction are used to provide asymptotic
bounds on the principal eigenvalue. Besides, the construction of approximate eigenmodes is
greatly simplified on these perturbed domains.

Proposition 2.27. Let (Ωβ)β⩾0 be a family of smooth domains satisfying (H2), and let ρ be
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a non-negative function such that

γ(β) < ρ(β) = O(δ(β)). (2.60)

Then, there exists β0 > 0, and for each β > β0, bounded, smooth, open domains Ω±
β,ρ with

Ω−
β,ρ ⊆ Ωβ ⊆ Ω+

β,ρ,

such that

B

(
zi,

1
2δ(β)

)
∩ Ω±

β,ρ = B

(
zi,

1
2δ(β)

)
∩
[
zi + E(i)

(
α(i)
√
β
± ρ(β)

)]
(2.61)

for all 0 ⩽ i < N for which zi is close to the boundary (i.e. α(i) < +∞).

The proof of Proposition 2.27 is given in Appendix 2.A below.

2.4.6 Conclusion of the proof of Theorem 2.16

We conclude this section by giving the proof of the harmonic approximation in the case of a
temperature-dependent boundary, which shows that the first-order asymptotics of any given
eigenvalue at the bottom of the spectrum of Hβ is given by the corresponding eigenvalue
of HH

β,α defined in the limit β →∞. The proof extends the results of [195, 303] to the case
of moving Dirichlet boundary conditions, allowing the computation of first-order spectral
asymptotics for eigenstates localized (in the Witten representation) around critical points
which are close to the boundary. To show (2.22), we study the eigenvalues of the Witten
Laplacian (2.14), since these are equal to those of −Lβ up to a factor of β. The (standard)
strategy we follow is to construct approximate eigenvectors for Hβ , which (roughly speaking)
consist of eigenvectors of each of the local oscillators H(i)

β,α(i) , localized around the critical
points zi by appropriate cutoff functions. The main technical novelty compared to previous
works, besides the construction of critical harmonic models performed in Section 2.4.2, is the
technique used to ensure that the quasimodes belong to the form domain of the Dirichlet
Witten Laplacian on Ωβ , relying namely on Proposition 2.27, rather than on the fact that the
domain is locally diffeomorphic to a half-space, as in [159] and [224].

Once we have constructed valid quasimodes, we obtain coarse estimates similar to those
of [195, 303], at the level of the quadratic form and Courant–Fischer variational principles,
allowing to compute the limit spectrum of Lβ as β →∞, explicitly in terms of the spectra of
the Dirichlet oscillators of Section 2.4.2. The constant β0 > 0 will be increased a finite number
of times in the following proof, without changing notation.

Proof of Theorem 2.16. Without loss of generality, we assume in this proof that δ(β) < βs−
1
2

in (H2) for some 0 < s < 1
6 , so that the assumptions of Lemma 2.25 are satisfied.
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Step 1: Upper bound on λk,β

The proof of the upper bound proceeds in two steps. First, we choose an appropriate
realization of the harmonic approximation (2.44) so that the associated quasimodes are in
the form domain H1

0 (Ωβ). The second step is essentially identical to the analysis performed
in [195, Theorem 11.1], given the localization estimates of Lemma 2.25. We include it for the
sake of completeness.

Step 1a: Perturbation of the local oscillators.
We fix k ⩾ 1. We construct families of quasimodes {φ1, . . . , φk} for Hβ associated to the first k
harmonic eigenvalues βλH

1,α, . . . , βλ
H
k,α. Recall Table 2.1 for notation used in the definition of

the harmonic approximation. The functions φj are of the general form (2.48). We must however
be careful with the choice of realization for the formal operator H(ij)

β defined in (2.29), to
ensure that the quasimodes are in the form domain of Hβ . In fact we need, for each 0 ⩽ i < N ,
to distinguish between two cases:

a) If zi is far from the boundary, then by Assumption (H2), χ(i)
β is supported inside Ωβ , and

thus the associated quasimodes are indeed in H1
0 (Ωβ) (and indeed in the domain of Lβ).

b) If zi is close to the boundary, then by the third condition in Assumption (H2), O−
i (β) ⊆

B(zi, δ(β)) ∩ Ωβ for β large enough. In this case, the construction presented below yields
again a quasimode in H1

0 (Ωβ).

Let 0 ⩽ i < N , and 0 < h < α(i). Then, Assumption (H2) implies that there exists β0 > 0
such that, for all β > β0, we have the inclusion:

B(zi, δ(β)) ∩
[
zi + E(i)

(
α(i) − h√

β

)]
⊆ O−

i (β) ⊆ Ωβ.

Defining the vector
αh,− = (α(i) − h1α(i)<+∞)0⩽i<N ,

we consider the perturbed harmonic approximation corresponding to the operator HH
β,αh,− ,

as defined in (2.44). By construction, for all β > β0, eigenmodes ψ(ij)
β,nj ,α

h,−
ij

of H(ij)
β,αh,−

ij

, are

supported in zij + E(ij)
(
α(ij )−h√

β

)
, as noted in (2.42), and it follows that the associated

quasimode ψ̃(ij)
β,nj ,α

h,−
ij

, as defined by (2.48), belongs to H1
0 (O−

ij
(β)) ⊂ H1

0 (Ωβ).

Step 1b: Energy upper bound.
The aim of this step is to show the upper bound for all k ⩾ 1:

lim
β→∞

λk,β ⩽ λH
k,α. (2.62)

For a fixed k ⩾ 1, we consider the quasimodes

φj = ψ̃
(ij)
β,nj ,α

h,−
ij

for 1 ⩽ j ⩽ k.
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Note that (φj)1⩽j⩽k span a k-dimensional subspace of H1
0 (Ωβ), since the Gram matrix(〈

φj , φj′
〉
L2(Ωβ)

)
1⩽j,j′⩽k

is quasi-unitary, i.e. can be written in the form I + O(1) as β →∞. Indeed, since the φj are
normalized in L2(Ωβ), it suffices to check that the off-diagonal entries of the Gram matrix
vanish in this limit. Fixing 1 ⩽ j, j′ ⩽ k, this is clear for ij ̸= ij′ , since the corresponding
test functions χ(ij)

β , χ(ij′ )
β have disjoint supports. If ij = ij′ , the statement is an immediate

consequence of the quasi-orthogonality estimate (2.55).

By the Min-Max Courant–Fischer principle, it suffices to show that

∀u ∈ Span{φj} 1⩽j⩽k, Qβ(u) ⩽ (βλH
k,αh,− + O(β))∥u∥2L2(Ωβ), (2.63)

to conclude
lim
β→∞

λk,β ⩽ λH
k,αh,− .

Since the map h 7→ λH
k,αh,− is continuous and αh,−

h→0−−−→ α, and therefore λH
k,αh,−

h→0−−−→ λH
k,α,

the latter inequality implies (2.62).

Let us prove (2.63). Unless otherwise specified, in Step 1, norms and inner products
are on L2(Ωβ). For a fixed 1 ⩽ j ⩽ k, first consider u = χ

(ij)
β ψ

(ij)
β,nj ,αh,− ∈ Span{φj}.

Recall that H(ij)
β,αh,−

ij

ψ
(ij)
β,nj ,αh,− = βλ

(ij)
nj ,αh,−ψ

(ij)
β,nj ,αh,− . For convenience, we drop the indices and

superscripts in the following computation, so that u = χψ, with Hψ = βλψ. By our choice
of (φj)1⩽j⩽k, we have λ ∈

{
λH
j,αh,−

}
1⩽j⩽k

, and so λ ⩽ λH
k,αh,− .

Qβ(u) = ⟨Hβu, u⟩ = ⟨Hu, u⟩+ ⟨(Hβ −H)u, u⟩ ,

and since |⟨(Hβ −H)u, u⟩| ⩽ Cj,α,hβ
3s+ 1

2 ∥u∥2 = O(β)∥u∥2 for some constant Cj,α,h > 0 by
Lemma 2.26, the only remaining task is to estimate the first term. Expanding the quadratic
form, we get:

⟨Hχψ, χψ⟩ = ⟨Hψ,ψ⟩ − 2 ⟨Hψ, (1− χ)ψ⟩+ ⟨H(1− χ)ψ, (1− χ)ψ⟩
= βλ∥ψ∥2 − 2 ⟨Hψ, (1− χ)ψ⟩+ ⟨H(1− χ)ψ, (1− χ)ψ⟩
⩽ βλ∥u∥2 +O(β∥(1− χ)ψ∥) + ⟨H(1− χ)ψ, (1− χ)ψ⟩ ,

(2.64)

where we used a Cauchy–Schwarz inequality and the estimate (see (2.54))

∥ψ∥2 = ∥u∥2 + 2 ⟨u, (1− χ)ψ⟩+ ∥(1− χ)ψ∥2 = ∥u∥2 +O(∥(1− χ)ψ∥).

We next use the localization estimates given in Lemma 2.25 to control the two rightmost
terms in the last line of (2.64). Here, we make crucial use of the hypothesis (H3), which
gives the superpolynomial decay of the bound (2.54), implying that β∥(1 − χ)ψ∥ = O(β),
and similarly ⟨H(1− χ)ψ, (1− χ)ψ⟩ = O(β), using (2.56). Finally, (2.55) implies that ∥u∥2 =
1 + O(β), so that we may write Qβ(u) ⩽ ∥u∥2(βλ+ O(β)). Since λ ⩽ λH

k,αh,− , this implies the
upper bound (2.63) for this particular choice of u, and thus for any u ∈ Span{φj}, as we now
show.
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For u =
∑k
j=1 gjφj ∈ Span{φj}1⩽j⩽k, in view of the previous estimate, it is enough to show

that the cross terms
gjgj′

〈
H

(ij)
β,αh

ij

φj , φj′

〉
are small whenever ij = ij′ with j ̸= j′, since the terms for which ij ≠ ij′ vanish for β large
enough as the corresponding cutoff functions have disjoint supports. To check that the non-
zero terms decay superpolynomially in β, we denote, for convenience H(ij)

β,αh
ij

= H, χ = χ
(ij)
β ,

and ψ = ψ
(ij)
β,nj ,αh,− , ψ′ = ψ

(ij′ )
β,kj′ ,αh,− , so that φj = χψ/Z, φj′ = χψ′/Z ′, where Z,Z ′ are

normalizing constants ensuring that the quasimodes have unit L2(Ωβ)-norm. With this
notation,〈

Hχψ, χψ′〉 =
〈
Hψ,ψ′〉− 〈Hψ, (1− χ)ψ′〉− 〈H(1− χ)ψ,ψ′〉+

〈
H(1− χ)ψ, (1− χ)ψ′〉

=
〈
Hψ,ψ′〉− λ 〈ψ, (1− χ)ψ′〉− λ′ 〈(1− χ)ψ,ψ′〉+

〈
H(1− χ)ψ, (1− χ)ψ′〉

= 0 + O(β)∥ψ∥∥ψ′∥,

where we used again Cauchy–Schwarz inequalities and the superpolynomial decay of the
estimates (2.54) and (2.56) under (H3), as well as the orthogonality relation ⟨ψ,ψ′⟩ = 0.
Since Z,Z ′ = 1 + O(β) by (2.55), it follows that (2.63) holds, which concludes the proof
of (2.62).

Step 2: Lower bound on λk,β

We show the lower bound in (2.22), namely that for all k ⩾ 1,

lim
β→∞

λk,β ⩾ λH
k,α. (2.65)

As in the proof of the upper bound, we proceed in two steps. The first step is to construct an
appropriate extension of the domain Ωβ around critical points which are close to the boundary,
relying on Proposition 2.27. The second step is similar to what is done in related proofs
of [303, 195] in the boundaryless case, and we include it for completeness.

Step 2a: Perturbation of the domain.
Our analysis requires to consider, in addition to perturbed harmonic eigenvalues, a perturbed
domain Ωh

β which contains Ωβ, parametrized by some small h > 0. We construct Ωh
β to be

smooth and bounded, so that the Dirichlet realization of Hβ in Ωh
β is self-adjoint on L2(Ωh

β),
with compact resolvent and form domain H1

0 (Ωh
β). This domain is constructed by a direct

application of Proposition 2.27 with ρ(β) = h√
β

, that is,

Ωh
β = Ω+

β,h/
√
β
.

Crucially, it satisfies the inclusion (2.61), which corresponds to the requirement that, locally
around each zi close to the boundary, ∂Ωh

β coincides precisely with a hyperplane located at
a distance β− 1

2 (α(i) + h) away from the saddle in the direction v
(i)
1 , and normal to the same

vector. In the remainder of the proof, norms and inner products are by default on L2(Ωh
β).
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We denote by λhk,β := λk,β(Ωh
β) its k-th eigenvalue, which is positive with finite multiplicity,

and by Hh
β the Dirichlet realization of Hβ on Ωh

β, with Qhβ its associated quadratic form. By
the comparison principle given in Proposition 2.33, it holds that λk,β(Ωβ) ⩾ λk,β(Ωh

β), and so
it is sufficient to prove (2.65) with λk,β = λhk,β.

Step 2b: Energy lower bound.
From now on, αh,+ denotes the vector (α(i) + h1α(i)<+∞)0⩽i<N , and φj , for 1 ⩽ j ⩽ k − 1 are
k − 1 harmonic quasimodes, associated with the Dirichlet harmonic approximation HH

β,αh,+ .
However, due to the construction performed in the previous step, one must slightly adjust the
definition (2.48), and more precisely the support of the cutoff function. For this, we set:

φj =
η

(i)
β ψ

(ij)
β,nj ,α

h,+
ij

∥η(i)
β ψ

(ij)
β,nj ,α

h,+
ij

∥
1 ⩽ j ⩽ k − 1,

where η(i)
β (x − zi) = χ

(i)
β (2(x − zi)). By construction, each φj is supported in B(zi, 1

2δ(β)),
and thus belongs to H1

0 (Ωh
β), by the inclusion (2.61) and the fact that ψ(ij)

β,nj ,α
h,+
ij

has support

in zij +E(ij)
(
α(ij )+h√

β

)
whenever α(ij) < +∞. We note that this choice of quasimodes amounts

to rescaling δ(β) by a factor 1
2 , and consequently has no impact on the superpolynomial decay

of the estimates of Lemma 2.25, nor on the conclusion of Lemma 2.26, which we will use freely
in the remainder of the proof, upon replacing χ(i)

β by η
(i)
β , Ωβ by Ωh

β and Hβ by Hh
β . As in

Step 1b, for β large enough, the φj span a (k − 1)-dimensional subspace of L2(Ωh
β).

This time, we rely on the Courant–Fischer principle in its Max-Min form: it suffices to show
that, for any u ∈ H1

0 (Ωh
β) ∩ Span{φj}⊥1⩽j⩽k−1, the following inequality holds:

Qhβ(u) ⩾ (βλH
k,αh,+ + O(β))∥u∥2.

This will indeed imply:
lim
β→∞

λk,β ⩾ lim
β→∞

λhk,β ⩾ λH
k,αh,+ ,

and the desired lower bound (2.65) follows by continuity of the harmonic eigenvalues with
respect to the boundary position αh,+, taking the limit h → 0. Hence, let u ∈ H1

0 (Ωh
β) be

orthogonal to φj for every 1 ⩽ j ⩽ k − 1. The IMS localization formula (see for instance [195,
Chapter 3]) gives:

Qhβ(u) =
N∑
i=0

Qhβ

(
η

(i)
β u

)
−
∥∥∥u∇η(i)

β

∥∥∥2
, (2.66)

with η
(N)
β =

√
1Ωh

β
−
∑N−1
i=0 η

(i)2
β . We first estimate, for 0 ⩽ i < N , the terms

Qhβ

(
η

(i)
β u

)
−
〈
H

(i)
β,αh,+

i

η
(i)
β u, η

(i)
β u

〉
=
〈

(Hh
β −H

(i)
β,αh,+

i

)η(i)
β u, η

(i)
β u

〉
= O(β)∥u∥2,

using Lemma 2.26. On the other hand, the assumption that u is L2(Ωh
β)-orthogonal to

the φj for 1 ⩽ j ⩽ k − 1 implies, for all 0 ⩽ i < N and all 1 ⩽ n ⩽ Ni(k − 1), that η(i)
β u
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is L2
[
zi + E(i)

(
α(i)+h√

β

)]
-orthogonal to ψ

(i)
β,n,αh,+

i

. Here, we made crucial use of the prop-

erty (2.61) of the extended domain. Furthermore, η(i)
β u is in the form domain of the self-adjoint

operator H(i)
β,αh,+

i

, and thus the Courant–Fischer principle implies:

〈
H

(i)
β,αh,+

i

η
(i)
β u, η

(i)
β u

〉
⩾ βλ

(i)
Ni(k−1)+1,αh,+

i

∥η(i)
β u∥2 ⩾ βλH

k,αh,+∥η(i)
β u∥2,

where we used the identity (2.46). The crude L∞ bound (2.53) implies, since δ(β)−1 = O
(√
β
)
,

that
∥∥∥u∇η(i)

β

∥∥∥2
= O(β)∥u∥2. At this point, we have shown that

N−1∑
i=0

Qhβ

(
η

(i)
β u

)
−
∥∥∥u∇η(i)

β

∥∥∥2
⩾ βλH

k,αh,+

N−1∑
i=0
∥η(i)
β u∥2 + O(β)∥u∥2

We are left with the following term in (2.66):
〈
Hh
βη

(N)
β u, η

(N)
β u

〉
−
∥∥∥u∇η(N)

β

∥∥∥2
.

Note that, since

supp η(N)
β ⊂ Rd \

m⋃
i=0

B

(
zi,

1
2δ(β)

)
,

the fact that V is a smooth Morse function in Ωh
β ensures that there exist C, β0 > 0 such that,

for all β > β0,
|∇V |2∣∣supp η(N)

β

⩾
1
C
δ(β)2, |∆V |∣∣supp η(N)

β

⩽ C,

hence:
∀x ∈ supp η(N)

β , Uβ(x) = β2

4 |∇V (x)|2 − β

2 ∆V (x) ⩾ β2δ(β)2

4C − βC,

The following ground state estimate then shows that, for β > β0 and any v ∈ H1
0 (supp η(N)

β ):

〈
Hh
βv, v

〉
L2(supp η(N)

β
)
⩾ ⟨Uβv, v⟩2L2(supp η(N)

β
) ⩾ β

(
βδ(β)2

4C − C
)
∥v∥2

L2(supp η(N)
β

)
.

Since
√
βδ(β) β→∞−−−→ +∞, we conclude that, for β large enough, and since η(N)

β u belongs
to H1

0 (supp η(N)
β ), we have:

〈
Hh
βη

(N)
β u, η

(N)
β u

〉
⩾ βλH

k,αh,+

∥∥∥η(N)
β u

∥∥∥2
.

Finally, we note that, owing to the condition (2.50), and the fact that the η(i)
β have disjoint

supports for i = 0, . . . , N − 1, it also holds:

∥∇η(N)
β u∥2 = O(β)∥u∥2.
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In conclusion, we have shown that

〈
Hh
βu, u

〉
⩾ βλH

k,αh,+

N∑
i=0
∥η(i)
β u∥2

L2(Ωh
β

) + O(β)∥u∥2
L2(Ωh

β
).

The lower bound (2.65) follows easily since the η(i)
β form a quadratic partition of unity on Ωh

β ,
that is

∀ v ∈ L2(Ωh
β), ∥v∥2

L2(Ωh
β

) =
N∑
i=0
∥η(i)
β v∥2

L2(Ωh
β

).

2.5 Proof of Theorem 2.17

In this section, we derive finer asymptotics for the first Dirichlet eigenvalue λβ,1 of −Lβ,
in the regime β → ∞, as described by Theorem 2.17. The proof of (2.24), inspired by a
construction performed in [209] in the case of a static domain, relies on the definition of
accurate approximations of the first Dirichlet eigenvector for −Lβ, so-called quasimodes. In
Section 2.5.1, we derive the necessary local estimates to ensure the well-posedness of the
construction, in the presence of a temperature-dependent boundary. In Section 2.5.2, we
perform the construction of precise quasimodes, on slightly perturbed domains chosen so that
the Dirichlet boundary condition is satisfied. In Section 2.5.3, we present a technical result
to deal with Laplace asymptotics in the presence of moving boundaries. In Section 2.5.4, we
prove the key semiclassical estimates needed to conclude the proof of Theorem 2.17, which is
done in Section 2.5.5.

2.5.1 Local energy estimates

A technical detail one has to address in this construction is that in order for the quasi-
modes (2.75) introduced below to be smooth and supported in Ω±

β , we may need to reduce
the value of δ(β) in Assumption (H2) in order for various energy estimates to hold in the
neighborhoods B(zi, δ(β)) of low-energy saddle points. In fact, we show in Proposition 2.35 that
there exists some constant ε0(V, z0) > 0 independent of β such that requiring δ(β) < ε0(V, z0)
((EK4)) allows for the construction of valid quasimodes.

We begin by recalling some facts concerning the geometry of the basin of attraction A(z0)
and the behavior of V near low-energy critical points. Recall the definition (2.18).

Lemma 2.28. Let z ∈ ∂A(z0) be a local minimum for V |S(z0). Then, ∇V (z) = 0 and Ind(z) =
1.

Proof. From [246, Theorem B.13], we may write S(z0) as an at most countable disjoint union
of submanifolds

S(z0) =
⋃

m∈Z(z0)
W+(m), (2.67)
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where Z(z0) is the set of critical points of V on S(z0) = ∂A(z0) ∩
⋃
z∈M(V )\{z0} ∂A(z), which

all have index at least 1, and we recall the definition (2.10) of the stable manifold W+.
Moreover, W+(m) is a (d− Ind(m))-dimensional manifold.

From (2.67), there exists a unique critical point m of V such that z ∈ W+(m), so that by
definition the gradient flow ϕt(z) converges to m in the limit t→∞, and is included in S(z0),
which is positively stable for the gradient flow, as a union of stable manifolds. Since V decreases
along trajectories of ϕ and z is a local minimum of V on S(z0), it must hold that ∇V (z) = 0.
In particular, m = z.

It only remains to check that Ind(z) = 1. We first show that there exists m1 ∈ Z(z0)
with Ind(m1) = 1 such that z ∈ W+(m1). Assume for the sake of contradiction that this is
not the case, hence there exists r > 0 such that

S(z0) ∩B(z, r) ⊂
⋃

m∈Z(z0)
Ind(m)⩾2

W+(m).

Since the set on the right-hand side has dimension at most d − 2, the set B(z, r) \ S(z0) is
connected (see [180, Theorem IV 4, Corollary 1]). On the other hand, the sets

A′(y) := A(y) \ S(y), y ∈M(V )

are open and pairwise disjoint, and the disjoint open cover

B(z, r) \ S(z0) ⊂
⋃

y∈M(V )
A′(y)

has at least two non-empty components by definition of S(z0), and therefore cannot be
connected.

We finally show that Ind(z) = 1. We already know that Ind(z) ⩾ 1, and again assume for the
sake of contradiction that Ind(z) > 1. Since dim(W−(z)) = Ind(z) and dim(W+(m1)) = d− 1,
there exists v ∈ TzW+(m1) ∩ TzW−(z) such that v ̸= 0. Here, TzW+(m1) denotes the
tangent half-space at the boundary, consisting of initial velocities of paths entering W+(m1)
starting from z. Let then f be a C∞ map [0, 1)→ {z} ∪W+(m1) ⊂ S(z0) such that f(0) = z

and f ′(0+) = v. Expanding, we get

V (f(t)) = V (z) + t2

2 v
⊺∇2V (z)v +O(t3),

where we used ∇V (z) = 0 twice. Since V (f(t)) ⩾ V (z) for t sufficiently small, this im-
plies v⊺∇2V (z)v ⩾ 0. We have reached a contradiction, since TzW−(z) is spanned by the
negative eigendirections of ∇2V (z).

This leads to the following estimation on the position of ∂A(z0) near a low-energy separating
saddle point. Recall the definition of the local coordinates (2.9).

Lemma 2.29. For all T > 0, there exists ε0(T ),K(T ) > 0 such that for all ε < ε0(T ) and
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all i ∈ Imin,
{y(i)

1 < −Tε} ∩B(zi,K(T )
√
ε) ⊂ A(z0),

{y(i)
1 > Tε} ∩B(zi,K(T )

√
ε) ⊂ Rd \ A(z0).

(2.68)

Proof. Let T > 0 and i ∈ Imin. In a neighborhood of zi, the decomposition (2.67) shows
that ∂A(z0) = S(z0) coincides with W+(zi).The stable manifold theorem (see [317, Section
9.2]) implies that S(z0) is smooth in a neighborhood of zi, with furthermore nA(z0)(zi) = v

(i)
1 .

Recall that σA(z0) denotes the signed distance function to ∂A(z0) with the convention (2.4).
Its regularity in a neighborhood of zi is guaranteed by the fact that, according to the
definition (2.20), zi is a separating saddle point. Note that in the case where z ∈ ∂A(z0) is a
non-separating saddle point, the outward normal nA(z0)(z) = −∇σA(z0)(z) is not well-defined.
A Taylor expansion gives

σA(z0)(zi + h) = σA(z0)(zi)− h
⊺nA(z0)(zi) +R(h) = −h⊺v(i)

1 +R(h) = −y(i)
1 (zi + h) +R(h),

where |R(h)| < Mi|h|2 for some constant Mi > 0 and for all |h| < M−1
i . Choosing ε0,i = T

Mi
,

we get, for all 0 < ε < ε0,i and all x ∈ {y(i)
1 < −Tε} ∩B(zi,Ki

√
ε),

σA(z0)(x) ⩾ Tε−K2
iMiε > 0

for Ki <
√
T/Mi, thus x ∈ A(z0) for Ki sufficiently small.

Setting ε0(T ) = mini ε0,i and K(T ) = miniKi, we obtain the first inclusion in (2.68). The
second inclusion follows along the same lines.

The following proposition allows to multiply δ(β) by an arbitrarily small positive constant
factor in Assumption (EK3), which will be convenient for the construction of accurate
quasimodes.

Proposition 2.30. There exists ε0(V, z0), C(V, z0), β0 > 0 such that, provided (EK3) holds
and δ(β) < ε0(V, z0), for all 0 < ρ0 < 1, there exists ρ < ρ0 such that for all β > β0,
Assumption (EK3) again holds upon replacing δ(β) by ρδ(β) and CV by C(V, z0)ρ2, i.e.[

A(z0) ∩ {V < V ∗ + C(V, z0)ρ2δ(β)2}
]
\
⋃

i∈Imin

B(zi, ρδ(β)) ⊂ Ωβ. (EK3’)

Furthermore, ε0(V, z0) can be chosen such that, for each 0 ⩽ i < N , zi is the only critical point
of V in B(zi, 2ε0(V, z0).

Proof. We assume (EK3), and show (EK3’). For any C < CV , the inclusion {V < V ∗ +
Cρ2δ(β)2} ⊂ {V < V ∗ + CV δ(β)2} implies that it is sufficient to show that, for each i ∈ Imin,
it holds, for some C > 0 and 0 < ρ < 1, that

S (i)(ρ, C) := A(z0) ∩
{
V < V ∗ + Cρ2δ(β)2

}
∩ [B(zi, δ(β)) \B(zi, ρδ(β))] ⊂ Ωβ. (2.69)
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The Taylor expansion of V in the coordinates (2.9) around zi gives (recalling V (zi) = V ∗)

V − V ∗ = 1
2

d∑
j=1

ν
(i)
j y

(i)2
j + 1

2

∫ 1

0
(1− t)2D3V

(
y(i)−1

(
ty(i)

))
: y(i)⊗3 dt

= 1
2

d∑
j=1

ν
(i)
j y

(i)2
j +O(|y(i)|3).

(2.70)

It follows that the following estimate holds for all i ∈ Imin and for some M > 0 on B(zi, 1
M ):

Q−(y(i)) ⩽ V − V ∗, (2.71)

where we denote

Q−(y) = M−1|y′|2 −My2
1 = M−1|y|2 − (M +M−1)y2

1.

We note that the set {Q− > 0} is simply given by the cone {|y1| < M−1|y′|}.

We assume that δ(β) < M−1 for sufficiently large β, and let x ∈ S (i)(ρ, C). It follows
from (2.71) and V (x) < V ∗ + Cρ2δ(β)2 that Q−(y(i)(x)) < Cρ2δ(β)2, from which we gather

M−1|y(i)(x)|2 − Cρ2δ(β)2

M +M−1 < y
(i)2
1 (x).

Therefore, for 0 < C < M−1, and since |y(i)(x)| > ρδ(β), it holds that |y(i)
1 (x)| >

√
M−1−C
M+M−1 ρδ(β).

We take C(V, z0) = C = min(CV ,M−1/2), and set ζ :=
√

M−1−C
M+M−1 > 0. We distinguish two

cases

◦ If y(i)
1 (x) < −ζρδ(β) < α(i)/

√
β − γ(β), which holds for β sufficiently large, it holds

asymptotically that x ∈ Ωβ by (H2). This fixes β0.

◦ On the other hand, if y(i)
1 (x) > ζρδ(β) and δ(β) < K(ζ)

√
ε0(ζ), applying Lemma 2.29

with T = ζ and ε = δ(β)2/K(T )2, it holds that x ̸∈ A(z0) provided ρ > δ(β)/K(ζ)2.
This in turn implies x ̸∈ S (i)(ρ, C), which contradicts the assumption on x and precludes
this case.

It follows that, provided δ(β) < ε0(V, z0) := min{M−1,K(ζ)2/2,K(ζ)
√
ε0(ζ)}, there exists 0 <

ρ ⩽ 1/2 and C > 0, such that for sufficiently large β, the required inclusion (2.69) holds. The
conclusion of Proposition 2.30 follows by iterating this argument a finite number of times.

The final condition on ε0(V, z0) can clearly be satisfied, since V has finitely many isolated
critical points in K.

Remark 2.31. The constant ε0(V, z0) is actually a function of mini∈Imin min1⩽j⩽d |ν
(i)
j |, where

we recall the definition (2.5).

We finally state the following simple estimates.
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Lemma 2.32. There exists ε0 > 0 and 0 < Cξ < 1 and 0 < M(V, z0) such that, for all i ∈ Imin

and all 0 < ε < ε0, it holds[
B(zi, ε) \B

(
zi,

1
2ε
)]
∩
{
|y(i)

1 | < Cξε
}
⊂
{
V > V ∗ +M(V, z0)ε2

}
, (2.72)

S(z0) \
⋃

i∈Imin

B(zi, ε) ⊂
{
V > V ∗ +M(V, z0)ε2

}
. (2.73)

Proof. We recall the bound (2.71). We first find Cξ > 0 so that for all 0 < ε < ε′
0 := M−1, (2.72)

holds. For any 0 < Cξ < 1 and all x ∈ {|y(i)
1 | < Cξε} ∩

[
B(zi, ε) \B

(
zi,

1
2ε
)]

, it holds that

Q−(y(i)(x)) ⩾
[ 1

4M − C
2
ξ

(
M + 1

M

)]
ε2.

In particular, choosing Cξ < 1
2
√

1+M2 ensures that V (x)− V ∗ > Q−(y(i)(x)) > 0, and taking

M(V, z0) < 1
4M − C

2
ξ

(
M + 1

M

)
ensures (2.72).

Let us next show (2.73). Since V is decreasing along trajectories of the gradient flow ϕt, it
follows that V |A(z0) is bounded from below by V (z0). From the boundedness of A(z0) ∩ {V <

V ∗} (see Assumption (EK2)) and the Morse property of V , the set Imin is finite, and by
Lemma 2.28 above, the points (zi)i∈Imin are the unique minimizers of V |S(z0). Since Imin is
finite, the stable manifold theorem implies that the restricted Hessian ∇2V |S(z0) is positive
definite in a neighborhood of {zi}i∈Imin . It therefore holds that there exists constants C ′, ε0 > 0
with ε0 ⩽ ε′

0 such that for all 0 < ε < ε0, it holds

S(z0) \
⋃

i∈Imin

B(zi, ε) ⊂
{
V > V ∗ + C ′ε2

}
,

and choosing M(V, z0) < C ′ suffices to ensure (2.73).

2.5.2 Construction of the quasimodes on perturbed domains

From now on, we assume that assumptions (EK1), (EK2) (EK3) and (EK4) hold.

In the literature dealing with semiclassical asymptotics in the presence of a Dirichlet
boundary (see e.g. [159, 209]), a common way to define quasimodes relies on expressing them
in a dedicated set of local coordinates around each (generalized) critical point of interest,
which is adapted to the local quadratic behavior of V and in which the geometry of the
boundary becomes locally linear. This allows to perform the analysis in a simpler geometric
setting. However, the flexibility regarding the specific geometry of the boundary afforded
by Assumption (H2) makes the definition of such a set of local coordinates rather difficult.
Instead, we base our argument on the following comparison principle for Dirichlet eigenvalues,
or so-called domain monotonicity, which is well-known in the case of the Laplacian V = 0.

Proposition 2.33. Let A ⊂ B be bounded open subsets of Rd, β > 0 and k ∈ N∗. Then

λk,β(B) ⩽ λk,β(A),
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where we recall λk,β(A) is the k-th eigenvalue of −Lβ with Dirichlet boundary conditions
on ∂A.

Proof. The fact that X ∈ {A,B} is bounded and open ensures that the Dirichlet realization
of −Lβ on X has pure point spectrum tending to +∞, due to the compact injections H1

0 (X) ↪→
L2(X), and λk,β(X) is therefore well-defined. The inequality follows immediately from the
Min-Max Courant–Fischer principle and the inclusion of form domains:

H1
0,β(A) ⊂ H1

0,β(B).

Our approach relies on the construction, for sufficiently large β, of two modified domains Ω±
β

such that
Ω−
β ⊆ Ωβ ⊆ Ω+

β ,

and whose boundaries are flat in the neighborhood of low-lying separating saddle points close to
the boundary. These domains are defined using Proposition 2.27 with ρ(β) = 2γ(β), and their
boundaries are shaped like hyperplanes in the neighborhood of each zi such that α(i) < +∞,
as made precise by Equation (2.61).

Remark 2.34. Since (EK3) holds for Ωβ, it also holds for Ω±
β . For Ω+

β , this is immediate
since Ωβ ⊂ Ω+

β . For Ω−
β , the proof of Proposition 2.27 shows that one can take Ω−

β to be
a O(δ(β)2)-perturbation of Ωβ outside of

⋃
i∈Imin B (zi, δ(β)). Since V is uniformly Lipschitz

on K, this implies that (EK3) still holds, possibly with a smaller constant CV .

For similar reasons, choosing Ω−
β to be an O(δ(β))-perturbation of Ωβ near critical points zi

such that α(i) = +∞, we may assume that B(zi, δ(β)) ⊂ Ω−
β for β sufficiently large, after

possibly reducing δ(β) by a constant factor. We will henceforth assume that both these
properties hold for Ω−

β .

Upon replacing δ(β) by cδ(β) for some c ⩽ 1
2 in Assumption (H2) (which is allowed according

to (EK4) and Proposition 2.30), we henceforth assume that, for β sufficiently large,

∀ i ∈ Imin, Ω±
β ∩B(zi, δ(β)) =

[
zi + E(i)

(
α(i)
√
β
± 2γ(β)

)]
∩B(zi, δ(β)), (2.74)

which will somewhat simplify the presentation.

The proof of Theorem 2.17 relies on the construction, inspired by [61, 208, 209], of ap-
proximate eigenmodes ψ±

β for the Dirichlet realization of −Lβ on each of the domains Ω±
β ,

which will be sufficiently precise to provide an asymptotic equivalent for λ1,β
(
Ω±
β

)
. The

comparison principle of Proposition 2.33 will finally yield the conclusion of Theorem 2.17.
More precisely, solutions to an elliptic PDE, obtained by linearizing Lβ in the neighborhood
of each of the {zi, i ∈ Imin}, are used to define these quasimodes locally, which are then rather
crudely extended to define elements of the operator domains H1

0,β(Ω±
β ) ∩ H2

β(Ω±
β ). Using

Theorem 2.16 to ensure that a spectral gap exists, one can then use a resolvent estimate
(Lemma 2.39 below) to control the error incurred by projecting the quasimodes onto the
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subspace spanned by the first eigenmode of the Dirichlet realization of −Lβ on Ω±
β . This

allows to derive the Eyring–Kramers formula in a straightforward way.

Our quasimodes are defined by the following convex combinations

ψ±
β = 1

Z±
β

ηβ +
∑
i∈Imin

χ
(i)
β

(
φ

(i),±
β − ηβ

) , (2.75)

where the χβ are defined in (2.51), and where Z±
β are normalizing constants imposing∫

Ω±
β

ψ±
β

2e−βV = 1.

This definition uses auxiliary functions ηβ and
(
φ

(i),±
β

)
i∈Imin

.

The function ηβ is a crude cutoff function used to localize the analysis in some small
neighborhood of the energy basin separating the minimum z0 from the low energy saddle
points {zi, i ∈ Imin}. More precisely, we define the energy cutoff ηβ by

ηβ(x) = η

(
V (x)− V ∗

Cηδ(β)2

)
1A(z0)(x), (2.76)

where η ∈ C∞
c (R) is a model cutoff function chosen such that

1(−∞, 1
2 ) ⩽ η ⩽ 1(−∞,1), (2.77)

and Cη > 0 is a constant we make precise in Proposition 2.35 below. This rough construction
is, in the neighborhood of low-energy saddle points, replaced by a finer local approximation,
which one can (roughly) view as the solution to a linearized Dirichlet problem.

The functions φ(i),±
β are defined, for i ∈ Imin, by

φ
(i),±
β (x) =

∫ α(i)√
β

±2γ(β)

y
(i)
1 (x)

e−β
|ν(i)

1 |
2 t2ξβ(t) dt

∫ α(i)√
β

±2γ(β)

−∞
e−β

|ν(i)
1 |
2 t2ξβ(t) dt

(2.78)

where ξβ is again a C∞
c (R) cutoff function used to localize the support of ∇φ(i)

β . It is
convenient for the analysis to work with a φ(i),±

β whose gradient is localized around zi. We
thus take ξβ ∈ C∞

c (R) to be an even, smooth cutoff function satisfying

1(
−

Cξ
2 δ(β),

Cξ
2 δ(β)

) ⩽ ξβ ⩽ 1(−Cξδ(β),Cξδ(β)) (2.79)

where Cξ > 0 is a constant whose value we make precise in Proposition 2.35 below.

Observe that, upon formally taking ξβ = 1R, and γ(β) = 0 in the definition (2.78), an easy
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computation gives

(
(x− zi)⊺∇2V (zi)∇−

1
β

∆
)
φ

(i)
β = 0 on E(i)

(
α(i)
√
β

)
,

φ
(i)
β = 0 on ∂E(i)

(
α(i)
√
β

)
.

Notice that if zi is far from the boundary, that is if α(i) = +∞, then E(i)
(
α(i)√
β

)
= Rd, so

that the boundary condition disappears. Since the operator (x − zi)⊺∇2V (zi)∇ − 1
β∆ is a

linearization of −Lβ around zi, the definition (2.78) is a natural local approximation for the
Dirichlet eigenvector associated with the smallest eigenvalue λ1,β (which goes to zero as β →∞,
by Theorem 2.16).

Proposition 2.35. There exist a bounded open set U0 ⊂ Rd, and positive constants β0, Cξ, Cη >

0, such that for all β > β0, the functions ψ±
β defined in (2.75) and ηβ defined in (2.76) satisfy

the following conditions:

suppψ±
β ⊂ U0 and z0 is the unique minimum of V in U0, (2.80)

ψ±
β ∈ C

∞
c

(
Rd
)
, (2.81)

ψ±
β ∈ H

1
0,β(Ω±

β ) ∩H2
β(Ω±

β ), (2.82)

∀ i ∈ Imin, supp ηβ ∩
[
B(zi, δ(β)) \B

(
zi,

1
2δ(β)

)]
⊂ {y(i)

1 < −Cξδ(β)}, (2.83)

supp∇ψ±
β \

⋃
i∈Imin

B (zi, δ(β)) ⊂
{
V ⩾ V ∗ + Cη

2 δ(β)2
}
∩ A(z0), (2.84)

ψ±
β ≡

1
Z±
β

φ
(i),±
β on B

(
zi,

1
2δ(β)

)
, (2.85)

ψ±
β ≡

1
Z±
β

on

Ω±
β \

⋃
i∈Imin

B (zi, δ(β))

 ∩ {V < V ∗ + Cη
2 δ(β)2

}
∩ A(z0). (2.86)

Proof. We take Cξ as in Lemma 2.32, and Cη < min{CV , C(V, z0),M(V, z0)}, where CV is
given in (EK3), C(V, z0) is given in Proposition 2.30 and M(V, z0) is given in Lemma 2.32.
In the following proof, we reduce the value of δ(β) several times by invoking (EK4) and
Proposition 2.30.

The properties (2.84), (2.85) and (2.86) are immediate consequences of the definitions (2.75), (2.76),
and are verified by construction regardless of the value of δ(β).
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The property (2.83) follows from (2.76), (2.68) and (2.72), once one imposes δ(β) to be
smaller than ε0(Cξ) obtained in Lemma 2.29 and than ε0 from Lemma 2.32, at least for β
sufficiently large.

Let us now define U0 and prove (2.80). For any local minimum m ∈ Rd of V , standard
arguments (see [317, Chapter 8]) show that the basin A(z0) is open and its boundary contains
no local minimum of V . Furthermore, for ε < 2ε0(V, z0), B(zi, ε) contains no local minimum
of V for any i ∈ Imin. Let us then define

U0 = [(A(z0) \ S(z0) )∩{V < V ∗ + ε}] ∪
⋃

i∈Imin

B(zi, ε).

Note that, according to (EK2) and for ε sufficiently small, this set is bounded and since V ∗ >

V (z0), we may also choose ε sufficiently small so that z0 is the unique minimum of V in U0.

Let us check that suppψ±
β ⊂ U0. For i ∈ Imin, ψ±

β writes

ψ±
β =



χ
(i)
β φ

(i),±
β ≡ φ(i)

β on B

(
zi,

1
2δ(β)

)
,

(1− χ(i)
β )ηβ + χ

(i)
β φ

(i),±
β on B (zi, δ(β)) \B

(
zi,

1
2δ(β)

)
,

ηβ on Rd \
⋃

i∈Imin

B (zi, δ(β)) ,

using, (2.49), (2.52) and the definition (2.75).

Therefore, it is clear that, for Cηδ(β)2, δ(β) < ε, it is the case that suppψ±
β ⊂ U0: the

first condition ensures supp ηβ ⊂ U0, while the second ensures supp
∑
i∈Imin χ

(i)
β ⊂ U0. Re-

ducing δ(β) once again to satisfy these constraints, using (EK4) and Proposition 2.30, (2.80)
follows.

Let us show (2.81). From (2.80), ψ±
β is compactly supported, and from the definition (2.75)

and the smoothness, for each i ∈ Imin, of φ(i),±
β χ

(i)
β on B(zi, δ(β)), and since ψ±

β coincides
with φ(i),±

β onB
(
zi,

1
2δ(β)

)
, it is sufficient to check that ηβ is smooth on Rd\

⋃
i∈Imin B

(
zi,

1
2δ(β)

)
.

In turn, it is sufficient to show, from the definition (2.76), that S(z0) ∩ {V < V ∗ + Cηδ(β)2}
is contained in

⋃
i∈Imin B

(
zi,

1
2δ(β)

)
for β sufficiently large, where we use (2.19). This in

turn follows immediately from the estimate (2.73), and from the choice Cη < M(V, z0),
provided δ(β)/2 < ε0 from Lemma 2.32.

We finally show (2.82). From (2.81), it is clear that ψ±
β ∈ H2

β(Ω±
β ) ∩H1

β(Ω±
β ). Thus it only

remains to show ψ±
β ∈ H1

0,β(Ωβ), for which we in fact show that ψ±
β |∂Ω±

β
≡ 0 holds. Again, we

decompose the argument. On ∂Ω±
β \
[
A(z0)

⋃
i∈Imin B(zi, δ(β))

]
, it holds that ψ±

β ≡ ηβ ≡ 0, and

on
[
∂Ω±

β \
⋃
i∈Imin B(zi, δ(β))

]
∩ A(z0), it holds that ψ±

β ≡ ηβ ≡ 0 from the inclusion (EK3)
and the choice Cη < CV . Now let i ∈ Imin. If α(i) = +∞, then B(zi, δ(β)) ⊂ Ωβ ⊂ Ω+

β

by (H2). By slightly reducing δ(β) if necessary, it is possible to ensure that B(zi, δ(β)) ⊂ Ω−
β

(see Remark 2.34). Thus, in this case, ∂Ω±
β ∩ B(zi, δ(β)) = ∅. We now assume α(i) < +∞.

From (2.74) and (2.78), the boundary condition ψ±
β |∂Ω±

β
≡ 0 is satisfied on ∂Ω±

β ∩B(zi, 1
2δ(β)),

since on this set, ψ±
β ≡ φ

(i),±
β . On ∂Ω±

β ∩
[
B(zi, δ(β)) \B

(
zi,

1
2δ(β)

)]
, this finally follows, for β
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y
(i)
1

{ηβ ̸= 0, 1}
{Q−(y(i)) > 0}
{y(i)

1 = α(i)/
√
β + 2γ(β)}

{y(i)
1 = ±Cξδ(β)}

∂ supp∇χ(i)
β

1 1
2δ(β)

2 δ(β)
3 {V = V ∗}
4 W+(zi)

1 2

3
4

Figure 2.4: Construction of the quasimode (2.75) in the neighborhood of the low-energy saddle
point zi, depicted in the adapted y(i) coordinates. Here, we depict the elements entering into the
construction of ψ+

β , in the case α(i) < +∞. The shaded blue cone corresponds to the positive superlevel
set of the quadratic form Q− from the proof of Proposition 2.30.

sufficiently large, from the energy estimate (2.72), the choices δ(β) < ε, Cη < M(V, z0) and the
fact that, on this set

∣∣∣y(i)
1

∣∣∣ =
∣∣∣α(i)/

√
β ± 2γ(β)

∣∣∣≪ Cξδ(β). Since Ω±
β are regular domains from

Proposition 2.27, ψ±
β ∈ H1

0 (Ω±
β ) = H1

0,β(Ω±
β ) by the trace theorem. The latter equality follows

from the smoothness of V and the boundedness of Ω±
β . This concludes the proof of (2.82).

We assume, for the remainder of this work, and without loss of generality, that δ(β) is
asymptotically sufficiently small for the conclusions of Proposition 2.35 to hold. We now derive
the first preliminary result for the proof of the formula (2.24), which is a variant of the Laplace
method for in moving domains.

2.5.3 Laplace’s method on moving domains

We present in this section a key technical tool, a variant of the Laplace method for exponential
integrals in the case where the domain of integration varies with the asymptotic parameter.
Moreover, we allow for a minimum of the argument of the exponential lying outside of the
domain, but close to the boundary in some scaling made precise in Proposition 2.36. We recall
the symmetric difference of sets, which we denote by

A△B := (A ∪B) \ (A ∩B) = (A \B) ∪ (B \A).

We show the following result.
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Proposition 2.36. Consider a family (Aλ)λ>0 of Borel sets. Assume that there exists K, A∞ ∈
B(Rd) with non-empty interiors, x0 ∈

◦
K, and ϵ > 0 such that the following properties hold:

◦ The set K is compact, and the following inclusion holds:

∀λ > 0, Aλ ⊆ K. (L1)

◦ The functions
f ∈ C4(K), g ∈ C2(K) (L2)

are such that

Argmin
x∈K

f(x) = {x0}, ∇2f(x0) ⩾ ϵId, g(x0) ̸= 0. (L3)

◦ The domains admit a limit in the semiclassical scaling around x0:

1√
λ(Aλ−x0)

a.e.−−−−→
λ→+∞

1A∞ . (L4)

Then,

∫
Aλ

e−λf(x)g(x) dx =
(2π
λ

) d
2

e−λf(x0)
(
det∇2f(x0)

)− 1
2 g(x0)P(G ∈ A∞)

(
1 +O(ε(λ)) +O(λ− r

2 )
)

(2.87)
as λ→ +∞, where G is a Gaussian random variable with distribution N

(
0,∇2f(x0)−1), and

the dominant error terms are determined by:

ε(λ) = P
(
G ∈

[√
λ (Aλ − x0)

]
△A∞

)
,

and r = 2, if A∞ = −A∞,

r = 1 otherwise.

The proof of Proposition 2.36 is postponed to Appendix 2.B below.

Remark 2.37. The conclusion of Proposition 2.36 still holds true assuming only that K
is closed but not necessarily bounded, requiring instead that g ∈ L1(K), and that there
exists δ0 > 0 such that, for any 0 < δ < δ0,

γ(δ) := inf
x∈K\B(x0,δ)

{f(x)− f(x0)} > 0.

The proof of this variant is verbatim the same as the one given in Appendix 2.B below, upon
replacing γ by γ(δ) with δ < δ0 in (2.114).

2.5.4 Low-temperature estimates

We obtain in this section the key estimates on the quasimode (2.75) needed to compute the
asymptotic behavior of ∥∇ψβ∥L2

β
(Ωβ) and ∥Lβψβ∥L2

β
(Ωβ) in the limit β →∞. Good estimates
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for these quantities, summarized in Proposition 2.38, together with a resolvent estimate given
by Lemma 2.39 below, will yield the modified Eyring–Kramers formula (2.24) in the proof of
Theorem 2.17, concluded in section 2.5.5.

For convenience, we decompose the analysis according to the following partition of the
domain Ωβ:

Ω±
β =

⋃
i∈Imin

[
A(i)
β ∪B(i),±

β ∪C(i)
β ∪D(i),±

β

]
∪Eβ ∪ Fβ ∪G±

β , (2.88)

where, for i ∈ Imin:

A(i)
β =

[
B (zi, δ(β)) \B

(
zi,

1
2δ(β)

)]
∩
{
y

(i)
1 < −Cξδ(β)

}
∩
{
V − V ∗ ⩾ Cηδ(β)2

}
, (2.89)

B(i),±
β = Ω±

β ∩
[
B (zi, δ(β)) \B

(
zi,

1
2δ(β)

)]
∩
{
|y(i)

1 | ⩽ Cξδ(β)
}
, (2.90)

C(i)
β =

[
B (zi, δ(β)) \B

(
zi,

1
2δ(β)

)]
∩
{1

2Cηδ(β)2 < V − V ∗ < Cηδ(β)2
}
∩
{
y

(i)
1 < −Cξδ(β)

}
,

(2.91)

D(i),±
β = Ω±

β ∩B
(
zi,

1
2δ(β)

)
,

Eβ =
[
A(z0) ∩

{
Cη
2 δ(β)2 ⩽ V − V ∗ ⩽ Cηδ(β)2

}]
\
⋃

i∈Imin

B (zi, δ(β)) ,

Fβ =
[
A(z0) ∩

{
V − V ∗ <

Cη
2 δ(β)2

}]
\
⋃

i∈Imin

B

(
zi,

1
2δ(β)

)
,

G±
β = Ωβ \

 ⋃
i∈Imin

[
A(i)
β ∪B(i),±

β ∪C(i)
β ∪D(i),±

β

]
∪Eβ ∪ Fβ

 .
Note that, according to (2.74), the sets B(i),±

β and D(i),±
β have simple representations, namely

D(i),±
β =

{
y

(i)
1 < α(i)/

√
β ± 2γ(β)

}
∩B

(
zi,

1
2δ(β)

)
,

B(i),±
β =

{
y

(i)
1 < α(i)/

√
β ± 2γ(β)

}
∩
[
B (zi, δ(β)) \B

(
zi,

1
2δ(β)

)]
∩
{
|y(i)

1 | ⩽ Cξδ(β)
}
.

We refer the reader to Figure 2.5 for a pictorial representation of these sets. Before the
statements and proof of the necessary estimates, let us give some informal indications of
our strategy. On the high-energy sets A(i)

β , B(i),±
β , C(i)

β and Eβ (contained in {V ⩾ V ∗ +
Cηδ(β)2/2}), crude uniform bounds on the derivatives of χ(i)

β , ηβ and φ(i)
β will suffice to identify

the contribution of these sets to the L2
β(Ωβ)-norms of both∇ψ±

β and Lβψ±
β as superpolynomially

decaying error terms. The sets Fβ and G±
β are constructed so that ψ±

β is constant on each
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D(i),−
β B(i),−

βB(i),−
β

A(i)
βA(i)

β

C(i)
βC(i)

β

EβEβ Fβ

G−
β

G−
β

{y(i)
1 = −Cξδ(β)}

{V = V ∗ + Cηδ(β)2}

{V = V ∗ + Cη

2 δ(β)2}

Rd \ Ω+
β

∂Ω−
β

zi

(a) The case α(i) < +∞. The boundaries ∂Ω±
β are hyperplanes inside B(zi, δ(β)), separated by a distance 4γ(β),

as described in (2.74).

D(i),±
β B(i),±

β

B(i),±
β

A(i)
βA(i)

β

C(i)
βC(i)

β

EβEβ Fβ

G−
β

zi

Rd \ Ω+
β

∂Ω−
β

{y(i)
1 = Cξδ(β)}

∂A(z0)

(b) The case α(i) = +∞. The width of the shell Ω+
β \ Ω−

β is of order ε1(β) around zi, as in the proof of
Proposition 2.27.

Figure 2.5: Schematic representation of the partition (2.88).
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of them, with respective values 1/Z±
β and 0, and will not contribute to the estimates. The

only contribution left are from D(i),±
β , on which the ψ±

β coincide with the finer approximations
1
Z±

β

φ
(i),±
β , according to (2.85). The contribution of this set to the L2

β(Ω±
β )-norm of ∇ψ±

β is
more finely analyzed using Proposition 2.36, giving sufficiently precise asymptotics.

We now state the required estimates.

Proposition 2.38. The following estimates hold:

Z±
β = e− β

2 V (z0)
(2π
β

) d
4
| det∇2V (z0)|−

1
4
(
1 +O(β−1)

)
, (2.92)

∥∥∥∇ψ±
β

∥∥∥2

L2
β

(
Ω±

β
\
⋃

i∈Imin
D(i),±

β

) = O
(

e
−β
(
V ∗−V (z0)+ Cη

3 δ(β)2
))

, (2.93)

∥Lβψ±
β ∥

2
L2

β

(
Ω±

β
\
⋃

i∈Imin
D(i),±

β

) = O
(

e
−β
(
V ∗−V (z0)+ Cη

3 δ(β)2
))

, (2.94)

and for all i ∈ Imin, the following hold:

∥∥∥∇ψ±
β

∥∥∥2

L2
β

(D(i),±
β

)
= β|ν(i)

1 |
2πΦ

(
|ν(i)

1 |
1
2α(i)

)√ det∇2V (z0)
|det∇2V (zi)|

e−β(V ∗−V (z0)) (1 +O(ri(β))) , (2.95)

where Φ is given by (2.25), and the dominant error term ri is given by:

ri(β) =

β−1, α(i) = +∞,
√
βγ(β) + β− 1

2 , α(i) < +∞.
(2.96)

Finally, we have

∥Lβψ±
β ∥

2
L2

β
(D(i),±

β
)

= O
(
β−2δ(β)−2

) ∥∥∥∇ψ±
β

∥∥∥2

L2
β

(D(i),±
β

)
(2.97)

Proof. As a first step, we derive the asymptotic behavior of the normalizing constant as stated
in (2.92).

Asymptotic behavior of Z±
β .

Using (2.80), and since B(z0, δ(β)) ⊂ Ωβ for sufficiently large β by Assumptions (EK1)
and (H2), a direct application of Proposition 2.36 to the inequality

∫
B(z0,δ(β))

ηβ +
∑
i∈Imin

χ
(i)
β

(
φ

(i),±
β − ηβ

)2

e−βV ⩽ Z±2
β

⩽
∫

U0

ηβ +
∑
i∈Imin

χ
(i)
β

(
φ

(i),±
β − ηβ

)2

e−βV ,
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since 1B(z0,δ(β)) ⩽
[
ηβ +

∑
i∈Imin χ

(i)
β

(
φ

(i)
β − ηβ

)]
⩽ 1U0

, gives (2.92). Indeed, by a standard

Gaussian decay estimate, for ξ ∼ N (0,∇2V (z0)−1), P(ξ ̸∈ B(0,
√
βδ(β))) = O

(
e−cβδ(β)2

)
, and

P(ξ ̸∈ B(0,
√
βU0)) = O

(
e−cβ

)
for some c > 0.

It follows from the scaling (H3) that the error term ϵ(β) in (2.87) decays superpolynomially,
while theO(β− 1

2 ) term vanishes by symmetry of the limiting domainsB(0,
√
βδ(β)),

√
β (U0 − z0)→

Rd, leaving a dominant error term in O(β−1). This, of course, corresponds to the usual Laplace
method.

As announced, the remainder of the analysis is split according to the partition (2.88). We
now let i ∈ Imin throughout the remainder of the proof.

Analysis on Fβ ∪G±
β .

These sets do not contributes to the estimates (2.93), (2.94), since
(
Fβ ∪G±

β

)
∩supp∇ψ±

β =
∅ and suppLβψ±

β ⊆ supp∇ψ±
β .

Indeed, on G±
β , it holds that both χ

(i)
β and ηβ are zero, since G±

β ∩
⋃
i∈Imin B(zi, δ(β)) = ∅,

which ensures χ(i)
β ≡ 0 according to (2.52), and G±

β ⊂
(
Rd \ A(z0)

)
∪
{
V ⩾ V ∗ + Cβδ(β)2},

which ensures ηβ ≡ 0 according to (2.76). On Fβ, it holds that φ(i),±
β ≡ 1 for all i ∈ Imin,

according to (2.83) and ηβ ≡ 1. Thus, ψ±
β ≡ 1 as well as a convex combination of ηβ and

the φ(i),±
β . Therefore, for x ∈ Fβ ∪G±

β , one has ∇ψ±
β = 0 and Lβψ±

β = 0.

Analysis on A(i)
β .

From (2.76),(2.77) and (2.89), we have ηβ ≡ 0 on A(i)
β . Furthermore, from (2.79), φ(i),±

β ≡ 1
in this set, hence ψ±

β coincides with 1
Z±

β

χ
(i)
β on A(i)

β , which gives

∇ψ±
β = 1

Z±
β

∇χ(i)
β , Lβψ±

β = 1
Z±
β

(
−∇V · ∇χ(i)

β + 1
β

∆χ(i)
β

)
,

from which it follows that

∥∇ψ±
β ∥L∞(A(i)

β
) = O

(
e

β
2 V (z0)β

d
4 δ(β)−1

)
, ∥Lβψ±

β ∥L∞(A(i)
β

) = O
(
e

β
2 V (z0)β

d
4
)
,

where we used the estimates (2.92) and (2.53), the first-order estimate ∇V ·∇χ(i)
β = O(1) on the

domain A(i)
β , and β−1δ(β)−2 = O(1) to absorb the contribution of the Laplacian term ∆χ(i)

β /β.
We then estimate

∥∇ψ±
β ∥

2
L2

β
(A(i)

β
)

= O
(
β

d
2 δ(β)d−2e−β(V ∗−V (z0)+Cηδ(β)2)

)
= O

(
e−β(V ∗−V (z0)+ Cη

3 δ(β)2)
)
,

∥Lβψ±
β ∥

2
L2

β
(A(i)

β
)

= O
(
β

d
2 δ(β)de−β(V ∗−V (z0)+Cηδ(β)2)

)
= O

(
e−β(V ∗−V (z0)+ Cη

3 δ(β)2)
)
,

using the inclusions A(i)
β ⊂

{
V − V ∗ ⩾ Cηδ(β)2}, A(i)

β ⊂ B(zi, δ(β)), the fact that δ(β) is
bounded by ε, and the superpolynomial decay of e−βδ(β)2 which follows from (H3).



Chapter 2. Quantitative spectral asymptotics for reversible diffusions in
temperature-dependent domains. 141

Analysis on B(i),±
β .

From (2.76), (2.83) and (2.90), we still have ηβ ≡ 0 on B(i),±
β , however φ(i),±

β is not constant
over this set. Thus, ψ±

β is given by 1
Z±

β

χ
(i)
β φ

(i),±
β on B(i),±

β , which yields

∇ψ±
β = 1

Z±
β

(
φ

(i),±
β ∇χ(i)

β + χ
(i)
β ∇φ

(i),±
β

)
,

Lβψ±
β = 1

Z±
β

(
φ

(i),±
β Lβχ

(i)
β + χ

(i)
β Lβφ

(i),±
β + 2

β
∇φ(i),±

β · ∇χ(i)
β

)
.

At this point, we need uniform estimates in B(i),±
β for derivatives ∂αφ

(i),±
β for |α| ⩽ 2.

Since φ(i),±
β is in fact simply a function of the affine map y(i)

1 , the problem is that of bounding
the first two derivatives of

y1 7→
1

C
(i),±
β

∫ α(i)√
β

±2γ(β)

y1
e−β

|ν(i)
1 |
2 t2ξβ(t) dt, C

(i),±
β :=

∫ α(i)√
β

±2γ(β)

−∞
e−β

|ν(i)
1 |
2 t2ξβ(t) dt.

We first estimate C(i),±
β by a direct application of Proposition 2.36 in the one-dimensional case.

It gives

C
(i),±
β =

√
2π

β|ν(i)
1 |

Φ
(
|ν(i)

1 |
1
2α(i)

)
(1 + ei(β)) , (2.98)

where ei(β) = O
(√

βγ(β) + β− 1
2
)
, α(i) < +∞,

ei(β) = O
(
β−1) , α(i) = +∞.

(2.99)

To obtain the formula, we note that for G ∼ N (0, |ν(i)
1 |−1),

P
(
G ∈

(
−∞, α(i) ± 2

√
βγ(β)

))
β→∞−−−→ Φ

(
|ν(i)

1 |
1
2α(i)

)
,

and
P
(
G ∈

(
−∞, α(i)

)
△
(
−∞, α(i) ± 2

√
βγ(β)

))
= O

(√
βγ(β)

)
(2.100)

in the case α(i) < +∞. In the case α(i) = +∞, note that the domain of integration is identically
equal to R for any β, and thus the integration error vanishes, leaving only an error term in β−1

corresponding to the symmetry of the limiting domain. In any case, C(i),±
β = O

(
β− 1

2
)
, which

is sufficient for our purposes, although the finer estimate (2.98) will be useful for the analysis
on D(i),±

β .

We then compute

∇φ(i),±
β = − 1

C
(i),±
β

e−β
|ν(i)

1 |
2 y

(i)2
1 ξβ(y(i)

1 )v(i)
1 ,

∆φ(i),±
β = 1

C
(i),±
β

[
β|ν(i)

1 |y
(i)
1 ξβ(y(i)

1 )− ξ′
β(y(i)

1 )
]

e−β
|ν(i)

1 |
2 y

(i)2
1 ,

(2.101)
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using ∇y(i)
1 ≡ v

(i)
1 and |v(i)

1 | = 1. It follows from 0 ⩽ e−β
|ν(i)

1 |
2 y2

1 , ξ
(i)
β (y1) ⩽ 1 that

∥∇φ(i),±
β ∥

L∞(B(i),±
β

) = O(β
1
2 ), ∥∆φ(i),±

β ∥
L∞(B(i),±

β
) = O

(
β

1
2
[
βδ(β) + δ(β)−1

])
= O(β

3
2 ),

using ∥ξ(i)′
β ∥∞ = O

(
δ(β)−1), y(i)

1 = O(δ(β)) on B(i),±
β , δ(β) = O(1) and the scaling β

1
2 δ(β)−1 ≪

β/
√

log β given by Assumption (H3). It follows that ∥Lβφ
(i),±
β ∥

L∞(B(i),±
β

) = O(β
1
2 ).

Plugging in these estimates and collecting terms (reusing the estimates∇χ(i)
β = O(δ(β)−1), Lβχ

(i)
β =

O(1) on B(i),±
β ) gives, using 0 ⩽ χ

(i)
β , φ

(i),±
β ⩽ 1:

∥∇ψ±
β ∥L∞(B(i),±

β
) = O

(
e

β
2 V (z0)β

d
4
[
δ(β)−1 + β

1
2
])

= O
(
e

β
2 V (z0)β

d
4 + 1

2
)
,

∥Lβψ±
β ∥L∞(B(i),±

β
) = O

(
e

β
2 V (z0)β

d
4
[
1 + β

1
2 + β− 1

2 δ(β)−1
])

= O
(
e

β
2 V (z0)β

d
4 + 1

2
)
,

using δ(β)−1 = O
(
β

1
2
)

to estimate the square bracketed terms. This leads to

∥∇ψ±
β ∥

2
L2

β
(B(i),±

β
)
, ∥Lβψ±

β ∥
2
L2

β
(B(i),±

β
)

= O
(
β

d
2 +1δ(β)de−β(V ∗−V (z0)+Cηδ(β)2)

)
= O

(
e−β(V ∗−V (z0)+ Cη

3 δ(β)2)
)
,

similarly to the analysis on A(i)
β , since B(i),±

β ⊂ B(zi, δ(β)) and B(i),±
β ⊂ {V > V ∗ + Cηδ(β)2}

using (2.72).

Analysis on C(i)
β .

By the definition (2.91), C(i)
β ⊂ {y

(i)
1 < −Cξδ(β)}, hence φ(i)

β ≡ 1 on this set. Thus, we have
locally:

ψβ = 1
Z±
β

(
ηβ + χ

(i)
β (1− ηβ)

)
,

whence
∇ψ±

β = 1
Z±
β

(
[1− ηβ]∇χ(i)

β +
[
1− χ(i)

β

]
∇ηβ

)
,

Lβψ±
β = 1

Z±
β

(
[1− ηβ]Lβχ

(i)
β +

[
1− χ(i)

β

]
Lβηβ −

2
β
∇χ(i)

β · ∇ηβ
)
,

by straightforward manipulations. One then only needs to check that

∥∇ηβ∥L∞(C(i)
β

) = O
(
δ(β)−2

)
, ∥∆ηβ∥L∞(C(i)

β
) = O

(
δ(β)−4

)
to obtain by similar arguments:

∥∇ψ±
β ∥

2
L2

β
(C(i)

β
)
, ∥Lβψ±

β ∥
2
L2

β
(C(i)

β
)

= O
(
β

d
2 δ(β)d−4e−β(V ∗−V (z0)+ Cη

2 δ(β)2)
)

= O
(

e−β(V ∗−V (z0)+ Cη
3 δ(β)2)

)
,
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using the inclusions C(i)
β ⊂ B(zi, δ(β)), C(i)

β ⊂
{
V − V ∗ ⩾ Cη

2 δ(β)2
}

.

Analysis on Eβ.
On the set Eβ, we have χ(i)

β ≡ 0 for all i ∈ Imin, hence ψ±
β coincides with 1

Z±
β

ηβ. Reusing

the bounds on the derivatives of ηβ from the analysis on C(i)
β (here the fact that Eβ ⊂ K is

bounded), we obtain once again:

∥∇ψ±
β ∥

2
L2

β
(Eβ), ∥Lβψ

±
β ∥

2
L2

β
(Eβ) = O

(
β

d
2 δ(β)−4e−β(V ∗−V (z0)+ Cη

2 δ(β)2)
)

= O
(

e−β(V ∗−V (z0)+ Cη
3 δ(β)2)

)
,

Summing the estimates on A(i)
β , B(i),±

β , C(i)
β and Eβ, we obtain (2.93) and (2.94).

Analysis on D(i),±
β .

By (2.85), ψ±
β coincides with 1

Z±
β

φ
(i),±
β on D(i),±

β , and here we turn to the finer estimates
provided by Proposition 2.36. Using the computation (2.101) once again, we get

|∇φ(i),±
β |2e−βV = 1(

C
(i),±
β

)2 e
−β
(

|ν(i)
1 |y(i)2

1 +V
)
ξβ(y(i)

1 )2.

We next note using the Taylor expansion (2.70) that Wi(x) := |ν(i)
1 |y

(i)
1 (x)2 + V (x) has a strict

local minimum at zi, with a Hessian given by

∇2Wi(zi) = abs
(
∇2V (zi)

)
= U (i)diag

(
|ν(i)

1 |, . . . , ν
(i)
d

)
U (i)⊤,

see (2.6). Moreover, this minimum is unique in B
(
zi,

1
2δ(β)

)
for δ(β) sufficiently small, which

we may assume upon reducing δ(β) once again.

Since ξβ(y(i)
1 (zi))2 = ξβ(0) = 1 we may estimate ∥∇φ(i),±

β ∥
L2

β
(D(i),±

β
) using Proposition 2.36.

Let us first note that, according to (2.74) and (H2),
√
β
(
D(i),±
β − zi

)
β→∞−−−→ E(i)(α(i)) in

the sense of (L4). Let G ∼ N
(
0, abs

(
∇2V (zi)

)−1). It is then easy to check that

P
(
G ∈ E(i)(α(i))

)
= P

(
G⊤v

(i)
1 < α(i)

)
= Φ

(
|ν(i)

1 |
1
2α(i)

)
,

since G⊤v
(i)
1 ∼ N (0, |ν(i)

1 |−1). Furthermore,

hi(β) := P
(
G ∈

√
β
[
D(i),±
β − zi

]
△E(i)(α(i))

)
=

O
(√

βγ(β) + e−cβδ(β)2
)
, α(i) < +∞,

O
(
e−cβδ(β)2

)
, α(i) = +∞.

(2.102)
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Indeed, it follows from (2.74) and (H2) that the following inclusion holds:

√
β
(
D(i),±
β − zi

)
△E(i)(α(i)) ⊂

[
E(i)(α(i))△E(i)(α(i) ±

√
β2γ(β))

]
∪B

(
0,
√
β

2 δ(β)
)c

,

(2.103)
which we use to estimate hi(β) with the union bound. In the case α(i) = +∞, the leftmost set
in (2.103) is empty and the only contribution is from the second term, which is handled using
a standard Gaussian estimate

P
(
G ̸∈ B

(
0,
√
βδ(β)

2

))
= O

(
e−cβδ(β)2)

for some c > 0 depending only on i.

In the case α(i) < +∞, we have a contribution from the leftmost set in (2.103)

P
(
G ∈ E(i)(α(i))△E(i)(α(i) ±

√
βγ(β))

)
= P

(
G⊤v

(i)
1 ∈

(
α(i), α(i) ± 2γ(β)

))
,

whose asymptotic behavior has already been computed in (2.100). The union bound yields (2.102).

Apply Proposition 2.36, we estimate

∥∇φ(i),±
β ∥2

L2
β

(D(i),±
β

)
= (C(i),±

β )−2
(2π
β

) d
2

e−βV ∗
∣∣∣det∇2V (zi)

∣∣∣− 1
2 Φ

(
|ν(i)

1 |
1
2α(i)

)
(1 + ei(β)) ,

= β|ν(i)
1 |

1
2

Φ
(
|ν(i)

1 |
1
2α(i)

) (2π
β

) d
2

e−βV ∗
∣∣∣det∇2V (zi)

∣∣∣− 1
2 (1 + ei(β)) .

The error term ei is once again given by (2.99) (since the limiting domain is symmetric if and
only if α(i) = +∞), and we used (2.98) in the final line. Combining this estimate with (2.92)
finally yields (2.95).

Let us show (2.97). We write, for x ∈ D(i),±
β ⊆ B

(
zi,

1
2δ(β)

)
, in the y(i)-coordinates and

for δ(β) sufficiently small,

Lβψ±
β = 1

Z±
β

(
−∇V · ∇φ(i),±

β + 1
β

∆φ(i),±
β

)

= e−β
|ν(i)

1 |
2 y

(i)2
1

Z±
β C

(i),±
β

ξβ(y(i)
1 )∇V · ∇y(i)

1

+ 1
β

[
−ξβ(y(i)

1 )∆y(i)
1 +

(
−ξ′

β(y(i)
1 ) + βξβ(y(i)

1 )|ν(i)
1 |y

(i)
1

) ∣∣∣∇y(i)
1

∣∣∣2]


= e−β
|ν(i)

1 |
2 y

(i)2
1

Z±
β C

(i),±
β

(
ξβ(y(i)

1 )v(i)
1 ·

[
∇V + |ν(i)

1 |y
(i)
1 v

(i)
1

]
+O

(
β−1∥ξ′

β∥L∞(R)
))

= e−β
|ν(i)

1 |
2 y

(i)2
1

Z±
β C

(i),±
β

(
O
(
|y(i)|2

)
+O

(
β−1δ(β)−1

))

using a first-order Taylor expansion of ∇V around zi in the last line. We now estimate
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the L2
β

(
D(i),±
β

)
-norms. Noting that, by the change of variables z =

√
βy(i),

∫
D(i),±

β

|y(i)|4e
−β
(

|ν(i)
1 |y(i)2

1 +V
)

= O
(
β− d

2 −2e−βV ∗)
,

we get

∥Lβψ±
β ∥

2
L2

β
(D(i),±

β
)

=
(
Z±
β C

(i),±
β

)−2
O (β− d

2 −2e−βV ∗)+ β−2δ(β)−2
∥∥∥∥∥e−β

|ν(i)
1 |
2 y

(i)2
1

∥∥∥∥∥
2

L2
β

(D(i),±
β

)


=
(
Z±
β C

(i),±
β

)−2
O
(
β−2δ(β)−2

)
β− d

2 e−βV ∗

= O
(
β−2δ(β)−2

)
∥∇ψ±

β ∥
2
L2

β
(D(i),±

β
)
,

where we used the same change of variables in the second line, and the estimates (2.92), (2.98)
and (2.95) in the last line. This concludes the proof of (2.97).

2.5.5 Conclusion of the proof of Theorem 2.17

The last tool for the proof is the following resolvent estimate, which was already used for the
estimation of metastable exit times in the semiclassical approach, see [209, Proposition 27]
and [227, Proposition 3.4]. We include its proof (in our weighted L2

β setting) for the sake of
completeness.

Throughout this section, let us denote by

λ±
1,β := λ1,β(Ω±

β ), u±
1,β := u1,β(Ω±

β ),

the principal Dirichlet eigenpairs of −Lβ in Ω±
β .

We introduce the spectral projectors associated with the principal eigenspaces: for all φ ∈
L2
β(Ω±

β ),

π±
β φ :=

〈
u±

1,β, φ
〉
L2

β
(Ω±

β
)

∥u±
1,β∥2L2

β
(Ω±

β
)
u±

1,β.

Lemma 2.39. Fix u ∈ H1
0,β(Ω±

β ) ∩H2
β(Ω±

β ). Then,

∥(1− π±
β )u∥L2

β
(Ω±

β
) = O(∥Lβu∥L2

β
(Ω±

β
)), (2.104)

∥∥∥∇π±
β u
∥∥∥2

L2
β

(Ω±
β

)
= ∥∇u∥2L2

β
(Ω±

β
) +O

(
β∥Lβu∥2L2

β
(Ω±

β
)

)
. (2.105)

Proof. Let us first check that, thanks to Assumption (EK1), λH
1 = 0 and λH

2 > 0, where we
recall λH

j is defined in (2.45). We recall the expressions (2.37) and (2.38) for the harmonic
eigenvalues. In the following, we use the multi-index enumeration convention for the spectra,
i.e. Spec

(
K

(i)
α(i)

)
=
{
λ

(i)
n,α(i)

}
n∈Nd

. Note that the ground state energy of each of these operators

is given by λ(i)
(0,...,0),α(i) ⩾ 0, which implies that λH

1 = 0. Let us now show that λH
2 > 0.
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It is clear that λ(0)
n,∞ > 0 for n ̸= 0 ∈ Nd. Besides, for i ⩾ N0, it holds

λ
(i)
(0,...,0),α(i) = |ν(i)

1 ||µ0,α(i)(|ν(i)
1 |/2)1/2 −

ν
(i)
1
2 + 1

2

d∑
j=2

[
|ν(i)
j | − ν

(i)
j

]
⩾

1
2

d∑
j=1

[
|ν(i)
j | − ν

(i)
j

]
> 0,

since Ind(zi) ⩾ 1. We used the inequality µ0,θ ⩾ µ0,∞ = 1
2 for any θ ∈ R ∪ {∞}, which follows

directly from the Courant–Fischer principle, similarly to the proof of Proposition 2.33.
To get λH

2 > 0, is therefore remains to show that λ(i)
(0,...,0),α(i) > 0 for 1 ⩽ i < N0. For these

local minima zi, it holds that α(i) < +∞ by Assumption (EK1). It is thus sufficient to check
that µ0,θ >

1
2 = µ0,∞ for any θ ∈ R. In fact it holds more generally that µk,θ > µk,∞ for k ∈ N.

The inequality µk,θ ⩾ µk,∞ follows again from the domain monotonicity of Dirichlet eigenvalues.
For the strict inequality, we note that the identity Hθvk,θ = µk,∞vk,θ would contradict the fact
that µk,∞ is a simple eigenvalue of H∞, since vk,∞ and the trivial extension of vk,θ are linearly
independent in L2(R). This concludes the proof of λH

2 > 0.

Hence, by Theorem 2.16, there exists r, β0 > 0 such that for all β > β0:

|λ1,β| < r, λ2,β > 3r,

so that the circular contour Γ2r = {2re2iπt, 0 ⩽ t ⩽ 1} is at distance at least r from the
Dirichlet spectrum of −Lβ on Ω±

β . When needed, in this proof, we indicate explicitly by L±
β

the fact that we consider the Dirichlet realization of Lβ on Ω±
β .

A standard corollary of the spectral theorem then yields the following uniform resolvent
estimate:

∀z ∈ Γ2r, ∥(−L±
β − z)

−1∥B(L2
β

(Ω±
β

)) ⩽
1
r
.

Furthermore, π±
β may be expressed using the contour integral

π±
β = − 1

2iπ

∮
Γ2r

(L±
β − z)

−1 dz,

so that, for all u ∈ H1
0,β(Ω±

β ) ∩H2
β(Ω±

β ),

(1− π±
β )u = − 1

2iπ

∮
Γ2r

[
z−1 − (L±

β − z)
−1
]
u dz

= −
( 1

2iπ

∮
Γ2r

z−1(L±
β − z)

−1 dz
)
L±
β u,

where we used the second resolvent identity in the last line. Estimating the L2
β norm then

yields (2.104):
∥(1− π±

β )u∥L2
β

(Ω±
β

) ⩽
1
r
∥Lβu∥L2

β
(Ω±

β
).
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For (2.105), we use commutativity and the projector identity π±
β L

±
β π

±
β = π±

β L
±
β to write:

∥∥∥∇π±
β u
∥∥∥2

L2
β

(Ω±
β

)
= −β

〈
π±
β u,Lβπ

±
β u
〉
L2

β
(Ω±

β
)

= −β
〈
π±
β u,Lβu

〉
L2

β
(Ω±

β
)

= −β ⟨u,Lβu⟩L2
β

(Ω±
β

) − β
〈
(π±
β − 1)u,Lβu

〉
L2

β
(Ω±

β
)

= ∥∇u∥2L2
β

(Ω±
β

) +O(β∥Lβu∥2L2
β

(Ω±
β

)),

where we used a Cauchy–Schwarz inequality and (2.104) to obtain the last equality.

We are now in a position to derive the modified Eyring–Kramers formula (2.24).

Proof of Theorem 2.17. Recall that ψ±
β denotes the quasimode defined in Section 2.5.2. We

write, using (2.104) and (2.105):

λ±
1,β = 1

β

∥∥∥∇π±
β ψ

±
β

∥∥∥2

L2
β

(Ω±
β

)

∥π±
β ψ

±
β ∥2L2

β
(Ω±

β
)

= 1
β

∥∇ψ±
β ∥2L2

β
(Ω±

β
) +O(β∥Lβψ±

β ∥2L2
β

(Ω±
β

))

∥ψ±
β − (1− π±

β )ψ±
β ∥2L2

β
(Ω±

β
)

= 1
β

∥∇ψ±
β ∥2L2

β
(Ω±

β
) +O(β∥Lβψ±

β ∥2L2
β

(Ω±
β

))

1− ∥(1− π±
β )ψ±

β ∥2L2
β

(Ω±
β

)

= 1
β

∥∇ψ±
β ∥2L2

β
(Ω±

β
) +O(β∥Lβψ±

β ∥2L2
β

(Ω±
β

))

1 +O(∥Lβψ±
β ∥2L2

β
(Ω±

β
))

= 1
β
∥∇ψ±

β ∥
2
L2

β
(Ω±

β
)

(
1 +O(∥Lβψ±

β ∥
2
L2

β
(Ω±

β
))
)

+O(∥Lβψ±
β ∥

2
L2

β
(Ω±

β
)),

where used (2.104) in the penultimate line, and the fact that ∥Lβψ±
β ∥L2

β
(Ω±

β
) = O(1) to conclude.

Now, using the estimates (2.93), (2.95) of Proposition 2.38 yields

∥∇ψ±
β ∥

2
L2

β
(Ω±

β
) =

∑
i∈Imin

∥∇ψ±
β ∥

2
L2

β
(D(i),±

β
)

+O
(

e
−β
(
V ∗−V (z0)+ Cη

3 δ(β)2
))

= e−β(V ∗−V (z0))


∑
i∈Imin

β|ν(i)
1 |

2πΦ
(
|ν(i)

1 |
1
2α(i)

)√ det∇2V (z0)
|det∇2V (zi)|

[1 +O (ri(β))]

+O
(

e−β Cη
3 δ(β)2

)


= e−β(V ∗−V (z0))

 ∑
i∈Imin

β|ν(i)
1 |

2πΦ
(
|ν(i)

1 |
1
2α(i)

)√ det∇2V (z0)
|det∇2V (zi)|

[1 +O (ri(β))]

 ,
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using the fact that e−β Cη
3 δ(β)2 = O (βri(β)). The estimates (2.94) and (2.97) give

∥Lβψ±
β ∥

2
L2

β
(Ω±

β
) =

∑
i∈Imin

O(β−2δ(β)−2)∥∇ψ±
β ∥

2
L2

β
(D(i),±

β
)

+O
(

e
−β
(
V ∗−V (z0)+ Cη

3 δ(β)2
))

= O(β−2δ(β)−2)
(
∥∇ψ±

β ∥
2
L2

β
(Ω±

β
) − ∥∇ψ

±
β ∥

2
L2

β
(Ω±

β
\
⋃

i∈Imin
D(i),±

β
)

)

+O
(

e
−β
(
V ∗−V (z0)+ Cη

3 δ(β)2
))

= O(β−2δ(β)−2)∥∇ψ±
β ∥

2
L2

β
(Ω±

β
) +O

(
e

−β
(
V ∗−V (z0)+ Cη

3 δ(β)2
))

= O(β−2δ(β)−2)∥∇ψ±
β ∥

2
L2

β
(Ω±

β
).

In the third line, we used (EK4) to write β−2δ(β)−2e
−β
(
V ∗−V (z0)+ Cη

3 δ(β)2
)

= O
(

e
−β
(
V ∗−V (z0)+ Cη

3 δ(β)2
))

.

In the last line, we use the previous estimate ∥∇ψ±
β ∥2L2

β
(Ω±

β
) = O(βe−β(V ∗−V (z0))) to absorb

the exponential error term in the prefactor O(β−2δ(β)−2). Combining these two estimates, we
obtain

λ±
1,β = 1

β
∥∇ψ±

β ∥
2
L2

β
(Ω±

β
)

(
1 +O(∥Lβψ±

β ∥
2
L2

β
(Ω±

β
)) +O

(
β−1δ(β)−2

))

= e−β(V ∗−V (z0))

 ∑
i∈Imin

|ν(i)
1 |

2πΦ
(
|ν(i)

1 |
1
2α(i)

)√ det∇2V (z0)
|det∇2V (zi)|

[1 +O (ri(β))]

(1 +O(β−1δ(β)−2)
)

= e−β(V ∗−V (z0))

 ∑
i∈Imin

|ν(i)
1 |

2πΦ
(
|ν(i)

1 |
1
2α(i)

)√ det∇2V (z0)
|det∇2V (zi)|

[
1 +O

(
ri(β) + β−1δ(β)−2

)] .
We note that, according to (2.96)

ri(β) + β−1δ(β)−2 =

 β−1δ(β)−2, α(i) = +∞,√
βγ(β) + β−1δ(β)−2 + β− 1

2 , α(i) < +∞.

This concludes the proof of Theorem 2.17 upon applying the comparison principle for Dirichlet
eigenvalues (see Proposition 2.33).

We conclude this chapter by giving the proof of two key technical results.

Appendix 2.A: Proof of Proposition 2.27

We prove Proposition 2.27 in this appendix.

Proof of Proposition 2.27. To simplify the presentation, we provide the construction assuming
that zi is the single critical point of V close to the boundary. Since the construction is
local, and critical points of V are isolated because of the Morse property, our proof can be
straightforwardly adapted to the case of multiple critical points.
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Because Ωβ may be viewed as the positive superlevel set of the signed distance function,
namely

Ωβ = σ−1
Ωβ

(0,+∞),

a natural approach is to construct the extended domain Ω+
β,ρ as the positive superlevel set of a

local perturbation of σΩβ
around each zi close to the boundary. This is roughly this construction

we perform. However, making this precise requires some technicalities to ensure the regularity
of the boundary level set. For visual reference, the construction of the extension Ω+

β,ρ is
sketched in Figures 2.6a and 2.6b.

Let us assume for simplicity that zi = 0 is the only critical point of V close to the boundary.
We consider the signed distance functions fβ to ∂Ωβ, gβ to ∂B(0, δ(β)), and hβ to the half-

space ∂E(i)
(
α(i)√
β

+ ρ(β)
)

. Since Ωβ = f−1
β (0,+∞) and B(0, δ(β)) = g−1

β (0,+∞) are smooth
and bounded domains, there exists rβ > 0 such that fβ, gβ are C∞ respectively on {|fβ| < rβ}
and Rd \ {0} (see for example [137, Lemma 14.16]) whereas hβ as an affine map is smooth
on Rd.

The zero level-set of the function fβ ∨ (gβ ∧ hβ) coincides with the boundary of the set

Ω̃+
β,ρ := Ωβ ∪

[
B(0, δ(β)) ∩ E(i)

(
α(i)
√
β

+ ρ(β)
)]

.

It satisfies (2.61), the inclusion Ωβ ⊆ Ω̃+
β,ρ and is bounded, but is generally not smooth.

To enforce the regularity of the extended domain, we work with smooth versions of the min
and max functions, constructed as follows. Take any ε > 0 and let a±

ε ∈ C∞(R) be such
that |x| ⩽ a+

ε (x) ⩽ |x|+ ε, and |x|− ε ⩽ a−
ε (x) ⩽ |x|, with moreover a±

ε (x) = |x| for all |x| ⩾ ε.
Define

m±
ε (x, y) = x+ y ± a±

ε (x− y)
2 ,

which are smooth functions on R2 satisfying the inequalities:

x ∧ y ⩽ m−
ε (x, y) ⩽ x ∧ y + ε

2 , x ∨ y ⩽ m+
ε (x, y) ⩽ x ∨ y + ε

2 , (2.106)

with moreover

∀ (x, y) ∈ R2 such that |x− y| ⩾ ε, m−
ε (x, y) = x ∧ y, m+

ε (x, y) = x ∨ y. (2.107)

We introduce a temperature-dependent parameter ε0(β) > 0, which will be reduced several
times in the following proof. In order not to overburden the notation, we sometimes omit the
dependence of ε0 on β. We then define:

σε0 = m+
ε0(fβ,m−

ε0(gβ, hβ)).

From (2.106), we have by construction that:

fβ ∨ (gβ ∧ hβ) ⩽ σε0 ⩽ fβ ∨ (gβ ∧ hβ) + ε0(β), (2.108)

We will prove that, if δ(β) > α(i)/
√
β+ρ(β) (which holds in the limit β →∞ according to (H2)
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and (2.60)), then for a sufficiently small ε0(β), the function σε0 is smooth on a small outward
neighborhood σ−1

ε0 (−ε0(β), 0) of its zero level set. Let us first write σε0 = m+
ε0(fβ, ψε0), where

we define ψε0 = m−
ε0(gβ, hβ). The claimed regularity follows from the following observations.

The function ψε0 is smooth on Rd for ε0(β) < δ(β) − α(i)/
√
β − ρ(β): by the regularities

of m−
ε0 , fβ and gβ, it is enough to check that ψε0 is smooth at 0. But hβ(0) = α(i)√

β
+ ρ(β)

and gβ(0) = δ(β), so for 0 < ε0(β) < δ(β) − α(i)/
√
β − ρ(β) it holds hβ(0) < gβ(0) − ε0(β)

and ψε0 thus coincides with hβ in a neighborhood of 0 by (2.107), and is therefore smooth at 0.

Furthermore, the rightmost inequality in (2.106) implies the inclusion

σ−1
ε0 (−ε0(β), 0) ⊂ (fβ ∨ ψε0)−1(−3ε0(β)/2, 0),

and so it suffices to show the smoothness of σε0 over this larger set. To achieve this, let x ∈
(fβ ∨ ψε0)−1(−3ε0(β)/2, 0), and distinguish between four cases.

◦ Case ψε0(x) > fβ(x) + ε0(β). Then, σε0 coincides with ψε0 in a neighborhood of x, and
is smooth at x.

◦ Case fβ(x) > ψε0(x) + ε0(β). Then, σε0 coincides with fβ in a neighborhood of x, and
is smooth at x provided 3ε0(β)/2 < rβ.

◦ Case ψε0(x) ⩽ fβ(x) ⩽ ψε0(x) + ε0(β). Then, fβ(x) = fβ(x) ∨ ψε0(x) ∈ (−3ε0(β)/2, 0),
thus fβ is smooth at x, and likewise σε0 , provided 3ε0(β)/2 < rβ.

◦ Case ψε0(x) − ε0(β) ⩽ fβ(x) < ψε0(x). Then ψε0(x) ∈ (−3ε0(β)/2, 0) and fβ(x) ∈
(−5ε0(β)/2, 0). It follows that fβ and therefore σε0 are smooth at x provided 5ε0(β)/2 <
rβ.

We now assume here and in the following that ε0(β) < min{2
5rβ, δ(β) − α(i)√

β
− ρ(β)}, and

that β is large enough so that ε0(β) can be chosen to be positive. The regularity of σε0

on σ−1
ε0 (−ε0(β), 0) allows for the construction of a smooth extended domain, as follows. By

Sard’s theorem [295], there exists ε1(β) < ε0(β) such that the level set σ−1
ε0 {−ε1(β)} contains

no critical points of σε0 , and hence defines a smooth hypersurface of Rd by the implicit function
theorem. Therefore, the superlevel set Ω+

β,ρ,ε1
:= σ−1

ε0 (−ε1(β),+∞), is a smooth open domain
satisfying:

(fβ ∨ (gβ ∧ hβ))−1(−ε1(β),+∞) ⊆ Ω+
β,ρ,ε1

⊆ (fβ ∨ (gβ ∧ hβ))−1(−ε1(β)− ε0(β),+∞),

where we used the inequality (2.108). It follows that Ω+
β,ρ,ε1

is bounded and contains (fβ∨(gβ∧
hβ))−1(0,+∞) = Ω̃+

β,ρ ⊇ Ωβ. Note that our construction (and in particular Sard’s theorem)
implies the existence of an appropriate ε1(β) < ε0(β) for any ε0(β) > 0 sufficiently small, and
so the existence of a smooth extension Ωβ ⊆ Ω+

β,ρ,ε1
remains valid upon further reduction

of ε0(β).

At this point, we will show that we can fix β0 > 0 to be sufficiently large and ε0(β) sufficiently
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small so that the inclusion

Oβ,ε0 := B (0, δ(β)− 2ε0(β)) ∩ E(i)
(
α(i)
√
β

+ ρ(β) + ε0(β)
)
\ E(i)

(
α(i)
√
β

+ ρ(β)
)

⊂ {fβ + ε0(β) < hβ < gβ − ε0(β)}
(2.109)

holds for all β > β0, where E(i) denotes the closure of E(i). The purpose of (2.109) is to
locate a set on which the geometry of the modified domain may be modified to enforce (2.61).
Let us check that taking ε0(β) < ρ(β)−γ(β)

2 < δ(β)
2 suffices to ensure (2.109). Let x ∈ Oβ,ε0 :

from x ∈ B(0, δ(β)−2ε0(β)), we get gβ(x) > 2ε0(β), and from x ∈ E(i)
(
α(i)√
β

+ ρ(β) + ε0(β)
)
\

E
(i)
(
α(i)√
β

+ ρ(β)
)

, we get −ε0(β) < hβ(x) < 0, whenceOβ,ε0(β) ⊂ {−ε0(β) < hβ < gβ−ε0(β)}.

From x ∈ B(0, δ(β) − 2ε0(β)) \ E(i)
(
α(i)√
β

+ ρ(β)
)

, we deduce by (H2) that x ̸∈ Ωβ, with
furthermore:

d(x, ∂Ωβ \B(0, δ(β))) > 2ε0(β),

d (x, ∂Ωβ ∩B(0, δ(β))) > d

(
x, ∂E(i)

(
α(i)
√
β

+ γ(β)
))

> 2ε0(β),

where the last inequality is obtained using ρ(β)− γ(β) > 2ε0(β) and x ̸∈ E(i)
(
α(i)√
β

+ ρ(β)
)

.
Thus fβ(x) < −2ε0(β), so that Oβ,ε0 ⊂ {fβ < −2ε0(β)}, and

Oβ,ε0 ⊂ {fβ < −2ε0(β)} ∩ {−ε0(β) < hβ < gβ − ε0(β)},

from which (2.109) follows easily.

We assume at no cost of generality upon taking β0 once again larger that for all β > β0, it
holds δ(β) > α(i)√

β
+ ρ(β), δ(β)/4 > ρ(β)− γ(β) > 0, and

ε0(β) < min
{

2
5rβ, δ(β)− α(i)

√
β
− ρ(β), ρ(β)− γ(β)

2

}
.

The previous construction can still be performed for this potentially smaller ε0(β), upon
accordingly updating ε1(β). Furthermore, from the inclusion (2.109) and (2.107), the boundary
of the so-constructed set Ω+

β,ρ,ε1(β) locally coincides with the hyperplane:

∂Ω+
β,ρ,ε1(β) ∩ Oβ,ε0 = ∂E(i)

(
α(i)
√
β

+ ρ(β) + ε1(β)
)
∩ Oβ,ε0 .

The last step in the construction consists in indenting this hyperplane locally in Oβ,ε0 , so

that it coincides with ∂E(i)
(
α(i)√
β

+ ρ(β)
)

inside B
(
0, 1

2δ(β)
)
.

This indentation amounts to setting:

Ω+
β =

[
Ω+
β,ρ,ε1(β) \ Oβ,ε0

]
∪
[
U (i)H(i)

β ∩ Oβ,ε0

]
,



152 Appendix 2.B: Proof of Proposition 2.36

where H(i)
β is the hypograph:

H(i)
β =

{
(x, x′) ∈ R× Rd−1 : x < α(i)

√
β

+ ρ(β) + ε1(β)η(|x′|)
}
,

with η ∈ C∞
c (R), 0 ⩽ η ⩽ 1 is chosen such that:


η(|x′|) = 0, for |x′|2 ⩽ δ(β)2

4 −
(
α(i)√
β

+ ρ(β) + ε1(β)
)2
,

η(|x′|) = 1, for |x′|2 > (δ(β)− 3ε0(β))2 −
(
α(i)√
β

+ ρ(β) + ε1(β)
)2
.

(2.110)

In the second line, one could possibly replace 3ε0(β) by (2 + t)ε0(β) for some other t > 0. This
is related to the fact that Oβ,ε0 ⊂ B (0, δ(β)− 2ε0(β)) by (2.109).

The requirement (2.110) places additional constraints on ε0(β) (and thus on ε1(β)). Namely,

one must ensure that δ(β)2

4 >

(
α(i)√
β

+ ρ(β) + ε1(β)
)2

, and that (δ(β)− 3ε0(β))2 > δ(β)2

4 , which

lead to the condition 0 < ε1(β) < ε0(β) < min
{
δ(β)

2 −
α(i)√
β
− ρ(β), δ(β)

6

}
. It is then easily

checked that the first condition on η in (2.110) ensures the property (2.61), and the second
the smoothness of Ω+

β .

Therefore, choosing β0 > 0 sufficiently large, ε0(β) sufficiently small and 0 < ε1(β) < ε0(β)
such that Ω+

β,ε1
is smooth, we have shown, since Oβ,ε0 is bounded and disjoint from Ωβ (which

follows from (H2)), the inclusions Ωβ ⊂ Ω+
β and (2.61), as well as the boundedness of Ω+

β .

To construct the included domains Ω−
β ⊆ Ωβ , one can perform precisely the same construction,

working instead on the open complement Rd \ Ωβ, which satisfies a symmetric version of
Assumption (H2) for each zi such that α(i) < +∞. Denoting the resulting extension by Rd \
Ωβ ⊆ Ω−,c

β , which by construction satisfies the condition

B

(
zi,

1
2δ(β)

)
∩ Ω−,c

β = B

(
zi,

1
2δ(β)

)
∩ Rd \

[
zi + E(i)

(
α(i)
√
β
− ρ(β)

)]

for each i such that α(i) < +∞, we define

Ω−
β := Rd \ Ω−,c

β ,

and indeed recover equation (2.61) for Ω−
β ⊂ Ωβ, which is also clearly bounded.

Appendix 2.B: Proof of Proposition 2.36

We prove Proposition 2.36 in this appendix.

Proof of Proposition 2.36. Up to a translation by x0 and considering instead f̃(x) = f(x)−
f(x0) and g̃(x) = g(x)/g(x0), we may assume without loss of generality that x0 = 0, f(0) = 0
and g(0) = 1.
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zi

1
2δ(β)

1
2δ(β)

|α(i)|√
β

(a) Schematic representation of the boundary of the extended domain ∂Ωh
β in the case α(i) < 0.

∂Ωβ

∂Ωh
β

∂E(i)
(
α(i)√
β

)

∂E(i)
(
α(i)√
β

+ ρ(β)
)

∂B(zi, δ(β))

ε0

ε1

ε1

ε1

ρ(β)

ε0

(b) Enlarged view of the construction in the rightmost region of interest.

Figure 2.6: Schematic representation of the extended domain Ω+
β satisfying (2.61), depicted here in

the vicinity of zi, a critical point close to, but outside, the boundary of ∂Ωβ .
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Let us denote by Q := ∇2f(0) the Hessian of f at the minimum, which, according to (L3),
is bounded from below by ϵ > 0. We make use of the following Taylor expansions, which are
valid in view of (L2):

f(x) = 1
2x

⊺Qx+Rf (x), Rf (x) = 1
2

∫ 1

0
(1− t)2D3f(tx) : x⊗3 dt, (2.111)

g(x) = 1 + x⊺∇g(0) +Rg(x), Rg(x) =
∫ 1

0
(1− t)x⊺∇2g(tx)x dt. (2.112)

Let δ > 0 be such that B(0, δ) ⊂ K, which exists since x0 ∈
◦
K. We may furthermore assume

(upon possibly reducing δ), according to (2.111), that for some C > 0,

∀x ∈ B(0, δ), f(x) ⩾ 1
C
|x|2, |Rf (x)| ⩽ C|x|3, |Rg(x)| ⩽ C|x|2. (2.113)

In addition, by (L3) and the compactness of K:

γ := min
x∈K\B(0,δ)

f(x) > 0. (2.114)

Then, using the inclusion (L1):∣∣∣∣∣
∫
Aλ\B(0,δ)

e−λf(x)g(x) dx
∣∣∣∣∣ ⩽ e−λγ∥g∥L1(K) = O(e−λγ),

since g is integrable on K by (L2).

It remains to estimate

I(λ, 1) :=
∫
Aλ∩B(0,δ)

e−λf(x)g(x) dx,

for which we introduce the following parametric integral, for 0 ⩽ t ⩽ 1:

I(λ, t) :=
∫
Aλ∩B(0,δ)

e−λ( 1
2x

⊺Qx+tRf (x))g(x) dx.

The role of t is to interpolate between the quadratic approximation of f around the minimum
and f itself.

From (2.113) and (L3), we deduce that c = min{ 1
C , ϵ/2} > 0 is such that

∀x ∈ B(0, δ), ∀ 0 ⩽ t ⩽ 1, 1
2x

⊺Qx+ tRf (x) = 1− t
2 x⊺Qx+ tf(x) ⩾ c|x|2. (2.115)

We then write, by Taylor’s theorem:

I(λ, 1) = I(λ, 0) + ∂I

∂t
(λ, 0) +

∫ 1

0

∂2I

∂t2
(λ, t)(1− t) dt,

with
∂kI

∂tk
(λ, t) = (−λ)k

∫
Aλ∩B(0,δ)

e−λ( 1
2x

⊺Qx+tRf (x))Rf (x)kg(x) dx.
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We can then estimate, for k = 2, in view of (2.115):∣∣∣∣∣∂2I

∂t2
(λ, t)

∣∣∣∣∣ ⩽ ∥g∥L∞(B(0,δ))λ
2
∫
B(0,δ)

e−λc|x|2Rf (x)2 dx

⩽ Kλ2
∫
B(0,δ)

e−λc|x|2 |x|6 dx = λ− d
2O(λ−1),

(2.116)

uniformly in t ∈ (0, 1), where we used the change of variables y =
√
λx to obtain the last

equality. It follows that

I(λ, 1) =
[
I + ∂I

∂t

]
(λ, 0) + λ− d

2O(λ−1).

The bracketed term may be rewritten as a Gaussian expectation:[
I + ∂I

∂t

]
(λ, 0) =

∫
Aλ∩B(0,δ)

e−λ 1
2x

⊺Qx (1− λRf (x)) g(x) dx

=
(2π
λ

) d
2
|detQ|−

1
2E
[(

1− λRf (G/
√
λ)
)
g(G/

√
λ)1G∈

√
λAλ∩B(0,

√
λδ)

]
,

where G ∼ N (0,Q−1). Before estimating the expectation, we write the following expansion
allowed by (L2):

Rf (x) = 1
6D

3f(0) : x⊗3 + R̃f (x),
∣∣∣R̃f (x)

∣∣∣ ⩽ C̃|x|4 on B(0, δ), (2.117)

which, together with (2.112), gives almost surely:

(
1− λRf (G/

√
λ)
)
g(G/

√
λ) =

(
1− λ− 1

2

6 D3f(0) : G⊗3 − λR̃f (G/
√
λ)
)

×
(
1 + λ− 1

2G⊺∇g(0) +Rg(G/
√
λ)
)

= 1 + λ− 1
2

[
G⊺∇g(0)− 1

6D
3f(0) : G⊗3

]
+ λ−1S(G, λ).

A straightforward computation and estimation using the bounds (2.113) and (2.117) shows
that there exist K,λ0 > 0 such that, for all λ > λ0, it holds, almost surely,

|S(G, λ)| ⩽ K
(
1 + |G|6

)
.

In particular E[|S(G, λ)|] = O(1) in the limit λ→∞. It follows that

E
[(

1− λRf (G/
√
λ)
)
g(G/

√
λ)1G∈

√
λAλ∩B(0,

√
λδ)

]
= E

[(
1 + λ− 1

2P (G)
)
1G∈A∞

]
+ E

[(
1 + λ− 1

2P (G)
) (

1G∈
√
λAλ∩B(0,

√
λδ) − 1G∈A∞

)]
+O(λ−1),

where P (G) = G⊺∇g(0) − 1
6D

3f(0) : G⊗3 is a polynomial involving only odd moments of G.
By symmetry, the first term in the sum is then given by:

E
[
(1 + λ− 1

2P (G))1G∈A∞

]
=

P(G ∈ A∞) if A∞ = −A∞,

P(G ∈ A∞)
(
1 +O(λ− 1

2 )
)

otherwise.
(2.118)
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We are left with the task of estimating∣∣∣E [(1 + λ− 1
2P (G))

(
1G∈

√
λAλ∩B(0,

√
λδ) − 1G∈A∞

)]∣∣∣ ⩽ E
[∣∣∣1 + λ− 1

2P (G)
∣∣∣1G∈

√
λAλ\B(0,

√
λδ)

]
+ E

[∣∣∣1 + λ− 1
2P (G)

∣∣∣ ∣∣∣1G∈
√
λAλ
− 1G∈A∞

∣∣∣] .
(2.119)

By a standard Gaussian decay estimate and the second condition in (L3), the term

E
[∣∣∣1 + λ− 1

2P (G)
∣∣∣1G∈

√
λAλ\B(0,

√
λδ)

]
= O(e− λ

3 ϵδ
2)

is negligible with respect to λ−1. Noting that 1G∈
√
λAλ△A∞

=
∣∣∣1G∈

√
λAλ
− 1G∈A∞

∣∣∣, we further
obtain by a triangle inequality

E
[∣∣∣1 + λ− 1

2P (G)
∣∣∣ ∣∣∣1G∈

√
λAλ
− 1G∈A∞

∣∣∣] ⩽ P
(
G ∈
√
λAλ△A∞

)
+E

[
λ− 1

2 |P (G)|1G∈
√
λAλ△A∞

]
.

The term ε(λ) = P
(
G ∈
√
λAλ△A∞

)
= O(1) by Assumption (L4).

Let us show that E
[
λ− 1

2 |P (G)|1G∈
√
λAλ△A∞

]
= O(λ−1). Decomposing this term, we obtain

E
[
λ− 1

2 |P (G)|1G∈
√
λAλ△A∞

1
|P (G)|⩽λ

1
2

]
+ E

[
λ− 1

2 |P (G)|1G∈
√
λAλ△A∞

1
|P (G)|>λ

1
2

]
⩽ P

(
G ∈
√
λAλ△A∞

)
+ E

[
λ− 1

2 |P (G)|1
|P (G)|>λ

1
2

].
(2.120)

Furthermore, since P (x) is bounded by Cd,f |x|3 for some constant Cd,f > 0 outside of a
compact set, it holds, for sufficiently large λ, that

E
[
λ− 1

2 |P (G)|1
|P (G)|>λ

1
2

]
⩽ Cd,fE

[
λ− 1

2 |G|31
|G|3>C−1

d,f
λ

1
2

]
= O(λ− 1

2 e−ϵλ1/3/3) = O(λ−1),

(2.121)
by a Gaussian decay estimate.

In view of (2.87), and collecting the estimates (2.116), (2.118), (2.119), (2.120) and (2.121)
we conclude that

I(λ, 1) =
(2π
λ

) d
2

detQ− 1
2P(G ∈ A∞)

(
1 +O(λ−1) +O(ε(λ)) +O(λ− 1

2 )1A∞ ̸=−A∞

)
,

which gives the claimed asymptotic behavior (2.87).

Note that the same strategy of proof can be deployed to compute higher order terms in the
asymptotic expansion.
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Chapter 3
Shape optimization of metastable states

He move in space with minimum waste and maximum joy.
—Sade Adu & Ray St. John, Smooth Operator, 1984

Abstract. The definition of metastable states is a ubiquitous task in the design and
analysis of molecular simulation, and is a crucial input in a variety of acceleration
methods for the sampling of long configurational trajectories. Although standard
definitions based on local energy minimization procedures can sometimes be used,
these definitions are typically suboptimal, or entirely inadequate when entropic
effects are significant, or when the lowest energy barriers are quickly overcome
by thermal fluctuations. In this work, we propose an approach to the definition
of metastable states, based on the shape-optimization of a local separation of
timescale metric directly linked to the efficiency of a class of accelerated molecular
dynamics algorithms. To realize this approach, we derive analytic expressions for
shape-variations of Dirichlet eigenvalues for a class of operators associated with
reversible elliptic diffusions, and use them to construct a local ascent algorithm,
explicitly treating the case of multiple eigenvalues. We propose two methods to
make our method tractable in high-dimensional systems: one based on dynamical
coarse-graining, the other on recently obtained low-temperature shape-sensitive
spectral asymptotics. We validate our method on a benchmark biomolecular system,
showcasing a significant improvement over conventional definitions of metastable
states.

3.1 Introduction

Molecular Dynamics (MD) [7, 220] is one of the workhorses of modern computational statistical
physics, enabling the exploration of complex biomolecular systems at atomistic resolution. By
numerically integrating equations of motion, MD generates trajectories that sample the system’s

158
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configuration space according to target statistical ensembles, typically the Boltzmann-Gibbs
distribution relevant to canonical (NVT) or isothermal-isobaric (NPT) conditions. Understand-
ing phenomena such as protein folding or conformational transitions between functional states
hinges on accurately capturing these dynamics over biologically relevant timescales. However,
the inherent separation of timescales characterizing transitions between metastable states
often presents significant computational challenges, motivating the development of enhanced
sampling and analysis methodologies to efficiently probe rare events.

In this work, we are concerned with the definition of these metastable states. It is often
convenient to associate with a given local minimum of the energy function its basin of attraction
for a zero-temperature dynamics. Although this procedure, which provides a natural and
numerically convenient definition of metastable states, is often unsatisfactory, for instance in
many biological applications where the energy landscape displays many local minima separated
by shallow energy barriers. In this setting, one seeks alternative, better descriptions, often by
replacing the energy with the free energy associated with a given reaction coordinate. In this
work, we provide a general and principled approach to define “good” metastable states, using
techniques of shape optimization originally developed for problems in continuum mechanics.
More precisely, we optimize the boundary of configurational domains in phase-space, with
respect to a certain spectral criterion relating the shape of the domain with so-called quasi-
stationary timescales within the state. One of the motivations of this work is to maximize the
efficiency of a class of algorithms aimed at sampling long, unbiased molecular trajectories, an
example of which is discussed in detail in Appendix 3.B below.

Dynamical setting. To formalize this problem, we first specify the class of models we
consider for conformational molecular dynamics, namely reversible elliptic diffusions. More
precisely, we consider in this work strong solutions to the stochastic differential equation (SDE)

dXt =
[
−a(Xt)∇V (Xt) + 1

β
div a(Xt)

]
dt+

√
2
β
a(Xt)1/2 dWt, (3.1)

where a : Rd → Rd×d is a symmetric positive-definite matrix field, ∇V : Rd → Rd is a locally
Lipschitz vector field which is the gradient of a potential V : Rd → R, div a denotes the
row-wise divergence operator, and W is a standard d-dimensional Brownian motion. The
usefulness of the dynamics (3.1) comes from the fact that it is reversible, and thus invariant,
for the Gibbs probability measure

µ(dx) = 1
Zβ

e−βV (x) dx, Zβ =
∫
Rd

e−βV ,

which is the configurational marginal of the canonical (NVT) ensemble at inverse tempera-
ture β = (kBθ)−1 (where kB is Boltzmann’s constant and θ is the temperature)– provided Zβ
is finite, which we will always assume. As such, it may be used to sample the NVT ensemble.
The case a = Id corresponds to what is known as the overdamped Langevin equation. As all
the dynamics (3.1) sample the same target measure, the free parameter a can be optimized to
accelerate various metrics associated to the efficiency of MCMC samplers, see [226, 232, 86].
In this work, we consider the problem of sampling trajectories of (3.1), with a fixed. The dy-
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namics (3.1) also arises as the Kramers–Smoluchowski approximation, or so-called overdamped
limit, of the kinetic Langevin dynamics, defined by the SDE

dqγt = M−1pγt dt,

dpγt = −∇V (qγt ) dt− γΓ(qγt )M−1pγt dt+
√

2γ
β

Σ(qγt ) dW γ
t ,

(3.2)

where the momentum process pγt takes values in Rd, W γ
t is a standard d-dimensional Brownian

motion, V is as in (3.1), and M ∈ Rd×d is a positive-definite mass matrix (typically a diagonal
matrix with entries equal to the atomic masses in the system). The matrix fields Γ, S : Rd →
Rd×d define fluctuation and dissipation profiles. They are assumed to be non-degenerate, and
to satisfy the fluctuation-dissipation condition ΣΣ⊤ = Γ, which ensures that the Boltzmann–
Gibbs distribution with density proportional to e−β( 1

2p
⊤M−1p+V (q)) dpdq is invariant under

the dynamics. The parameter γ > 0 modulates the rate of momentum dissipation, and in
this context, the matrix field a = Γ−1 arises naturally as the limiting diffusion matrix in
the large friction regime. More exactly, it can be shown that the finite-time trajectories of
the time-rescaled position process (qγγt)0⩽t⩽T converge to solutions (Xt)0⩽t⩽T of (3.1) in the

limit γ → +∞, see for example [177], with a = Γ−1 =
(
ΣΣ⊤

)−1
.

In most MD packages, the Langevin dynamics (3.2) is implemented with Γ = M , in which
case a = M−1 in (3.1). We therefore use (3.1) as a model of the underlying underdamped
Langevin dynamics with which simulations are typically run, keeping in mind that any
timescale inferred at the level of the dynamics (3.1) should be divided by a factor γ to obtain
the corresponding timescale for the underdamped dynamics, in order to account for the
rescaling involved in the Kramers–Smoluchowski approximation.

The infinitesimal generator of the evolution semigroup for the dynamics (3.1) is the operator

Lβ =
(
−a∇V + 1

β
div a

)⊤
∇+ 1

β
a : ∇2 = 1

β
eβV div

(
e−βV a∇·

)
. (3.3)

In an appropriate functional setting (see Section 3.2.1 below), it can be shown to be self-adjoint
with pure point spectrum.

Local metastability and quasi-stationary timescales. The main difficulty in sampling
long trajectories from the process (3.1) (as well as from (3.2), for that matter) is the phenomenon
of metastability, which often arises from the presence of energy wells separated by high-energy
barriers (relative to the characteristic thermal fluctuation scale β−1), or from entropic traps,
see [233, Section 1.2.3]. More generically, this phenomenon can be understood as the presence
of subsets of the configuration space in which the dynamics resides for long times before
abruptly transitioning and settling in the next metastable state. This property is characterized
by the existence of a separation of timescales between intra-state fluctuations and inter-state
transitions. In full generality, there may be a hierarchy of timescales, corresponding to states,
superstates (energy superbasins), etc. In the local approach to metastability, one fixes such
a subset Ω ⊂ Rd, and studies local dynamical properties of the system inside Ω. A central
object of interest in this study is the quasi-stationary distribution (QSD) of the dynamics
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inside Ω, which formalizes the notion of the local equilibrium that the dynamics reaches
inside Ω, provided it remains trapped for a sufficiently long time. More formally, the QSD
inside Ω for the dynamics (3.1) is defined as a probability measure ν ∈ P1(Ω) such that, for
any A ⊂ Ω measurable,

ν(A) =
∫

Ω
Px (Xt ∈ A| τ > t) ν(dx), τ = inf {t ⩾ 0 : Xt ̸∈ Ω} .

Under mild assumptions on Ω, V and a (see [206] and Assumptions (Ell), (Reg) below), the
QSD is unique, and coincides with the Yaglom limit:

ν(A) = lim
t→∞

µt,x(A), µt,x(A) := Px (Xt ∈ A | τ > t) , (3.4)

for an arbitrary initial condition x ∈ Ω.

From this definition alone, it is not entirely clear which domains Ω correspond to metastable
states. A natural albeit informal answer to this question is to require that for most visits
in Ω, convergence to the QSD in (3.4) occurs much faster than the typical metastable exit
time Eν [τ ]. This definition suggests a quantitative measure of the local metastability of a
given domain Ω, namely the ratio between the metastable exit time and the convergence time
to the QSD. Moreover, these timescales can be analyzed by relating them to the eigenvalues of
the operator (3.3), endowed with Dirichlet boundary conditions on ∂Ω. Indeed, on the one
hand it is shown in [206, Propositions 2 & 3] that the QSD in Ω has an explicit density in
terms of the principal Dirichlet eigenfunction u1(Ω) of Lβ in Ω:

ν(dx) = Z−1
β,Ωe−βV (x)u1(Ω)(x) dx,

Lβu1(Ω) = −λ1(Ω)u1(Ω) in Ω,
u1(Ω) = 0 on ∂Ω,

and that the exit time starting from the QSD is an exponential random variable with rate λ1(Ω)
and independent from the exit point: for all Borel sets A ⊂ ∂Ω, it holds

Pν(τ > t,Xτ ∈ A) = e−tλ1(Ω)Pν(Xτ ∈ A). (3.5)

In particular, the expected exit time from the QSD (or metastable exit time) is given by Eν [τ ] =
1/λ1(Ω). In fact, for regular domains, the law of Xτ starting under ν is also explicit in terms
of the normal derivative of the density dν

dx on ∂Ω, see the proof of Proposition 3 in [206].

Moreover, on the other hand, bounds on the total variation distance between µt,x and ν

are also available in terms of the spectral gap λ2(Ω)− λ1(Ω). Namely, a spectral expansion
argument (see the proof of [305, Theorem 1.1]) shows that there exists C(x), t(x) > 0 such
that

dTV (µt,x, ν) ⩽ C(x)e−t(λ2(Ω)−λ1(Ω)), ∀ t > t(x), (3.6)

where dTV denotes the total variation distance between two probability measures: dTV(π, ρ) =
sup

∥f∥∞⩽1
|π(f)−ρ(f)|. The restriction of the estimate (3.6) to times larger than t(x) is technical,

and is related to the lack of regularity of µ0,x = δx. If one considers initial conditions with
sufficient regularity, a similar estimate holds for all t > 0. It can be shown, e.g. by taking X0 ∼
Ce−βV (u1(Ω) + εu2(Ω)) dx for some appropriate C, ε > 0, that the rate λ2(Ω)−λ1(Ω) in (3.6)
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is sharp, and therefore corresponds to the asymptotic rate of convergence of µt,x to ν.

In view of the above discussion on the exit rate λ1(Ω) and the convergence rate to the
QSD λ2(Ω)− λ1(Ω), a natural measure of the metastability of the dynamics inside Ω is given
by the ratio:

N∗(Ω) = λ2(Ω)− λ1(Ω)
λ1(Ω) . (3.7)

In this work, our aim is to optimize the shape of the domain Ω in order to make N∗(Ω) as large
as possible, see problem (3.8) below. The quantity N∗(Ω) has been identified in [334, 268] as a
“scalability metric” associated with a given definition of metastable state Ω, which quantifies
the efficiency of a class of accelerated MD algorithms, the so-called “Parallel Replica” methods.
We discuss the link between the separation metric (3.7) and the Parallel Replica method in
Appendix 3.B below.

Beyond the family of Parallel Replica methods, the other accelerated MD methods developed
by Arthur Voter (see [332, 312]) also rely on definitions of metastable states, and a separation
of timescales hypothesis within these states. Although our main motivation stems from
algorithmic efficiency concerns, we stress that other, more theoretical motivations lead one to
consider the problem (3.8). It is indeed expected that identifying highly locally metastable
domains (in the sense of a large separation of timescales) leads to configurational dynamics
amenable to approximation by various simpler, discrete-space dynamics, such as Markov
jump processes. The quantity (3.7) has for instance been identified as the key approximation
parameter in an approach to reduced-state dynamics using Markov renewal processes (see [13]).
It is therefore of more general interest to investigate how much freedom one has in defining more
general states than simple energy basins, and how to ensure a large separation of timescales.
Let us finally mention that the case V = 0, which amounts to maximizing the ratio of the first
two Dirichlet eigenvalues of the Laplacian, also arises in the field of spectral geometry as the
Payne–Polya–Weinberger conjecture, see [263, 18].

We consider the shape-optimization problem

max
Ω∈S

N∗(Ω), S =
{

Ω ⊂ Rd bounded, Lipschitz and connected
}
. (3.8)

The optimization problem as formulated in (3.8) is typically not well-posed. Whenever the
operator (3.3) acting on L2(Rd, ν(dx)) has compact resolvent, a simple argument involving the
sequence of domains Ωn = BRd(0, n) shows that λ1(Ωn) n→∞−−−→ 0 and λ2(Ωn) n→∞−−−→ λ2(Rd) > 0,
so that there is generically no bounded domain maximizing (3.7). This situation is somewhat
standard in the numerical optimization of eigenvalue functionals, and well-posedness is generally
only obtained upon imposing various normalizing constraints on the design variable. In
this work, we address practical methods to numerically optimize N∗ locally around a given
domain Ω0, and we make no attempt to solve the optimization problem (3.8) globally. We
therefore look for local maxima of N∗(Ω).

More precisely, it has been observed (see [268] or Figure 3.9b below for a simple example)
that the shape optimization landscape for the separation of timescales typically displays local
maxima around single energy wells (which we define loosely as domains containing a local
energy minimum z0, and an energetic neighborhood of several βs thereof), i.e. domains for
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which arbitrary perturbations of the boundary locally decrease the separation of timescales.
This numerical evidence is also supported by theoretical results, see [50, Section 3.3] or
Section 3.4.2 below.

Main contributions of this work. In this work, we introduce a novel and principled ap-
proach to the definition of metastable states in MD. In so doing, we make several methodological
advances.

◦ We introduce the spectral criterion (3.7) and link it to the efficiency of Parallel Replica
dynamics.

◦ We provide in Theorem 3.2 and Corollary 3.4 explicit expressions for shape variations of
Dirichlet eigenvalues of a large class of diffusions. These formulas also cover the case of
degenerate eigenvalues.

◦ We define a robust steepest ascent method (Algorithm 3.5) to optimize N∗(Ω) in low
dimension, taking in particular account the degeneracy of the eigenvalues, and adaptively
selecting an ascent direction accordingly.

◦ We propose two projection techniques to adapt the algorithm to high-dimensional
problems. One is based on a coarse-graining strategy, using a collective variable. The
other is based on exact, shape-sensitive spectral asymptotics obtained in the recent
work [50].

◦ We validate our methods with numerical experiments, which demonstrate the interest
of the approach on various problems of increasing complexity, including a biomolecular
system.

Outline of the work. In Section 3.2 we present our main theoretical results, Theorem 3.2
and Corollary 3.4, which form the basis of our numerical method. In Section 3.3, we describe
the ascent method using the results of Section 3.2. In Section 3.4, we discuss two practical
methods to approach the shape-optimization problem in high-dimensional systems, which is
the standard setting in MD. In Section 3.5, we present various numerical results to validate our
methods. Some conclusions and perspectives are gathered in Section 3.6. Finally, we conclude
this work with two appendices: Appendix 3.A, in which we give a full proof of Theorem 3.2,
and Appendix 3.B, in which we discuss the relevance to the Parallel Replica algorithm.

3.2 Main results

In this section, we present the main theoretical results which form the basis of our optimization
method. In Section 3.2.1, we introduce various notation and useful notions. In Section 3.2.2,
we state our main result, before proving a reformulation in 3.2.3.
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3.2.1 Framework and notation

Assumptions on V and a. We assume that the diffusion matrix a is locally elliptic: for
any compact set K ⊂ Rd,

∃ εa(K) > 0 : u⊤a(x)u ⩾ εa(K)|u|2 ∀u ∈ Rd, for almost all x ∈ K. (Ell)

We also assume that V and a have locally bounded derivatives up to order 2:

V ∈ W2,∞
loc

(
Rd
)
, a ∈ W2,∞

loc (Rd;Md). (Reg)

Functional spaces. Throughout this work, we consider the following Hilbert spaces, defined
for an open Lipschitz domain Ω ⊂ Rd by

L2
β(Ω) =

{
u measurable

∣∣∣∣ ∥u∥2L2
β

(Ω) :=
∫

Ω
u2 e−βV < +∞

}
,

Hk
β(Ω) =

{
u ∈ L2

β(Ω)
∣∣∣ ∂αu ∈ L2

β(Ω), ∀ |α| ⩽ k
}
,

(3.9)

where ∂α = ∂α1
x1 . . . ∂

αd
xd

denotes the weak differentiation operator associated to a multi-
index α = (α1, . . . , αd) ∈ Rd. For the flat case (i.e. when V ≡ 0), we simply write L2(Ω)
and Hk(Ω). As in the flat case, Hk

0,β(Ω) denotes the Hk
β(Ω)-norm closure of C∞

c (Ω).

If Ω is bounded (which will be the case in the following) and for any k ∈ N, the sets Hk
β(Ω)

and Hk(Ω) are equal as Banach spaces, but are endowed with different inner products.

Lipschitz shape perturbations. For the purpose of studying shape perturbations of
eigenvalues, we introduce an appropriate Banach space of deformation fields. We denote
by W1,∞(Rd;Rd) (or simply W1,∞) the set of essentially bounded vector fields with essentially
bounded weak differential:{

θ : Rd → Rd measurable
∣∣∣ ∥θ∥W1,∞ := ∥θ∥L∞(Rd;Rd) + ∥∇θ∥L∞(Rd;Md) < +∞

}
,

where Rd is endowed with the Euclidean norm and whereMd denotes the space of d×d matrices,
which is endowed with the induced operator norm. For any finite-dimensional vector space E
and θ ∈ W1,∞(Rd;E), θ has a Lipschitz-continuous representative (see for example [121, Section
5.8.2.b, Theorem 4]). We will therefore identify throughout this work elements of W1,∞(Rd;E)
with their Lipschitz representatives. The normed vector space (W1,∞, ∥ · ∥W1,∞) is a Banach
space, and due to Rademacher’s theorem, θ ∈ W1,∞ is differentiable almost everywhere. We
use the convention (∇θ)ij = ∂iθj , so that ∇θ = Dθ⊤ ∈ Rd×d is the transpose of the Jacobian
matrix.

The interest of this class of perturbations is the stability of the class of Lipschitz domains
under W1,∞ shape perturbations, as formalized by the following result.

Proposition 3.1. Let Ω ⊂ Rd be a bounded, open Lipschitz domain, and k ⩾ 1. There
exists h0 > 0 such that, for all θ ∈ BW1,∞(0, h0),

Ωθ := (Id + θ)Ω = {x+ θ(x), x ∈ Ω} (3.10)
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∂Ω ∂Ωθ

θ

Figure 3.1: The standard framework of the Hadamard shape derivative: a reference domain Ω is
deformed into Ωθ defined in (3.10) following a perturbation field θ ∈ W1,∞. Regularity properties of a
shape functional J(Ω) are studied via those of the map θ 7→ J(Ωθ).

is still a bounded, open Lipschitz domain.

We depict schematically the perturbed domain (3.10) in Figure 3.1. The proof of Proposi-
tion 3.1 relies on the fact that bounded Lipschitz domains are characterized by a geometric
condition in the class of so-called uniform ε-cone conditions, which is stable under bi-Lipschitz
homeomorphisms. We refer to [75, Section III] for a proof of this result. Another straightfor-
ward but important property of this class of perturbations is that the composition mappingH

1
0 (Ωθ)→ H1

0 (Ω)
v 7→ v ◦ Φθ,

(3.11)

where Φθ(x) = x+ θ(x), is a Banach space isomorphism for ∥θ∥W1,∞ sufficiently small, with
inverse vθ 7→ vθ ◦ Φ−1

θ .

Spectral properties of the Dirichlet generator. We recall that the evolution semigroup
associated with the diffusion (3.1) is generated by the operator (3.3). Given a bounded open
domain Ω, the Dirichlet realization of −Lβ on L2

β(Ω), also denoted by −Lβ , is defined as the
Friedrichs extension (see [318]) of the positive quadratic form

C∞
c (Ω) ∋ u 7→ 1

β

∫
Ω
∇u⊤a∇u e−βV .

It is a self-adjoint operator with domain D(Lβ) =
{
u ∈ H1

0,β(Ω) : Lβu ∈ L2
β(Ω)

}
. If Ω is a

smooth domain, we simply have D(Lβ) = H2,β(Ω) ∩H1
0,β(Ω).

Since D(Lβ) ⊂ H1
0,β(Ω) is compactly embedded in L2

β(Ω), −Lβ has compact resolvent, and
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its spectrum is composed of a sequence

0 < λ1(Ω) ⩽ λ2(Ω) . . .

of eigenvalues with finite multiplicities tending to +∞. We enumerate the spectrum with
multiplicity, and consider the following normalization for eigenvectors: for any integers i, j ⩾ 1,∫

Ω
ui(Ω)uj(Ω)e−βV = δij , (3.12)

where for any k ⩾ 1, uk(Ω) ∈ L2
β(Ω) satisfies the eigenrelation −Lβuk(Ω) = λk(Ω)uk(Ω). It

can also be shown that the eigenfunction associated with λ1(Ω) is a signed function u1(Ω)
(since |u1(Ω)| ∈ D(Lβ) is also a minimizer of the quadratic form), which is unique up to
normalization, and the Harnack inequality implies that u1(Ω) does not vanish inside Ω.
Therefore, the orthogonality constraint (3.12) forces the principal eigenvalue to be simple,
i.e. 0 < λ1(Ω) < λ2(Ω). Moreover, one can choose u1(Ω) to be positive in Ω, which will be our
convention throughout this work.

Precise statements regarding the spectral properties of Lβ will be given in the proof of
Theorem 3.2 below.

Shape perturbation analysis. In Section 3.2, we derive regularity results (Theorem 3.2) for
the Dirichlet eigenvalues of the generator −Lβ with respect to Lipschitz shape perturbations.
To do so, we adopt the standard framework of shape calculus, considering mappings from
perturbations of the domain to eigenvalues

θ 7→ λk(Ωθ), ∀ k ⩾ 1,

and obtain regularity results with respect to θ ∈ W1,∞ with explicit first-order formulas.

To illustrate the main difficulty when dealing with eigenvalues, we consider the following
two-dimensional example, which already gives insight into the infinite-dimensional situation.
Consider the following matrix-valued map R2 → R2×2 (which depends on two independent
parameters, and therefore lies outside the scope of analytic perturbation theory):

A(θ) =
(
−θ1 θ2

θ2 θ1

)
, SpecA(θ) =

{
±
√
θ2

1 + θ2
2

}
.

Simple eigenvalues remain Fréchet-differentiable with respect to θ. One does not however have
Fréchet differentiability for degenerate eigenvalues (as 0 for θ = 0 above), even if one is free to
choose the ordering of the eigenvalues. Indeed, there is no local parametrization of SpecA(θ) as
the union of two differentiable surfaces in a neighborhood of θ = 0: geometrically, it is a double
cone in R3 with a vertex at θ = 0. However, it is simple to see that, for a fixed perturbation
direction θ ∈ R2, the set SpecA(tθ) may be parametrized as the union of two differentiable
graphs, namely t 7→ ±t|θ|, and in this sense the degenerate eigenvalue is Gateaux-differentiable.
If one moreover orders the eigenvalues, one gets the parametrization t 7→ ±|tθ|, and the
eigenvalues are again non-differentiable at t = 0 (even in the sense of Gateaux), but only
semi-differentiable, with well-defined left and right derivatives. This is simply an artifact of
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the non-differentiability of the ordering map, which nevertheless is semi-differentiable on the
diagonal {(x, y) ∈ R2 : x = y}.

The case of the Dirichlet eigenvalues of −Lβ is similar. Namely, for a degenerate eigen-
value λk(Ω) of multiplicity m and a fixed perturbation direction θ ∈ W1,∞, the spectral
cluster

{λk+ℓ(Ωtθ), 0 ⩽ ℓ < m, |t| small}

around λk(Ω) depends differentiably on t, in a sense made precise in Theorem 3.2 below. It is
also the case that, if λk(Ω) is simple, then θ 7→ λk(Ωθ) has C1(W1,∞)-regularity in a neigh-
borhood of 0, a property known as shape-differentiability. In both the simple and degenerate
cases, explicit formulas for the directional one-sided derivatives (and thus also the Fréchet
derivative in the simple case) of the ordered eigenvalues λk+ℓ(Ωθ) with respect to θ at θ = 0 are
available for 0 ⩽ ℓ < m. These results justify formal computations (see Corollary 3.4 below),
generalizing those of Hadamard [146] for the Laplacian, and allowing for the identification of
shape-ascent directions for smooth functionals of the Dirichlet spectrum. This forms the crux
of our numerical method, see Section 3.3 below. The general strategy we follow was proposed
by Haug and Rousselet in [152, 153, 290, 154] for problems in structural mechanics.

However, besides the fact that the operators we consider here are different from those in [290,
154], the regularity results we prove are stronger than those derived in [152, 153, 290, 154]
(for instance, we show Fréchet-differentiability of simple eigenvalues in a W1,∞-neighborhood
of θ = 0). These results require locally uniform-in-θ estimates throughout the proof, and we
therefore give a self-contained derivation.

Let us also mention the books [164, Section 5.7] and [163, Section 2.5] for a more pedagogical
and somewhat less technical approach than our proof in the case of the Laplacian, but which
only applies to the case of simple eigenvalues.

3.2.2 Shape perturbation formulas

Our main result is the following theorem, which summarizes the regularity properties for the
Dirichlet ordered eigenvalue maps θ 7→ λk(Ωθ), with explicit expressions for the directional
derivatives at θ = 0 in terms of a L2

β(Ω)-orthonormal basis of eigenvectors. Crucially, formulas
are still available in the case of degenerate eigenvalues.

Theorem 3.2. Let Ω ⊂ Rd be a bounded Lipschitz domain, and λk(Ω) = λk+ℓ(Ω) for 0 ⩽ ℓ < m

be a multiplicity m ⩾ 1 eigenvalue for the operator −Lβ on Ω with Dirichlet boundary conditions.
Let

(
u

(i)
k (Ω)

)
1⩽i⩽m

be a basis of eigenvectors for the associated invariant subspace of L2
β(Ω),

satisfying the normalization convention (3.12). We recall that, for θ ∈ W1,∞
(
Rd,Rd

)
, the

transported domain is denoted Ωθ = (Id + θ)Ω. The following properties hold.

i) The map θ 7→ (λk+ℓ(Ωθ))0⩽ℓ<m is Lipschitz in a W1,∞-neighborhood of θ = 0.

ii) Fix θ ∈ W1,∞
(
Rd,Rd

)
. There exist tθ > 0 and m differentiable maps

(−tθ, tθ) ∋ t 7→ µℓ(t), 1 ⩽ ℓ ⩽ m
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such that
{µℓ(t), 1 ⩽ ℓ ⩽ m} = {λk+ℓ(Ωtθ), 0 ⩽ ℓ < m} . (3.13)

Moreover, the set {µ′
ℓ(0), 1 ⩽ ℓ ⩽ m} of derivatives at t = 0 is the spectrum of the

symmetric matrix MΩ,k(θ) with entries, for 1 ⩽ i, j ⩽ m:

MΩ,k
ij (θ) = 1

β

∫
Ω
∇u(i)

k (Ω)⊤
(
∇a⊤θ − a∇θ −∇θ⊤a

)
∇u(j)

k (Ω)e−βV

+ 1
β

∫
Ω
∇u(i)

k (Ω)⊤a∇u(j)
k (Ω)div

(
θe−βV

)
− λk(Ω)

∫
Ω
u

(i)
k (Ω)u(j)

k (Ω)div
(
θe−βV

)
.

(3.14)

iii) If λk(Ω) is a simple eigenvalue, i.e. m = 1, then the map θ 7→ λk(Ωθ) is C1(W1,∞;R) in
a W1,∞-neighborhood of θ = 0.

In the expression (3.14) above, we use the shorthand ∇a⊤θ for the matrix with entries
∑d
α=1 ∂αaijθα.

Remark 3.3. Note that, from the second item in Theorem 3.2, the Gateaux right-derivatives of
the ordered eigenvalues can be deduced from the ordering of the eigenvalues of the matrix MΩ,k

defined in (3.14). Namely, for any 0 ⩽ ℓ < m, the right-derivative d
dtλk+ℓ(Ωtθ)

∣∣
t=0+ is given

by the ℓ-th smallest eigenvalue of MΩ,k(θ), counted with multiplicity. This simply follows
by comparing the first-order expansions of the eigenvalues given in (3.13). It may happen
that MΩ,k(θ) has degenerate eigenvalues, in which case some eigenvalue branches are tangent
to one another, and λk(Ωtθ) remains degenerate to first-order in t around t = 0. Such a
situation is depicted in Figure 3.2 below.

As the proof of Theorem 3.2 is somewhat lengthy, it is postponed to Appendix 3.A below.

3.2.3 Revisiting eigenvalue derivatives as boundary integrals

The next result states that the components of the matrix (3.14) defining the directional
derivatives of a multiple eigenvalue have a simpler form, provided that the boundary has
sufficient regularity.

Corollary 3.4. Assume that Ω is convex or has a C1,1 boundary. Then the components (3.14)
can be rewritten as the following boundary integrals for 1 ⩽ i, j ⩽ m:

MΩ,k
ij (θ) = − 1

β

∫
∂Ω

∂u
(i)
k

∂n
∂u

(j)
k

∂n
(
n⊤an

) (
θ⊤n

)
e−βV , (3.15)

where n denotes the unit outward normal to ∂Ω and ∂u
∂n = ∇u⊤n denotes the normal derivative.

Compared to (3.14), the form (3.15) is useful from the numerical point of view, since it does
not involve any derivative of the diffusion tensor a or of the perturbation field θ. As such, it is
the one we use for the purpose of numerical shape optimization, see Section 3.3 below.

Proof of Corollary 3.4. We fix 1 ⩽ i, j ⩽ m and for simplicity, we denote by u
(i)
k (Ω) =

u, u(j)
k (Ω) = v and λk(Ω) = λ. By standard results of elliptic regularity (see [144, Theorems
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λk+2(Ωtθ)

λk(Ωtθ)

λk+1(Ωtθ)

t

Spec(−Lβ(Ωtθ))

Figure 3.2: Directional shape perturbation of the triple Dirichlet eigenvalue λk(Ω) in the direction θ.
The slopes of the Gateaux right-tangents (in black dashed lines) correspond to the eigenvalues of the
matrix MΩ,k(θ) (counted with multiplicity). In this case, the bottom eigenvalue has multiplicity two,
and two half-tangents coincide.

2.4.2.5 and 3.2.1.3]), the regularity of ∂Ω or the convexity of Ω ensure that u and v belong
to H2(Ω), so that ∇u,∇v, θ ∈ L2(∂Ω) by the Sobolev trace theorem, with furthermore,
since u, v ∈ H1

0 (Ω),
∇u = ∂u

∂nn, ∇v = ∂v

∂nn in L2(∂Ω)d, (3.16)

where ∇u,∇v are defined in L2(∂Ω) in the sense of the trace. We recall a Green-like identity
for f ∈ H1(Ω) and g ∈ D(Lβ). In view of the following equality in L1(Ω)

1
β

div
(
fe−βV a∇g

)
= 1
β
fdiv

(
e−βV a∇g

)
+ 1
β
∇f⊤a∇ge−βV

=
(
fLβg + 1

β
∇f⊤a∇g

)
e−βV ,

the Green–Ostrogradski formula gives

1
β

∫
∂Ω
fn⊤a∇g e−βV =

∫
Ω
fLβg e−βV + 1

β

∫
Ω
∇f⊤a∇g e−βV . (3.17)

Applying (3.17) with f = θ⊤∇u and g = v, observing that θ⊤∇u ∈ H1(Ω) and using (3.16) as
well as the eigenrelation Lβv = −λv, we obtain

1
β

∫
∂Ω

∂u

∂n
∂v

∂nn⊤anθ⊤n e−βV = −λ
∫

Ω
θ⊤∇uv e−βV + 1

β

∫
Ω
∇
(
θ⊤∇u

)⊤
a∇v e−βV

= −λ
∫

Ω
θ⊤∇uv e−βV + 1

β

∫
Ω
∇u⊤∇θ⊤a∇v e−βV

+ 1
β

∫
Ω
θ⊤∇2ua∇v e−βV .
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Applying this identity to (3.14) twice (exchanging the roles of u and v the second time), we get

MΩ,k
ij (θ) = 1

β

∫
Ω
∇u⊤∇a⊤θ∇v e−βV − 2

β

∫
∂Ω

∂u

∂n
∂v

∂nn⊤anθ⊤n e−βV

− λ
∫

Ω
θ⊤∇(uv) e−βV − λ

∫
Ω
uv div

(
θe−βV

)
+ 1
β

∫
Ω
θ⊤
(
∇2ua∇v +∇2va∇u

)
e−βV + 1

β

∫
Ω
∇u⊤a∇v div

(
θe−βV

)
.

Note that the second line is equal to

−λ
∫

Ω
div

(
uvθe−βV

)
= 0,

by the Green–Ostrogradski formula and the boundary condition u, v ∈ H1
0 (Ω). It then suffices

to notice that

div
(
∇u⊤a∇vθe−βV

)
= θ⊤

(
∇2ua∇v +∇2va∇u

)
e−βV

+∇u⊤∇a⊤θ∇v e−βV +∇u⊤a∇v div
(
θe−βV

)
,

to conclude that

MΩ,k
ij (θ) = 1

β

∫
∂Ω
∇u⊤a∇vθ⊤n e−βV − 2

β

∫
∂Ω

∂u

∂n
∂v

∂nn⊤anθ⊤n e−βV

= − 1
β

∫
∂Ω

∂u

∂n
∂v

∂nn⊤anθ⊤n e−βV

as claimed.

3.3 Numerical optimization

Using the results of Section 3.2, we describe in this section an ascent algorithm to numerically
optimize smooth functionals of the eigenvalues of the Dirichlet generator Lβ . We first present
in Section 3.3.1 the discretization procedure used to solve the Dirichlet eigenproblem. In
Section 3.3.2, we describe the local ascent method we use, and detail the choice of ascent
direction in Section 3.3.3.

Throughout this section, we fix a smooth function J of k ∈ N∗ ordered Dirichlet eigenvalues,
which we seek to maximize:

max
Ω⊂Rd

J (λ1(Ω), . . . , λk(Ω)) , J ∈ C∞
((
R∗

+
)k
,R
)
.

By an abuse of notation, we also write the shorthands J(Ω) := J (λ1(Ω), . . . , λk(Ω)), ∂λi
J(Ω) :=

∂λi
J(λ1(Ω), . . . , λk(Ω)) for 1 ⩽ i ⩽ k and denote by DJ(Ω; θ) the Gateaux right-derivative at

point θ of the map θ 7→ J (λ1(Ωθ), . . . , λk(Ωθ)), which exists by the second item in Theorem 3.2,
or its Fréchet derivative whenever it is defined.
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3.3.1 Finite-element discretization of the eigenproblem

The numerical method we propose is based on a finite-element (FEM) approximation of the
spectrum. As such, it is computationally affordable in the low-dimensional setting d ⩽ 3.
For higher dimensional systems, one may resort to a low-dimensional representation of the
dynamics, see Section 3.4.1 below where this is illustrated in a case when a good low-dimensional
collective variable is available.

Finite-element meshes. All the shapes we consider in this work are parametrized by
simplicial meshes. A mesh Σ for a given polyhedral domain Ω consists for our purposes of the
data

Σ = (V, T ), V = (xi)1⩽i⩽NV
, T = (Ti)1⩽i⩽NT

,

where V ∈
(
Rd
)NV is the set of 0-cells or vertices, and T ∈

(
Vd+1

)NT defines the set of d-cells,
namely triangles for d = 2 or tetrahedra for d = 3. We assume the usual finite-element method
(FEM) conditions on T :

Ω =
NT⋃
i=1

co Ti, ∀ 1 ⩽ i < j ⩽ NT ,
◦coTi ∩

◦coTj = ∅, (3.18)

where co (resp. ◦co) denotes the closed (resp. open) convex hull. The set coT is the (closed)
d-cell associated with any T ∈ T .

Dirichlet eigenvalues are approximated using the following procedure.

Rayleigh–Ritz approximation of the Dirichlet spectrum. Given a mesh Σ, the
Rayleigh–Ritz method for the Dirichlet eigenproblem consists in performing the following steps.

A. Fix a finite-dimensional subspace E0(Σ) ⊂ H1
0 (Ω), spanned by a set of basis func-

tions Φ(Σ) = (ϕi)1⩽i⩽dΣ
. A typical choice is the set of P1 elements for the interior

vertices V ∩ Ω. Another approach is to take E0(Σ) ⊂ H1(Ω) and enforce the Dirichlet
boundary condition by adding a penalization term to the weak formulation. We use the
latter method, which is implemented by default in FreeFem++ [155] (with the default
value of the penalization parameter).

B. Form the matrices

A(Σ) =
(∫

Ω
∇ϕ⊤

i a∇ϕj e−βV
)

1⩽i,j⩽dΣ

, B(Σ) =
(∫

Ω
ϕiϕj e−βV

)
1⩽i,j⩽dΣ

. (3.19)

In practice the integrals can be restricted to the set suppϕi ∩ suppϕj = ∪n∈Nij co Tn,
where Nij is a set indexing the cells on which both ϕi and ϕj are non-zero. Generally, the
integrals in (3.19) consist in the sum of integrals over only a handful of cells in T , which
are approximated by quadrature rules. The resulting matrices are sparse, which makes the
computation of the bottom eigenvalues tractable with iterative methods.
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C. Solve the generalized eigenvalue problem (e.g. using a Lanczos algorithm) for 1 ⩽ ℓ ⩽ k:

A(Σ)wℓ(Σ) = −λℓ(Σ)B(Σ)wℓ(Σ), wℓ(Σ) ∈ RdΣ .

The Rayleigh–Ritz eigenpair
(
λℓ(Σ), wℓ(Σ)⊤Φ(Σ)

)
can then be used as an approxima-

tion of the Dirichlet eigenpair (λℓ(Ω), uℓ(Ω)). We denote by uℓ(Σ) = wℓ(Σ)⊤Φ(Σ) the
approximated eigenfunction, and convene that the eigenvalues are listed in increasing order.

We also select the shape perturbation θ (see Figure 3.1) in a finite-dimensional space W (Σ) ⊂
W1,∞(Rd;Rd). In practice, we take W (Σ) ⊂ H1(Ω)d to be the finite-dimensional space spanned
by the set of P1 vector-valued elements associated with Σ.

We finally introduce the following notion of numerical degeneracy for Rayleigh–Ritz eigen-
values: we say that λℓ(Σ) has ε-multiplicity m ⩾ 1 if

λℓ(Σ)− λℓ−1(Σ)
λℓ−1(Σ) > ε,

λℓ+m−1(Σ)− λℓ(Σ)
λℓ(Σ) ⩽ ε <

λℓ+m(Σ)− λℓ(Σ)
λℓ(Σ) .

3.3.2 Local optimization procedure.

The algorithm starts from the choice of some initial mesh-like open domain Ω0, with an
underlying mesh Σ0. The ascent algorithm used to solve (3.8) takes the following parameters
as input.

Parameter Description

Ω0, Σ0 = (V0, T0) Initial polyhedral domain and its mesh
εdegen > 0 Degeneracy tolerance parameter
mmax ⩾ 2 Maximal degeneracy rank
ηmax > 0 Maximal step size
0 < α < 1 Step size multiplier
εterm > 0 Termination criterion tolerance
Mgrad > 0 Gradient normalization parameter
Nsearch > 0 Number of search points in the degenerate case

Input parameters for Algorithm 3.5.

We proceed by iterating the following steps.

Algorithm 3.5 (Ascent iteration.). At step n ⩾ 0:

A. Approximate the k+mmax + 1 first eigenpairs for Σn using the finite-element Rayleigh–Ritz
procedure from Section 3.3.1 above.

B. Identify an ascent direction θn ∈ W(Σn) such that D̂J(Σn; θn) > 0, where

D̂J(Σ; θ) = ∇J(λ1(Σ), . . . , λk(Σ))⊤D̂Λ(Σ; θ), D̂Λ(Σ; θ) =
(
D̂λi(Σ; θ)

)
1⩽i⩽k
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and where D̂λi(Σ; θ) is the approximation of the right-Gateaux derivative of λi(Ω) in the
direction θ from step A., i.e.

D̂λi(Σ; θ) = − 1
β

∫
∂Ω

(
∂ui(Σ)
∂n

)2
n⊤ane−βV θ⊤n if λi(Σ) has εdegen-multiplicity 1,

and otherwise is given by the ℓ-th smallest eigenvalue of the matrix(
− 1
β

∫
∂Ω

∂uσ(Σ)
∂n

∂uτ (Σ)
∂n n⊤anθ⊤n e−βV

)
i−ℓ+1⩽σ,τ⩽i−ℓ+m

(3.20)

if λi−ℓ+1(Σ) has εdegen-multiplicity m ⩾ ℓ for some 2 ⩽ ℓ ⩽ mmax. If λi−ℓ+1(Σ) has εdegen

greater than mmax, the iteration fails. The choice of θn and its discretization are the crucial
features of the algorithm, and are made precise in Section 3.3.3 below.

C. Set the step size ηn = ηmax, and displace the vertices of the mesh via Ṽn+1 = Vn+ηnθn(Vn).
The geometry of the mesh Σ̃n+1 is defined by the set of new vertices Ṽn+1, inheriting its
combinatorial structure from Σn. If Σ̃n+1 is a valid mesh for a domain Ωn+1, i.e. satisfies
the FEM conditions (3.18), set Σn+1 = A

(
Σ̃n+1

)
, where A is a local mesh refinement

procedure designed to preserve meshing quality, namely the adaptmesh function from
FreeFem++. Otherwise, set ηn ← αηn and repeat this step. For the sake of computational
efficiency and simplicity, we limit ourselves to a fixed maximal step size ηmax, although
various other strategies to select ηn are a classical topic in numerical optimization, see [255,
Chapter 3].

D. Set n← n+ 1 and proceed from step A., unless the termination condition

D̂J(Σn; θn) < εterm

is met. Other termination criteria are possible and are again a classical topic, see [255].

3.3.3 Choice of ascent directions

We now detail how to find ascent directions θn in step B. of Algorithm 3.5. Following the
standard reading on numerical shape optimization (see for instance [6, Section 6.5]), we take a
“solve-then-discretize” approach. We first describe how to identify steepest ascent directions
at the continuous level (for both simple and multiple eigenvalues), and then make precise
the discretization procedure. For the purpose of this discussion, we assume to avoid undue
technical difficulties that Ω is a smooth domain and the coefficients a, V are smooth, ensuring
by elliptic regularity that the Dirichlet eigenfunctions are smooth on Ω, and therefore smooth
and bounded on ∂Ω.

Case of simple eigenvalues. We first handle the case where each of the λi(Ω) have
multiplicity 1. In this case, according to Corollary 3.4, the differential of J with respect to the
perturbation θ can be expressed as a continuous linear form of the normal perturbation θ⊤n
on ∂Ω, i.e.

DJ(Ω; θ) =
∫
∂Ω
ϕJ(Ω)θ⊤n,
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for the scalar-valued map ϕJ(Ω) defined on ∂Ω by

ϕJ(Ω) = − 1
β

[
k∑
i=1

∂iJ(λ1(Ω), . . . , λk(Ω))
(
∂ui(Ω)
∂n

)2]
n⊤ane−βV . (3.21)

The vector field ϕJ(Ω)n is therefore the L2(∂Ω)-gradient of J with respect to θ, which
is why ϕJ(Ω) is also called the shape-gradient of J at Ω. A natural approach to shape-
optimization is to approximate the L2(∂Ω)-gradient flow by an explicit Euler discretization,
setting Ω̃ = (Id + ηθ)Ω, where θ is chosen so that θ⊤n

∣∣∣
∂Ω

= ϕJ(Ω). When using mesh-
discretizations of Ω, two difficulties arise with this approach. Firstly, one must specify how
to displace the internal vertices of the mesh, or in other words how to extend ϕJ(Ω)n to Ω.
Secondly, the normal derivative n is an irregular field on the boundary of a mesh. In practice,
one observes that displacements of the boundary vertices along the mesh normal field leads to
rapid collapse in mesh quality, which prevents the naive method from being useful.

To overcome both difficulties, a standard approach (see for instance [94]) is to resort to
an extension-regularization procedure, seeking a Riesz representative of θ 7→ DJ(Ω; θ) in a
Hilbert space H(Ω) ⊂ L2(Ω) consisting of more regular shape-perturbations, defined on the
whole of Ω. To ensure that this is possible, H(Ω) should be continuously embedded in L2(∂Ω).
A common choice, which we use in this work, is to take

H(Ω) = H1(Ω)d, ⟨θ, ψ⟩H(Ω) =
∫

Ω

(
ε2

reg∇θ : ∇ψ + θ⊤ψ
)
, (3.22)

where εreg > 0 is a regularization scale, which is chosen of the order of a few cell widths for the
underlying mesh. Therefore, the problem of finding a Riesz representative of θ 7→ DJ(Ω; θ)
amounts to solving

⟨θreg, θ⟩H(Ω) =
∫
∂Ω
ϕJ(Ω)θ⊤n, ∀ θ ∈ H(Ω). (3.23)

Solving and taking θ = θreg, one finds that DJ(Ω; θreg) = ∥θreg∥2H(Ω), so that θreg is indeed a
valid descent direction defined on the whole of Ω, and moreover θreg = 0 if and only if Ω is
a critical shape of J . Note that this approach is still valid whenever ϕJ(Ω)n ∈ H−1/2(∂Ω)d

and Ω is a Lipschitz domain, since the Sobolev trace theorem then gives the continuity of the
trace γ : H(Ω)→ H1/2(∂Ω)d. In practice, the problem (3.23) is solved by a Galerkin method,
which we discuss below.

For our choice of H(Ω), the requirement (3.23) is the weak formulation of the following
Neumann boundary value problem:−ε

2
reg∆θreg + θreg = 0 in Ω,

ε2
reg∇θregn = ϕJ(Ω)n on ∂Ω.

(3.24)

where ∆ is the component-wise Laplace operator. Let us denote by

Rεreg :

H
−1/2(∂Ω)d → H(Ω),
ϕJ(Ω)n 7→ θreg solution to equation (3.24)
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the operator which maps the boundary data ΦJ(Ω)n to the solution θ of the above Neumann
problem.

Various other approaches to the extension-regularization procedure, tailored to preserve
mesh quality over many iterations, are sometimes preferred, see [87, Section 3.5]. They simply
correspond to other choices of H(Ω) and the associated inner product.

Case of multiple eigenvalues. The case of multiple eigenvalues is more challenging. To
simplify the presentation, and motivated by the maximization of (3.7), we focus on the case
where J depends only on the first two Dirichlet eigenvalues, and λ2(Ω) has multiplicity m = 2
(λ1(Ω) is always simple by theory), and ∂λ2J(Ω) ⩾ 0. The generalization to more eigenvalues
and/or other local monotonicity properties of J is straightforward, although the computational
cost of the method increases with the total multiplicity.

According to the third item in Theorem 3.14, multiple eigenvalues are no longer Fréchet-
differentiable, and one therefore loses any natural notion of shape gradient. However, the
objective is still directionally differentiable. The natural counterpart to the shape gradient is
given by the steepest ascent perturbation

θ∗ ∈ Argmax
∥θ∥H(Ω)=1

DJ(Ω; θ). (3.25)

Note that one seeks a steepest ascent perturbation in the space H(Ω) of regular perturbations
defined in (3.22). This is done to ultimately preserve mesh quality, just as in the case of
simple eigenvalues. It is however not immediately clear that the problem (3.25) is well-posed
or tractable. Fortunately, this turns out to be the case in our setting. First, we write

DJ(Ω; θ) = ∂λ1J(Ω)Dλ1(Ω; θ) + ∂λ2J(Ω)min
|u|=1

u⊤MΩ,2(θ)u

= min
|u|=1

u⊤
[
∂λ1J(Ω)Dλ1(Ω; θ)I2 + ∂λ2J(Ω)MΩ,2(θ)

]
u,

using ∂λ2J(Ω) ⩾ 0 and the fact that Dλ2(Ω; θ) is the smallest eigenvalue of the 2 × 2
matrix MΩ,2(θ) defined in (3.14). The problem (3.25) is therefore to maximize with respect
to θ the smallest eigenvalue of the symmetric matrix QΩ(θ) whose (i, j)-th component is given
by

QΩ
ij(θ) = ⟨ϕijJ (Ω)n, θ⟩L2(∂Ω),

ϕijJ (Ω) = − 1
β

[
∂λ2J(Ω)∂u

(i)
2

∂n
∂u

(j)
2

∂n + δij∂λ1J(Ω)
(
∂u1
∂n

)2]
n⊤ane−βV ,

(3.26)

where we write u1 = u1(Ω), u(i)
2 = u

(i)
2 (Ω) for i = 1, 2, and use the formula (3.15). Crucially,

this matrix depends linearly on θ, although its smallest eigenvalue does not.

By the regularization procedure detailed in the previous paragraph, we may also write

QΩ
ij(θ) = ⟨Rεregϕ

ij
J (Ω)n, θ⟩H(Ω), ∀ 1 ⩽ i, j ⩽ 2. (3.27)

Let us denote by ψij := Rεregϕ
ij
J (Ω)n ∈ H(Ω), G := SpanH(Ω){ψij , 1 ⩽ i ⩽ j ⩽ 2}, and ΠG
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the H(Ω)-orthogonal projector onto G.

To solve (3.25), we distinguish between two cases.

◦ If sup
∥θ∥H(Ω)=1

DJ(Ω; θ) ⩽ 0, then the sup is equal to 0, and is attained for any θ ∈ G⊥

with unit norm. Note this is a first-order optimality condition: to first order, any shape
perturbation can only decrease the value of J .

◦ If sup
∥θ∥H(Ω)=1

DJ(Ω; θ) > 0 then by positive homogeneity of the smallest eigenvalue with

respect to θ and the identity QΩ(θ) = QΩ(ΠGθ), we rewrite

sup
∥θ∥H(Ω)=1

DJ(Ω; θ) = sup
∥θ∥H(Ω)⩽1

DJ(Ω; θ) = max
∥θ∥H(Ω)⩽1

θ∈G

DJ(Ω; θ).

In the second case, the sup is replaced by a max, since the supremum is taken over the compact
set BH(Ω)(0, 1) ∩G. Hence, in both cases, a maximizer for (3.25) is attained. In fact, we can
check that, in the second case, the maximizer is unique, as implied by the following elementary
lemma.

Lemma 3.6. Let B be the closed unit ball in a finite-dimensional Hilbert space E, and let
f : B → R be a concave function which is not identically 0 on B, and is furthermore positively
homogeneous of degree α > 0. Then, there exists a unique maximizer θ∗ ∈ ∂B for the problem

sup
θ∈B

f(θ).

Proof. Since B is compact, there exists a maximizer. Assume for the sake of contradiction the
existence of two distinct maximizers θ1 ≠ θ2. Letting θ = 1

2(θ1 + θ2), we note that ∥θ∥E < 1
and next that

f(θ/∥θ∥E) = ∥θ∥−αE f(θ) > f(θ)

= f

(1
2(θ1 + θ2)

)
⩾

1
2 (f(θ1) + f(θ2))

= max
B

f,

using homogeneity in the first inequality and concavity in the second inequality. We have
reached a contradiction, therefore there exists a unique maximizer θ∗, which necessarily
satisfies ∥θ∗∥ = 1 by homogeneity.

In our setting, we let E = G, and notice that, since θ 7→ u⊤QΩ(θ)u is linear for any u ∈ R2,
the map

θ 7→ DJ(Ω; θ) = min
|u|=1

u⊤QΩ(θ)u

is concave and positively homogeneous of degree α = 1. Under the assumption sup
∥θ∥H=1

DJ(Ω; θ) >

0, it is non-identically equal to zero on the closed unit ball of G, which proves the existence of
a unique θ∗ solving (3.25).

In practice, finding θ∗ is tractable by a direct search method. Letting g = (g1, g2, g3) ∈ H(Ω)3

be a H(Ω)-orthonormal basis for G, obtained by applying a Gram–Schmidt procedure to



Chapter 3. Shape optimization of metastable states 177

the {ψij , 1 ⩽ i ⩽ j ⩽ 2}, the problem (3.25) reduces to an optimization with respect to a
parameter α on the unit sphere S2 ⊂ R3. If we fail to find α ∈ S2 such that DJ(Ω;α⊤g) > 0,
we deduce that Ω satisfies a first-order optimality condition, although this case never came up
in our examples.

Remark 3.7. We note that, even for objectives J involving several eigenvalues with multiplici-
ties greater than 2, the optimization problem (3.25) can still be reduced to a finite-dimensional
optimization problem. However, the dimensionality of the problem may be large, and is related
to the number of linearly independent components of the perturbation matrix (3.27), namely

dim G ⩽
ℓ∑

j=1

mj(mj + 1)
2 ,

where ℓ denotes the number of distinct degenerate eigenvalue involved in the definition of J ,
and the set {mj , 1 ⩽ j ⩽ ℓ} enumerates their respective multiplicities. Moreover, the finite-
dimensional problem will generally not be concave, in which case the optimum θ∗ may not be
unique, and the problem may be itself hard to solve, especially if dim G is large.

Discretization of ascent directions. We now explain how we discretize the choice of
ascent direction at the k-th iteration of Algorithm 3.5. The domain Ωk is approximated by a
mesh Σk = (Vk, Tk), and the extension-regularization operator Rεreg is replaced by a Galerkin
approximation R̂εreg

We consider the subspace W (Σk) spanned by the basis Θk of P1 vector-valued elements
associated with Σk, and compute its Gram matrix Greg(Σk) with respect to the H(Ωk)-inner
product (3.22) for the basis Θk. This costly step only needs to be performed once, regardless
of the number of extension-regularization calls (which is determined by the degeneracy of
the eigenvalues, as (3.27) needs to be computed). For any f ∈ H−1/2(∂Ωk)d, we compute
the components bf (Σk) of θ 7→ ⟨f, θ⟩L2(∂Ωk)d in the basis Θk, solve Greg(Σk)α = bf (Σk)
for α ∈ R|Θk|, and take R̂εreg(f) := Θ⊤

k α. In practice, the components of bf (Σk) are further
approximated by quadrature rules. All spectral quantities, namely the eigenvalues λj(Ω) and
the eigenvectors uj(Ω) for 1 ⩽ j ⩽ k, are replaced by their Rayleigh–Ritz counterparts λj(Σ)
and uj(Σ), as well as the corresponding normal derivatives.

Numerically, exactly degenerate eigenvalues are never encountered. However, when λ2 is
almost degenerate, i.e. (λ3(Σk) − λ2(Σk))/λ2(Σk) ≪ 1, the displacement in step C. of the
ascent algorithm 3.5 may lead to the crossing of the eigenvalue branches, in such a way that it
leads in fact to a local decrease in the value of J . This manifests itself through local oscillations
in the eigenvalues and objective functions throughout the ascent algorithm, see Figure 3.15
below. This is a well-known problem in the numerical optimization of non-smooth objective
functions, and decreasing the step size ηk to ensure local ascent is not a viable solution, as
it may lead to very slow convergence to a local minimum, or altogether prevent it. In the
context of numerical optimization of eigenvalues, this behavior has been for example observed
in [86], where Nesterov-type acceleration techniques are suggested.

We follow another approach, assuming exact degeneracy when detecting εdegen-degeneracy,
and choosing an ascent direction within a low-dimensional space of perturbations, according
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to the analytical prescription of the previous paragraph. See the work [94] for a closely related
method applied to an exactly degenerate eigenvalue problem.

More precisely, in the case of εdegen-simple eigenvalues, we set

θk := R̂εreg(ϕJ(Σk)n)/max
(
Mgrad, ∥R̂εreg(ϕJ(Σk)n)∥H(Σk)

)
,

where ϕJ(Σk) is obtained by substituting Rayleigh–Ritz approximations in the definition (3.21)
of the shape gradient ϕJ(Ωk), and we recall Mgrad > 0 is a hyperparameter. In other words, if
the shape gradient is larger than Mgrad in the H(Σk)-norm, the ascent perturbation is normal-
ized. This procedure is equivalent to step size adaptation in an explicit Euler discretization
of the underlying geometric flow, and corresponds to some time reparameterization (in the
limit ηmax → 0) of the trajectories generated by Algorithm 3.5. We found this choice conve-
nient to stabilize the numerical flow, since the gradient varies by several orders of magnitude
throughout the numerical trajectories for the problem we considered. To ensure convergence
near local maxima, this normalization is capped at Mgrad > 0.

For the case of εdegen-degenerate eigenvalues, we first solve

∀ 1 ⩽ i, j ⩽ 2, ψij(Σk) = R̂εreg(ϕijJ (Σk)n),

where the ϕijJ (Σk) are obtained from (3.26) by substituting Rayleigh–Ritz approximations in
place of exact eigenelements. We then apply the Gram–Schmidt algorithm (for theH(Σk)-scalar
product (3.22)) to this set of perturbations, yielding a basis g(Σk) = (g1(Σk), g2(Σk), g3(Σk)) ∈
H(Σk)3 of regular perturbations defined on Ωk. We then solve

α∗ = max
α∈LNsearch

D̂J(Σk;α⊤g(Σk)),

where D̂J(Σk; ·) is defined in (3.20), and LNsearch ⊂ S2 is a set of Nsearch points on the sphere.
In practice, we use a Fibonacci lattice (see [140]), which is simple to implement and distributes
points quasi-uniformly. This optimization step is extremely cheap, after having precomputed
the matrix elements

⟨ϕijJ (Σk)n, gk(Σk)⟩L2(∂Ωk), 1 ⩽ i, j ⩽ 2, 1 ⩽ k ⩽ 3.

Note that one could use the equivalent volume form (3.27), but since boundary integrals are
cheaper to compute and give good results in practice, we work with the latter instead. After
this precomputation step, the cost of evaluating the value of DJ(Ωk;α⊤g) for α ∈ S2 becomes
negligible, and one can deduce the optimal perturbation θ∗(Σ) = α∗⊤g(Σ) at virtually no cost.
We set θk = θ∗(Σ), which is by construction normalized in H(Σ).

It would be of interest to obtain rigorous consistency results in the regimes εdegen → 0
and |T |, Nsearch → +∞, as well as proving local convergence results for the algorithm and/or
the underlying geometric flow. We leave this delicate question up for future work.
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3.4 Practical methods for high-dimensional systems

Although Theorem 3.2 is interesting from a theoretical perspective, its applicability to the
numerical shape optimization of spectral functionals is limited to settings for which the
eigenelements of Lβ are available. For high-dimensional systems, which are typical in molecular
simulation, this is hardly the case. It is therefore necessary to provide alternative numerical
approaches. In this section, we discuss such methods. The first one, discussed in Section 3.4.1,
relies on optimizing the separation of timescales for an effective dynamics through a given
collective variable. The second one, discussed in Section 3.4.2, relies on the optimization of
asymptotic expressions derived in the low-temperature regime, in the recent results of [50].

3.4.1 Coarse graining of dynamical rates

In this section, we propose a numerical strategy based on a Galerkin method and Theorem 3.2,
after projecting the infinitesimal generator onto a collective variable (CV) or reaction coordinate.

In practical cases from molecular dynamics, the process (3.1) evolves in a high-dimensional
space Rd with d≫ 1. In order to interpret trajectories in configurational space, it is often useful
to view them through a low-dimensional map ξ : Rd → Rm, also known as a collective variable
or reaction coordinate. Classical examples include geometric quantities such as dihedral angles,
well-chosen interatomic distances, coordination numbers, path collective variables, which all
derive from chemical intuition, and thus generally have a good physical interpretation. In
recent years, machine learning techniques have been applied to the automatic construction of
CVs optimized for a variety of purposes, see for instance [125, 138, 74, 139] for a review of
recent approaches.

Here we assume that a collective variable ξ is given, and consider the new problem of optimiz-
ing the effective separation of timescales with respect to a domain defined in collective variable
space. The effective objective is defined with respect to a surrogate dynamics (see (3.30)),
which is already studied in [217, 346, 258], although the methodology could in principle be
applied to other reduced order models of the dynamics as well (see Remark 3.10 below).

Assumptions on the collective variable. From now on, we assume that ξ is smooth,
with ∇ξ of full rank m everywhere. In particular, the Gram matrix Gξ = ∇ξ⊤∇ξ ∈ Rm×m

is everywhere invertible. This condition ensures, by the implicit function theorem, that ξ
foliates Rd into a disjoint union of smooth submanifolds, which are given by the level sets Σz :=
ξ−1(z), for z ∈ Rm. We denote by µz the canonical measure conditioned on Σz. It corresponds
to the probability measure defined by

µz ∈M1(Σz),
dµz

dHΣz

= e−βV (detGξ)−1/2 eβFξ(z),

where HΣz is the (d − m)-dimensional Hausdorff measure on the submanifold Σz. The
factor e−βFξ(z) is a normalization constant expressed in terms of the free energy Fξ : Rm → R
defined as

Fξ(z) := − 1
β

log
∫

Σz

e−βV (detGξ)−1/2 dHΣz . (3.28)
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The collective variable will serve two purposes. Firstly, states will be defined in collective
variable space, i.e. by fixing Ωξ ⊂ Rm, and considering the preimage ξ−1(Ωξ). Secondly, the
variational principle defining Dirichlet eigenvalues for the generator −Lβ will be restricted
to functions which are only a function of the collective variable ξ. This will define, for
each domain Ωξ, a set of Rayleigh–Ritz eigenvalues which will serve as effective eigenvalues
associated with ξ−1(Ωξ).

Introduce the weighted space L2
β(Ωξ) = L2(Ωξ, e−βFξ(z) dz), and the associated weighted

Sobolev spaces as in (3.9). We denote, for Ωξ ⊂ Rm and φ ∈ H1
0,β(Ωξ),

Rξ (φ; Ωξ) = R
(
φ ◦ ξ; ξ−1(Ωξ)

)
,

where R(·; Ω) is the Rayleigh quotient associated with the Dirichlet realization of Lβ on Ω, i.e.

R(ψ; Ω) = 1
β

∫
Ω
∇ψ⊤a∇ψe−βV∫

Ω
ψ2e−βV

∀ψ ∈ H1
0,β(Ω).

Then, the coarea formula (see [199, Corollary 5.2.6]) allows us to write

Rξ (φ; Ωξ) = 1
β

∫
ξ−1(Ωξ)

∇(φ ◦ ξ)⊤a∇(φ ◦ ξ)e−βV

∫
ξ−1(Ωξ)

(φ ◦ ξ)2e−βV

= 1
β

∫
Ωξ

∫
Σz

[∇φ ◦ ξ]⊤∇ξ⊤a∇ξ [∇φ ◦ ξ] e−βFξ◦ξ dµz dz∫
Ωξ

∫
Σz

(φ ◦ ξ)2 e−βFξ◦ξ dµz dz

= 1
β

∫
Ωξ

∇φ⊤aξ∇φ e−βFξ∫
Ωξ

φ2 e−βFξ

where aξ denotes the symmetric, positive-definite matrix-valued map

aξ(z) =
∫

Σz

∇ξ⊤a∇ξdµz ∈ Rm×m. (3.29)

It follows that Rξ, which we interpret as a family of coarse-grained Rayleigh quotients on
the lower-dimensional space Rm, has the same basic structure as R. Indeed, it corresponds
to the family of Dirichlet Rayleigh quotients associated with a reversible diffusion on Rm of
the form (3.1), where the potential V and diffusion matrix a have been replaced by their
lower-dimensional analogs defined in terms of conditional expectations with respect to the
reference dynamics:

dZξt =
(
−aξ(Zξt )∇Fξ(Zξt ) + 1

β
div aξ(Zξt )

)
dt+

√
2
β
aξ(Zξt )1/2 dBt, (3.30)

where B is am-dimensional standard Brownian motion. The dynamics (3.30) can be understood
as a Markovian model for the dynamics of ξ(Xt), which is also reversible with respect to the
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Gibbs measure associated with the free energy. We refer to [217, 346] for additional details on
the mathematical properties of the effective dynamics.

A natural question is whether one can hope to approximate the true dynamical rates with
those predicted by the effective dynamics (3.30). The answer has practical implications, since
in the case where m is sufficiently low-dimensional, the eigenvalue problem associated with Rξ
becomes numerically tractable, and one may then optimize the separation of timescales N∗(Ω)
with respect to domains Ω defined in terms of the CV. It should be noted that it is anyway
common practice to define configurational states in terms of a CV.

These considerations motivate the following Galerkin approach, already discussed in [346,
Section 3.3.2] for the case Ωξ = Rm. We introduce the following linear subspace

Vξ = {φ ◦ ξ, φ ∈ H1
0,β(Ωξ)} ⊂ H1

0,β

(
ξ−1(Ωξ)

)
,

and define the local coarse-grained rates

λξk(Ωξ) := min
Eξ

max
φ∈Eξ

Rξ(φ,φ; Ωξ) = min
E

max
φ∈E

R
(
φ,φ; ξ−1(Ωξ)

)
,

where Eξ ranges over the set of k-dimensional subspaces of H1
0,β(Ωξ) in the first equality,

and E ranges over the set of k-dimensional subspaces of Eξ in the second. In other words, λξk
is the k-th eigenvalue of the following operator acting on the weighted space L2(Ωξ, e−βFξ dz)
with Dirichlet boundary conditions:

−Lξβφ = − 1
β

eβFξdiv
(
e−βFξaξ∇φ

)
.

It follows easily from the Courant–Fischer principle that λξk(Ωξ) ⩾ λk(ξ−1(Ωξ)), and more-
over that if {u1(ξ−1(Ωξ)), . . . , uk(ξ−1(Ωξ))} ⊂ Vξ for some k ⩽ m, it holds that λξk(Ωξ) =
λk(ξ−1(Ωξ)). Thus, the dynamical rates associated with the effective dynamics will system-
atically overestimate the true rates. However, these will still be accurate if the Dirichlet
eigenfunctions for Lβ on ξ−1(Ωξ) can be well approximated in the class Vξ.

More precisely, we have the following result, adapted from [346, Proposition 5].

Proposition 3.8. Let k ⩾ 1 and λξk (respectively, λk) be the k-th principal eigenvalue of −Lξβ
(resp. −Lβ) in Ωξ (resp. ξ−1(Ωξ)), with associated eigenfunction uξk (resp. uk), with the
normalization (3.12). Then,

λk ⩽ λξk ⩽ λk + 1
β

∫
ξ−1(Ωξ)

∇
[
uk − uξk ◦ ξ

]⊤
a∇

[
uk − uξk ◦ ξ

]
e−βV . (3.31)

The proof of Proposition 3.8 is a straightforward adaptation of [346, Proposition 5] to the
case of absorbing Dirichlet boundary conditions on ∂Ωξ and is therefore omitted.

A useful corollary of Theorem 3.2 is the following result.

Proposition 3.9. Let Ωξ ⊂ Rm be a bounded open domain which is convex or has a C1,1

boundary. Assume that ξ is such that Assumptions (Ell) and (Reg) are satisfied with d =
m, V = Fξ and a = aξ. Let λξk = λξk(Ωξ) be an eigenvalue for Lξβ of multiplicity mξ

k ⩾ 1,
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satisfying the normalization∫
Ωξ

u
(i),ξ
k (Ωξ)u

(j),ξ
k (Ωξ)e−βFξ = δij , 1 ⩽ i, j ⩽ mξ

k,

where the u(i),ξ
k (Ωξ) for 1 ⩽ i ⩽ mξ

k are a basis of corresponding eigenvectors in L2(Ωξ, e−βFξ).
Then, for θ ∈ W1,∞(Rm;Rm) and 0 ⩽ ℓ < m, the map t 7→ λξk+ℓ((Id + tθ)Ωξ) is semi-
differentiable at t = 0, and the right-differential is the (ℓ + 1)-th smallest eigenvalue of the
matrix

M ξ
ij(θ) = − 1

β

∫
∂Ωξ

∂u
(i),ξ
k (Ωξ)
∂n

∂u
(j),ξ
k (Ωξ)
∂n n⊤aξnθ⊤n e−βFξ 1 ⩽ i, j ⩽ m.

Proof. The result is a direct application of Theorem 3.2 and Corollary 3.4.

We discuss sufficient conditions for the assumptions of Proposition 3.9 in Appendix 3.C
below.

Proposition 3.9 suggests a practical approach to the shape optimization of spectral function-
als F(λ1(Ω), . . . , λk(Ω)) in a high-dimensional setting, replacing the original objective with the
coarse-grained objective F(λξ1(Ωξ), . . . , λξk(Ωξ)). The computational implementation of this
approach however requires access to the free energy Fξ and the matrix aξ, for which a number
of sampling methods are available, see [229] for an overview. Due to the approximation error
in (3.31), we cannot expect the resulting shapes to be optimal for the original objective in the
class of domains defined in CV space. They can nevertheless be used as input in acceleration
methods such as ParRep, since this algorithm is dynamically unbiased by construction (in the
limit of long decorrelation times).

Remark 3.10. The quality of the approximation (3.31) is quite sensitive to the choice of
collective variable ξ, and so, for a poor choice of ξ, the effective dynamics (3.30) and its
associated eigenvalues may give little insight into the original timescales (see Section 3.5.1
below for an example).

However, one could in principle apply the same methodology to other reversible, elliptic
diffusions in Rm besides (3.30), designed to better replicate the dynamical properties of ξ(Xt).
In particular, instead of directly measuring Fξ and aξ using thermodynamic averages, one can
use a parametric approach to fit drift and diffusion coefficients of a dynamical model in Rm

directly from trajectories of ξ(Xt) in CV space, see for instance [200]. This option has the
advantage of being available even when the underlying dynamics in configurational space is
not of the form (3.1), as long as the model enforces the form of a reversible diffusion (3.1)
in Rm. We leave this line of investigation to future work.

This method is numerically validated in Section 3.5.1 below, and is applied to a molecular
system in Section 3.5.3.
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3.4.2 Optimization in the semiclassical limit

In this section, we briefly summarize a second approach to make the shape optimization
problem tractable, based on low-temperature spectral asymptotic results obtained in [50,
Section 2.5]. These results are proved in [50] under a set of assumptions which we simplify
here for the sake of clarity, while keeping the main ideas intact. We restrict ourselves to the
case of a constant diffusion coefficient a = Id. The dynamics follows therefore a standard
overdamped Langevin equation:

dXβ
t = −∇V

(
Xβ
t

)
dt+

√
2
β

dWt. (3.32)

We additionally note the dependence of the dynamics on β, which is inversely proportional to
the temperature. In this section, it is an asymptotic parameter considered in the limit β → +∞.

The use of semiclassical techniques to approximate spectral properties of metastable diffusions
is a well-established topic in the probabilistic literature, see for example [160, 61, 158, 225,
100, 101, 209, 227, 50] and references therein.

Asymptotic shape optimization of eigenvalue functionals. We consider the general
problem of maximizing with respect to a shape Ω a functional of the Dirichlet eigenvalues
of −Lβ on Ω:

J(Ω) = F(λ1(Ω), . . . , λk(Ω)),

where F : Rk → R is continuous. When d≫ 1, the numerical optimization of J is generally
numerically intractable, since the objective involves solving a high-dimensional boundary
eigenvalue problem.

The low-temperature asymptotic approach to this problem consists in fixing a family of
domains (Ωα,β)β>0,α∈S , whose boundary geometry is jointly parametrized by the asymptotic
parameter β, and a shape parameter α in the design space S. Assume that the asymptotic
behavior of J(Ωα,β) is dictated, at dominant order, only by β and α in the limit β → +∞:

F (λ1(Ωα,β), . . . , λk(Ωα,β)) = F∞(α, β)(1 + O(1)) (3.33)

for some function F∞ : S×R∗
+ → R. At fixed β > 0, we say the domain Ωα∗

β
,β is asymptotically

optimal if
α∗
β ∈ Argmax

α∈S
F∞(α, β). (3.34)

The difficulty in this approach lies in computing spectral asymptotics for domains with
temperature-dependent boundaries. In [50], we define a set of geometric assumptions un-
der which these spectral asymptotics can be derived, computed in practice, and ultimately
optimized to solve the asymptotic problem (3.34). The derivation of these shape-sensitive
asymptotic formulas relies on the construction of approximate eigenmodes (or quasimodes in
the semiclassical terminology) for Lβ, which form the crux of identifying F∞ in (3.33).
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Geometrical setting. We now present a slightly simplified version of the geometrical setting
used in [50], which will allow to express the asymptotic results as clearly as possible. We
refer to [50] for a weaker set of assumptions for which the asymptotic results remain valid.
Throughout this section, we assume that V is a C∞ Morse function over Rd. This means that
at each point z ∈ Rd such that ∇V (z) = 0, the Hessian matrix ∇2V (z) is non-degenerate.
For 0 ⩽ i < N , we denote the eigenvalues of the Hessian ∇2V (zi) by

Spec(∇2V (zi)) =
{
ν

(i)
1 , ν

(i)
2 , · · · , ν(i)

d

}
.

We make no assumption on the ordering of these eigenvalues, except that, if zi is an index-1
saddle point, meaning that ∇2V (zi) has a unique negative eigenvalue, one has ν(i)

1 < 0 (i.e.
the negative eigenvalue is the first one).

The Morse property implies that V has finitely many critical points in Kα, which we
enumerate as (zi)0⩽i<N for some N > 0. Among the critical points of V in K, we distinguish
the local minima and index-1 saddle points, respectively given by the sets

{zi, 0 ⩽ i < N0} , {zi, N0 ⩽ i < N0 +N1} .

For a given x ∈ Rd, we denote by A(x) the basin of attraction of x for the steepest descent
dynamics, i.e.

A(x) =
{
z ∈ Rd : X(t) t→∞−−−→ x, X ′(t) = −∇V (X(t)), X(0) = z

}
. (3.35)

The set A(x) is non-empty if and only if ∇V (x) = 0, and in this case A(x) is a d-dimensional
subset of Rd, where d is the number of positive eigenvalues of ∇2V (x).

We now introduce the parameter α =
(
α(i)

)
0⩽i<N

∈ (−∞,+∞]N := S, which controls the
asymptotic geometry of the domains near critical points of V . The value of the parameter α ∈ S
is fixed, its link with the domain geometry will be made explicit in Assumption 3.11 below.
We first assume that the domains Ωα,β are smooth, and uniformly bounded, i.e. there exists a
compact set Kα ⊂ Rd such that, Ωα,β ⊂ Kα for all β > 0.

Assumption 3.11. In a small neighborhood of each critical point zi and for β sufficiently
large, the domain Ωα,β is shaped like a half-space:

Ωα,β ∩B(zi, ε) = zi +
{
x ∈ Rd : (x− zi)⊤v

(i)
1 < α(i)/

√
β
}
,

where ε > 0 is a fixed parameter which depends only on V , and v
(i)
1 is a unit eigenvector

of ∇2V (zi) for the eigenvalue ν(i)
1 (pointing outward of Ωα,β for α(i) < +∞).

When α(i) < +∞, the orientation convention for v(i)
1 ensures that decreasing α(i) locally

retracts the domain. When zi is an index-1 saddle point, Assumption (3.11) is physically
motivated by the fact that v(i)

1 gives the direction of the minimum energy path through zi

connecting a local minimum in the domain with a local minimum outside the domain (that
is, the gradient flow lines joining the minima lying on both sides of the saddle point zi).
Informally, the parameter α encodes the position of the boundary along these paths, on the
length scale 1/

√
β.
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The second assumption is that there is only one local minimum far from the boundary, in
the following sense.

Assumption 3.12. The point z0 is the only local minimum of V in K such that α(0) = +∞.

Informally, this assumption forces the QSD inside Ωα,β to be unimodal, and to concentrate
around z0 in the limit β →∞.

In order to state the last hypothesis, we introduce the sets

SSP(z0) =
{
zi : N0 ⩽ i < N0 +N1, ∃m ̸= z0 a local minimum of V s.t. zi ∈ A(z0) ∩ A(m)

}
,

Imin =
{
N0 ⩽ i < N0 +N1 : zi ∈ Argmin

i∈SSP(z0)
V

}
, V ∗ = min

i∈SSP(z0)
V (zi).

The set SSP(z0) corresponds to so-called separating saddle points, which lie on the boundary
of the basin of attraction of z0, and the boundary of the basin of attraction for some other
local minimum. Physically, these points correspond to the lowest-energy transition states on
the boundary of A(z0). The set Imin contains the indices of these low-energy separating saddle
points, and the associated minimal energy is given by V ∗.

The final assumption is the following.

Assumption 3.13. There exists c > 0 such that, for β sufficiently large, it holds

A(z0) ∩ {V < V ∗ + c} ⊂ Ωα,β \
⋃

i∈Imin

B(zi, ε).

This assumption ensures that the boundary of Ωα,β does not enter below the energy level V ∗,
except perhaps near low-energy separating saddle points. The role of this assumption is to
avoid the introduction of spurious low-energy transition states, corresponding to local minima
of V on the boundary which have no relation to the physically relevant transition pathways.
Assumption 3.13 ensures that these so-called generalized saddle points are higher in energy
than the low-energy transition states, and do not pollute the dominant asymptotic behavior
of the metastable exit time. This assumption is crucial in ensuring that the asymptotics
are, at dominant order, only a function of β and α, as in the desideratum (3.33). However,
it is expected in [50] that a similar analysis can be performed even if Assumption (3.13)
does not hold, but at the cost of introducing a global counterpart to the local geometric
Assumption (3.11). Relaxing Assumption 3.13 therefore leads once again to a high-dimensional
(if not infinite-dimensional) design space S, and besides cannot improve upon the maximizers
of (3.34) in the case F(λ1, λ2) = (λ2 − λ1)/λ1, which is why we enforce it.

Harmonic approximation of the spectral gap. The first main result of [50] gives a
quantitative and computable estimate of the spectral gap of the Dirichlet generator on Ωα,β,
in the limit β → +∞. In fact, it more generally shows that, for each k ⩾ 1, the k-th
eigenvalue λk,β(Ωα,β) converges to the k-th eigenvalue of a temperature-independent operator,
the so-called harmonic approximation.
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Theorem 3.14. Under Assumption 3.11, it holds

λk,β(Ωα,β) β→+∞−−−−−→ λH
k,α, (3.36)

where λH
k,α is the k-th eigenvalue of the operator

Kα =
N⊕
i=0

K
(i)
α(i) , K

(i)
α(i) = −∆ + 1

4x
⊤D(i)x− ∆V (zi)

2 , (3.37)

with D(i) = diag
(
ν

(i)2
j

)d
j=1

, and where the operator K(i)
α(i) is the Dirichlet realization of a

quantum harmonic oscillator acting on the half-space (−∞, α(i))× Rd−1.

The local operators K(i)
α(i) serve as (appropriately rescaled) local models for the action of −Lβ

near critical points of V . The proof of Theorem 3.14 relies on a variational argument similar
to the one used in [195, Theorem 11.1] or [303]. Using the eigenmodes of Kα, we construct
variational test families for Lβ , so-called harmonic quasimodes. The convergence (3.36) follows
from localization estimates on these quasimodes and the Courant–Fischer principle.

Crucially, the geometric assumptions outlined in the previous paragraph ensure that the
eigenvalues λH

k,α can be explicitly computed, as they belong to the spectrum of one of the local
oscillators K(i)

α(i) for some 0 ⩽ i < N . Indeed (see [50, Section 4.2]), the spectrum of K(i)
α(i) can

be enumerated (with multiplicities) by

SpecK(i)
α(i) =

|ν(i)
1 |µ

n1,α(i)
(

|ν(i)
1 |/2

)1/2 −
ν

(i)
1
2 +

d∑
j=2

|ν(i)
j |(nj + 1/2)−

ν
(i)
j

2


n∈Nd

, (3.38)

where µn,a is the (n+ 1)-th eigenvalue of the one-dimensional quantum oscillator 1
2(−∂2

x − x2)
acting on L2(−∞, a) with Dirichlet boundary conditions. The particular values µn,∞ = n+1/2
and µn,0 = 2n + 3/2 are well-known, so that the spectrum of the harmonic approximation
is fully explicit in terms of eigenvalues of the Hessian ∇2V (zi) in the case all the critical
points zi of V in K lie either on the boundary (i.e. α(i) = 0) or ε-inside ∂Ωα,β (i.e. α(i) = +∞)
for all β > 0. Otherwise, one generally has to compute the values of µn,a numerically. The
(nonincreasing) functions a 7→ µn,a can be computed once and for all with high precision for a
range of integers n.

The value of λH
k,α can then be easily obtained by taking the k-th largest element from the

union with multiplicity (i.e. the multiset union) of each of the sets SpecK(i)
α(i) .

Modified Eyring–Kramers formula for the metastable exit rate. When zi is a local
minimum of V such that α(i) = +∞, the bottom eigenvalue of K(i)

α(i) is 0. Thus, the harmonic
approximation predicts a metastable rate of 0, which calls for finer asymptotics. The following
result fulfills this need.
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Theorem 3.15. Under Assumptions 3.11, 3.12 and 3.13, it holds, in the limit β →∞:

λ1,β(Ωβ) = e−β(V ∗−V (z0))

 ∑
i∈Imin

|ν(i)
1 |

2πΦ
(√
|ν(i)

1 |αi
)√ det∇2V (z0)
|det∇2V (zi)|

(1 +O(β− 1
2 )
)
, (3.39)

where Φ(x) = (2π)− 1
2
∫ x

−∞ e− t2
2 dt, and ν

(i)
1 is the unique negative eigenvalue of the Hessian

matrix ∇2V (zi) at the saddle point zi.

For a full proof of this result, see the proof of [50, Theorem 5]. It relies on the construction
of a precise approximation ψβ of the principal Dirichlet eigenmode u1(Ωβ).

Roughly speaking, ψβ is constructed by combining a smoothed indicator of the set A(z0) ∩
{V < V ∗} with, near each low-energy saddle points (zi)i∈Imin , a finer construction based
on formal eigenmodes for the linearization of the dynamics (3.32), which corresponds to an
unstable Ornstein–Uhlenbeck process. Due to the geometric structure of the domain Ωα,β

given by Assumption 3.11, one can separate variables in the unstable direction, leading to an
explicit expression for these formal eigenmodes in terms of the unstable coordinate

ξ
(i)
β (x) =

√
β(x− zi)⊤v

(i)
1 .

The quasimode is then projected onto the principal eigenspace Span(u1(Ωα,β)), yielding λ1,β(Ωα,β)
as a Rayleigh quotient associated with the projected quasimode. Quantitative estimates based
on a modification of Laplace’s method and a resolvent estimate then allows to bound the
projection error, which is sufficiently small to give sharp estimates on λ1,β(Ωα,β).

Application to the separation of timescales. We briefly discuss the implications of
Theorems 3.14 and 3.15 for the problem of maximizing the separation of timescales (3.7). We
refer to [50, Section 3.3] for additional details.

The first point of interest is that Theorem 3.14 gives a quantitative estimate of the spectral
gap λ2(Ωα,β)−λ1(Ωα,β) for large β, and, in view of (3.6), of the asymptotic rate of convergence
to the QSD. This estimate is solely a function of the asymptotic shape parameter α, and of
the eigenvalues of the Hessian ∇2V of the potential at some critical points. As such, it can be
used to choose decorrelation times in Algorithm 3.18 for highly metastable systems. Explicitly,
the second harmonic eigenvalue is given by:

λH
2 = min

 min
1⩽j⩽d

ν
(0)
j , min

1⩽i<N

∣∣∣ν(i)
1

∣∣∣µ(α(i)
√
ν

(i)
1 /2

)
− ν

(i)
1
2 +

∑
2⩽j⩽d

∣∣∣ν(i)
j

∣∣∣1
ν

(i)
j <0

 , (3.40)

where we set µ(θ) := µ1,θ to be the principal eigenvalue of the Dirichlet harmonic oscillator
on (−∞, θ). The limiting eigenvalue λH

2 is positive under Assumption 3.12. Interestingly,
this estimate is not always in agreement with standard numerical practice, which relies on a
harmonic approximation of the energy basin at the local minimum to set the decorrelation
time (see for instance [268]). This approximation neglects the possible effect of higher-order
saddle points. It can be shown to fail when the Hessian ∇2V has sufficiently soft modes around
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such critical points, and these are low enough in energy to be visited during decorrelation to
the QSD.

Theorem 3.15 provides a quantitative estimate of the exit time starting from the QSD as
a function of α. Combined with the previous estimate, we therefore obtain an estimate for
the separation of timescales (3.7) as a function of α and β. In view of (3.38) and (3.39), one
finds that the asymptotic separation of timescales, for the class of domains satisfying Assump-
tions 3.11–3.13, is of order eβ(V ∗−V (z0)), with a β-independent prefactor C(α) (neglecting error
terms). Therefore, the asymptotic shape optimization problem (3.34) for the separation of
timescales can only hope to improve on the prefactor.

We show in [50, Section 3.3] that there exist asymptotically optimal domains, and indeed
many in general. Qualitatively, these optimal domains are found to have the following
properties. Firstly, they spill out beyond low-energy separating saddle points, on geometric
scales of the order 1/

√
β in the unstable direction. This means that one should wait for the

system to reach an energy level lower than V ∗ (in the next basin of attraction) by a multiple
of the characteristic thermal fluctuation β before declaring that a transition has occurred.
The value of the multiplicative constant depends on the geometry of the energy landscape,
but can be computed numerically. Secondly, one can show that they can never absorb other
local energy minima, in the sense that the asymptotic separation of timescales necessarily
decreases when continuously growing the domain so as to include any other minima far (i.e. at
distances≫ 1/

√
β) inside the domain. This gives some theoretical indication that there indeed

exist local shape optima surrounding basins of attraction of local minima for the steepest
descent dynamics.

We present validations of Theorems 3.14 and 3.15 in Section 3.5.2 below, and connect the
asymptotic problem (3.34) to a shape-optimization problem in one spatial dimension.

3.5 Numerical experiments

In this section, we present various numerical experiments to illustrate and validate the results
and methodology presented in Sections 3.4, 3.4.1, and 3.4.2. In Section 3.5.1, we verify, on
a model two-dimensional situation that, given a suitable choice of CV, the coarse-grained
Dirichlet eigenvalues provide a good approximation for the true eigenvalues of the Dirichlet
generator. In Section 3.5.2, we show how the results of Section 3.4.2 can be used to approximate
the shape optimization problem in the semiclassical limit, and verify in particulars the spectral
asymptotics given by Theorems 3.15 and 3.14. In Section 3.5.3, we finally apply the coarse-
grained shape optimization methodology to a realistic molecular system, and estimate the gain
in the separation of timescales in the practical setting of underdamped Langevin dynamics.

The code used to generate the numerical results of this paper are publicly available in the
paper repository [46]. Data generated from the various simulations and optimization runs can
moreover be obtained from the repository [47].
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Figure 3.3: Two-dimensional potentials (3.41), for decreasing values of the parameter ε. In each
case, the potential has a local minimum in each quadrant of the plane, and two saddles on each axis.
The saddles on the y-axis separate two deep energy basins, while the saddle points on the x-axis form
shallow energy barriers inside these basins. Some energy level sets, in thin white lines, highlight the
well structure.

3.5.1 Validation of the coarse-graining approximation

In this section, we demonstrate numerically that, for an appropriate choice of CV, the coarse-
grained Dirichlet eigenvalues defined in Section 3.4.1 provide a good approximation for the
lowest eigenvalues of the Dirichlet generators. As such, they can be used as a proxy to optimize
the separation of timescales.

Two-dimensional system and collective variables. We consider, for a parameter ε > 0,
the following family of potential functions defined on the configurational space R2 \ {0}:

Vε(x, y) = (x2 − 1)2 + 1
ε

(x2 + y2 − 1)2 + 1√
x2 + y2 . (3.41)

The potential Vε is the sum of a quartic double-well potential in the variable x, and of a
harmonic energy in the squared radial coordinate r2 = x2 + y2, whose sharpness is modulated
by ε, confining the dynamics to the unit circle. The additional repulsion term 1/r ensures
that the effective diffusion coefficient aξ1 is well-defined, as discussed below. The potential is
depicted in Figure 3.3 for the three values of ε we consider in this experiment.
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Figure 3.4: Free energy profiles and effective diffusion coefficients for the CVs ξ1 and ξ2 defined
in (3.42), and for the potential (3.41). Various values of the parameter ε are color-coded. Free energy
profiles are depicted in solid lines and effective diffusion coefficients are plotted in dashed lines.

We compare the two following CVs:

ξ1(x, y) = 2
π

atan
(

y

x+
√
x2 + y2

)
, ξ2(x, y) = x. (3.42)

The variable ξ1 is equal to θ/π, where (r, θ) is the image of (x, y) via a polar change of variables.
In particular, the CV ξ1 takes values in the compact interval [−1, 1], while ξ2 is unbounded. In
the limit ε→ 0, we expect the effective dynamics through ξ1 to provide a good one-dimensional
description of the original dynamics, and ξ2, while able to resolve the main energy barrier,
is blind to the shape of the energy minima (e.g. the shallow energy barriers separating the
two rightmost local minima), leading to a poor model for the local decorrelation inside the
rightmost well.

For each of these functions, the value of the free energy and diffusion coefficient, given
respectively by (3.28) and (3.29), are computed at values of z corresponding to N = 1000
points on a regular grid (on the interval [−2, 2] for ξ2), by numerical quadrature (using the
Gauss–Kronrod rule as implemented in the Julia package Cubature.jl) on the manifold Σz,
which for both our choices of CV (3.42) have a simple linear parametrization. The resulting
free energy and diffusion profiles are presented in Figure 3.4.

Computation of the coarse-grained Dirichlet eigenvalues. For ξ ∈ {ξ1, ξ2}, we
discretize the effective generator Lξβ as the generator of a reversible jump process on a regular
grid (zi)i∈LN

in collective variable space, where LN is either a periodic lattice LN = Z/NZ
if ξ = ξ1 or LN = {0, . . . , N − 1} if ξ = ξ2. In both cases, we set N = 1000. The grid points
are defined by zi = ξmax

(
2i+1
N − 1

)
, where ξmax = 1 for ξ = ξ1, and 2 for ξ = ξ2. The jump

rates are only positive for nearest neighbors:

LξN,β,ij =
(
β(2ξmax/N)2

)−1
e− β

2 (Fj,ξ−Fi,ξ)
(
ai,ξ + aj,ξ

2

)
, ∀ |i− j|LN

= 1, (3.43)

where Fi,ξ = Fξ(zi) ai,ξ = aξ(zi) for any i ∈ Zm, and | · |LN
is the nearest-neighbor graph

metric on LN . A simple computation shows that the jump process (3.43) is reversible for the
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on-site Boltzmann distribution, defined by

µN ({zi}) = e−βFi,ξ∑
j∈L e−βFj,ξ

, ∀ i ∈ L.

The factor
(
β(2ξmax/N)2)−1 ensures that (3.43) is a consistent approximation of the generator

associated with the SDE (3.30). Given an open domain Ω ⊂ [−ξmax, ξmax], the effective
eigenvalues are approximated by computing the eigenvalues of the generator for the process
killed outside Ω: (

LξN,β,ij
)
i,j∈IΩ

, IΩ = {i ∈ L : zi ∈ Ω} . (3.44)

The eigenvalues of the sparse matrix (3.44) were numerically computed using the Julia interface
to the Arpack module [218].

Validation of the approximation. In Figure 3.5, we compare the approximation obtained
from (3.44) with Dirichlet eigenvalues of the generator L approximated using Algorithm 3.3.1
in FreeFem++ [155]. The FreeFem++ implementation, including the parameters we used for
geometry parametrization and meshing (which are the default parameters in the provided code),
are available on GitHub [46]. We compute the values of the first four Dirichlet eigenvalues for
domains of the form Ω(b) = (a, b), for a fixed value of a and for a range of values of b, and for
several values of the parameter ε (see Figure 3.3). We compare these eigenvalues to those of
the effective generator, using the jump-process approximation (3.43). We observe that, for ξ1,
even for relatively large values of ε, the effective eigenvalues give a good approximation to
the true eigenvalues of the generator, across a wide range of boundary conditions. The error
appears to decrease for low values of ε, as expected. However, the effective eigenvalues for ξ2

significantly depart from the true eigenvalues. This is especially true for the higher eigenvalues,
confirming that the effective diffusion through ξ2 is unable to correctly model the decorrelation
inside the energy wells.

These results suggest that ξ1 may be used for the purpose of shape optimization of the
separation of timescales N∗ defined in (3.7). In Figure 3.6, we compare the (locally) optimal
domain of the effective generator (3.43) with the (locally) optimal domain of the true generator
in the class of domains defined in terms of the CV ξ1, and for the value ε = 0.5. These optima
were found by a full grid-search over the set of domains of the form (a, b) for −ξmax < a < b <

ξmax in the case of the effective generator, and an iteratively refined grid search over domains
of the form ξ−1

1 (a, b) for the case of the FEM generator, for the same range of a and b. The
iterative refinement procedure consisted in searching for optimal domains for values (a, b) on a
regularly spaced 6 × 6 grid, and iterating this procedure, restricting the search at the next
iteration to the cell of the maximizer and its nearest-neighbors. The procedure stopped once a
target grid resolution of δξ = 0.01 was reached. We find the result of both these optimization
procedures to give almost indistinguishable optimal values of a and b, showcasing the usefulness
of the effective generator, whose Dirichlet eigenvalues are significantly cheaper to compute.
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(a) Approximation of the first Dirichlet eigenvalue.

(b) Approximation of the second Dirichlet eigenvalue.

(c) Approximation of the third Dirichlet eigenvalue.

(d) Approximation of the fourth Dirichlet eigenvalue.

Figure 3.5: Domain-dependent eigenvalues (dotted lines) and their coarse-grained approximations
(dashed lines), for parametric families of domains defined in CV space.



Chapter 3. Shape optimization of metastable states 193

Figure 3.6: Optimal domain for the effective dynamics, and optimal domain for the original generator,
in the class of domains defined in terms of ξ1, for the value of the parameter ε = 0.5. Points outside
both of these domains lie in the white region. The optimized domains are almost indistinguishable.

3.5.2 Validation of the semiclassical asymptotics

In this section, we give a numerical verification of the semiclassical results obtained in [50]
(which corresponds to Theorems 3.14 and 3.15 here), and assess their usefulness for the state
definition problem, in a model one-dimensional situation.

Definition of the toy system. The potential V is defined by

V (x) = ϵ

(
1− cos x

σ
+ exp

(
−1

2

(
x

σ
− 1

)2
)

+ ℓx

)
, (3.45)

where (ϵ, σ) = (0.7, 1/4) are energy and scale parameters, and ℓ ≈ 0.01293 is a con-
stant factor chosen so that V has two index-one saddle points at z1 ≈ −0.7824 and z2 ≈
0.8286, satisfying V (z1) = V (z2) = V ∗, so that Imin = {1, 2}. Additionally V admits a
local minimum at z0 ≈ 0.1166. The corresponding eigenvalues of the Hessian are given
by (ν(0)

1 , ν
(1)
1 , ν

(2)
1 ) ≈ (16.9532,−11.2348,−14.3845). We consider, for a parameter α =

(α(1), α(2)) ∈ R2, temperature-dependent domains defined by

Ωα,β =
(
z1 −

α(1)
√
β
, z2 + α(2)

√
β

)
, (3.46)

which satisfy the assumptions of Theorems 3.14 and 3.15. The potential and domains (for a
fixed value of β) are depicted in Figure 3.7.

We aim to maximize
λ2,β(Ωα,β)− λ1,β(Ωα,β)

λ1,β(Ωα,β)
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Figure 3.7: Potential landscape and domains Ωα,β used in Figures 3.8a and 3.8b, as defined by (3.46),
at the fixed value of the temperature parameter β = 10. The color coding is the same as that used
in Figure 3.8, i.e. α = (0.5, 0.3) in green, α = (1.0,−0.3) in blue and α = (0.0, 0.0) in red, which
correponds to the basin of attraction A(z0).

with respect to α. Fixing β, it is equivalent to maximize the quantity

Jβ(α) = λ2,β(Ωα,β)λ1,β(A(z0))
λ1,β(Ωα,β)λ2,β(A(z0)) , (3.47)

where we recall A(z0) = Ω0,β is the basin of attraction for the local minimum z0, see (3.35). The
interest of considering this objective Jβ is that, according to Theorems 3.14 and 3.15, Jβ

β→+∞−−−−−→
J∞ pointwise, where

J∞(α) =
λH

2,αC(0)
λH

2,0C(α)
, C(α) =

∑
i∈Imin

|ν(i)
1 |

2πΦ
(√
|ν(i)

1 |αi
)√ det∇2V (z0)
|det∇2V (zi)|

, (3.48)

where C(α) is the pre-exponential factor in (3.39). Substituting the expression (3.40) in (3.48),
we find explicitly:

J∞(α) = 2
min

{
ν

(0)
1 , |ν(1)

1 |
(
µ

(√
|ν(1)

1 |/2α(1)
)

+ 1
2

)
, |ν(2)

1 |
(
µ

(√
|ν(2)

1 |/2α(2)
)

+ 1
2

)}(√
|ν(1)

1 |+
√
|ν(2)

1 |
)

min
{
ν

(0)
1 , 2|ν(1)

1 |, 2|ν
(2)
1 |
}

√
|ν(1)

1 |

Φ
(√
|ν(1)

1 |α(1)
) +

√
|ν(2)

1 |

Φ
(√
|ν(2)

1 |α(2)
)


,

(3.49)
where we recall that µ(θ) is the principal Dirichlet eigenvalue of the one-dimensional Dirichlet
harmonic oscillator 1

2(−∂2
x + x2) on (−∞, θ).

Numerical results. We approximate the generator Lβ using the same procedure as for the
effective generator in Section 3.5.1. In Figure 3.8a, we illustrate the validity of the modified
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Eyring–Kramers formula. The α-dependent prefactor correctly predicts fine effects of the
boundary geometry near the saddle points. The asymptotic regime is reached for relatively
small values of β. In Figure 3.8b, we illustrate the harmonic approximation of Theorem 3.14.
Eigenvalues appear to converge to the prediction of the harmonic approximation in the
limit β →∞. For domains in which the second harmonic eigenvalue corresponds to a local
model around an index-1 saddle point (the blue and green domains in Figure 3.7), this
convergence appears to occur faster, though we have no explanation for why this should be
the case.

In Figure 3.9, we compare two quantities, for a fixed value of β = 10 (see Figure 3.7 for
examples of corresponding domains): the low-temperature approximation J∞ to the shape-
optimization landscape defined in (3.49), and the actual optimization landscape obtained by
numerically approximating the reduced objective (3.47). The low-temperature approximation
and the true objective agree, making the low-temperature approximation an acceptable
surrogate objective in the low-temperature regime, which can be maximized at a much smaller
computational cost.

3.5.3 Application to a molecular system

In this section, we apply our shape-optimization method to the energy landscape of a small
molecule commonly used to benchmark methods in MD, namely alanine dipeptide solvated
in water. The system is composed of N = d/3 = 619 atoms, in fact 22 atoms in the peptide
chain and 199 water molecules. Atomic positions are restricted to a periodic cubic box of
length L = 18.643 Å. As a collective variable, we use the dihedral angles (a standard choice,
see [54]),

ξ = (ϕ, ψ).

The values and gradients of ϕ and ψ are available through the Tinker-HP [203] interface to
the Colvars library [127].

Simulation parameters. All simulation runs were performed using a modified version of
Tinker-HP [203] allowing to simulate the Fleming–Viot process (see 3.16 below) inside an
arbitrary domain defined in CV space.

Unless otherwise specified, simulations of the underdamped Langevin dynamics (3.2) (with Γ =
M) were performed at T = 300 K (β = 1.677 mol · kcal−1) and discretized with the BAOAB
scheme, setting the time step to ∆t = 2 fs, using the Amberff99 force field, and the SHAKE
method [293] to fix the geometry of the solvent molecules.

Experiments were performed across a range of friction parameters, γ ∈ {1, 2, 5, 10} ps−1, to
assess the effectiveness of the methodology in various dynamical settings. Since our methodology
requires a low-dimensional reversible diffusion (3.1) as input, we use the effective dynamics (3.30)
associated with the Kramers–Smoluchowski approximation (3.1) of the underdamped Langevin
dynamics (where a = M−1). In other words, the (rescaled by γ) effective generator whose
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(a) Principal Dirichlet eigenvalue of Lβ on Ωα,β , for various values of the shape parameter α. The
theoretical leading-order asymptotic of Theorem 3.15 is represented with a dotted line.

(b) First three Dirichlet eigenvalues of −Lβ on Ωα,β , for the three values of α from Figure 3.8a.
Horizontal lines correspond to the theoretical limiting values from Theorem 3.14. The black line
(–··–) corresponds to a harmonic eigenvalue shared between all the domains. Missing values failed to
converge. We observe convergence to the limiting regime, with eigenvalues corresponding to a lower
asymptotic value appearing to converge faster.

Figure 3.8: Numerical validation of the low-temperature asymptotics of Theorems 3.15 and 3.14
from [50], for the one-dimensional potential depicted in Figure 3.7.
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(a) Semiclassical approximation of the shape optimization landscape. The limiting objective J∞(α)
defined in (3.48) is plotted for the potential V defined in (3.45) and depicted in Figure 3.7. The
optimal α⋆

∞ is marked by ×, and the basin of attraction A(z0) is marked by +. Ridge-like features
are discernible, and correspond to the loci of eigenvalue crossings for the harmonic approximation Kα

defined in (3.37). The optimal value is attained for α⋆
∞ ≈ (0.23116, 0.43216) with J∞(α⋆

∞) ≈ 1.71.

(b) Shape-optimization landscape for the reduced objective Jβ(α) defined in (3.47) for the value β =
10. The optimal shape α⋆

β is marked by ×, the basin of attraction A(z0) is marked by + and the
semiclassical prescription α⋆

∞ is marked by ×. The optimal value is attained for α⋆
β ≈ (0.24372, 0.6206)

with Jβ(α⋆
β) ≈ 1.81. By comparison Jβ(α⋆

∞) ≈ 1.76.

Figure 3.9: Asymptotic approach to the shape optimization problem for the potential (3.45) and the
objective (3.47). At low temperature, the semiclassical approximation (Figure 3.9a) faithfully captures
the features of the true optimization landscape (Figure 3.9b). In particular, the semiclassical optimizer
is close, both in argument and value of the objective function, to the true optimizer.
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Figure 3.10: Free energy landscape in the dihedral angles (ϕ, ψ). We identify and label six local
minima.

eigenvalues we optimize is given by

Lξβ = 1
γβ

eβFξdiv
(
e−βFξaξ∇·

)
, aξ(z) =

∫
Σz

∇ξ⊤M−1∇ξ dµz. (3.50)

It has been observed in previous studies of realistic molecular systems (see for instance [251,
Sections 4.2.2 and 4.3.2]) that the dynamical rates inferred by the Kramers–Smoluchowski
approximation often differ greatly from those associated with the underlying underdamped
Langevin dynamics, even when accounting for rescaling by the friction parameter γ. Therefore
we shall not use our reduced model to directly infer timescales for the original dynamics, but
merely as a proxy to define good metastable states. The effectiveness of these states, in the
sense of maximizing the separation of timescales, will therefore be assessed at the level of the
original dynamics, and not of the reduced model.

Free energy landscape and effective diffusion. We first compute the free energy Fξ

and effective diffusion tensor aξ entering in the definition of the effective dynamics (3.30).
The free energy landscape is represented in Figure 3.10, and was precomputed using a
multiple-replica adaptive biasing force dynamics (see [85]), with four replicas, for a total
of t = 600 ps of simulation time. The effective diffusion tensor was estimated using an
importance sampling scheme using a family of harmonically biased potentials. More precisely,
the collective variable space (−π, π)2 was divided into a set W of square-shaped windows
of side-length ∆ϕW = ∆ψW = π/36 rad. For each window w ∈ W, we performed a biased
simulation of the underdamped Langevin dynamics (3.2) using a harmonic biasing potential

V w = V + Uw, Uw(q) = 1
2η |ξ(q)− zw|

2,
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Figure 3.11: Components of the effective diffusion tensor aξ (top row and left-bottom row), and
corresponding ellipsoid glyph representation (right-bottom row).

where zw is the center of the window w, and η = 40 mol · kcal−1 is the inverse force constant.
For z ∈ (−π, π)2, we use the estimator

âξ(z) =
∑
w∈W

ρw(z)

Nsim∑
k=1
∇ξ(Xw

k )⊤M−1∇ξ(Xw
k )eβUw(Xw

k )
1|ξ(Xw

k
)−z|∞<h/2

Nsim∑
k=0

eβUw(Xw
k )
1|ξ(Xw

k
)−z|∞<h/2

, (3.51)

where (Xw
k )k=1,...,Nsim are sample points of the numerical trajectory for the biased dynamics in

the window w ∈ W, h = π/90 rad is the histogram resolution and ρw is a weighting function
chosen so that

∑
w∈W ρw(z) = 1 for all z. For simplicity, we chose ρw(z) to give uniform weight

to each window for which the ratio in (3.51) was well-defined.

The initial condition Xw
0 was prepared by running a harmonically steered-MD simulation

from a reference configuration toward the value ξ = zw, followed by a 5 ps equilibration run,
both with a value of the friction parameter γ = 1 ps−1. The values of the CV, biasing energy
and instantaneous tensor ∇ξ⊤M−1∇ξ were recorded every 10 fs. The overall computation can
be straightforwardly parallelized, as the estimators within each window are independent of
one another. The results of the computation of the effective diffusion tensor are shown in
Figure 3.11.

Shape optimization of eigenvalues for the effective dynamics. We apply Algorithm 3.5
to obtain optimized domains in the two-dimensional space of dihedral angles (ϕ, ψ), using
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(a) Numerically optimized metastable states for alanine
dipeptide using Algorithm 3.5. (b) QSDs for the effective dynamics (3.30).

Figure 3.12: In Figure 3.12a, solid lines correspond to the boundaries of the optimized domains,
with corresponding initial domains in dotted lines. In Figure 3.12b, higher densities map to lower
transparency values, with the same color-coding as in Figure 3.12. QSDs have been normalized in L∞.
In both figures, the free energy landscape from Figure 3.10 is plotted for reference.

the thermodynamic quantities computed in the previous paragraph and Corollary 3.9 for
shape-variation formulas. Algorithm 3.5 was implemented in FreeFem++. Its code is available
in the paper repository [46].

The algorithm was run six times, each time initialized with Ω0 = B ((ϕ0, ψ0), 0.3) in CV
space, where (ϕ0, ψ0) ranged across the six free energy local minima displayed in Figure 3.10.
All optimization runs were performed with the parameters εreg =

√
0.1, εdegen = 0.01, mmax =

2, ηmax = 0.004, α = 0.8, εterm = 0.005, Mgrad = 2 and Nsearch = 1000, except for the
optimization of state 2, for which a value ηmax = 0.001 was necessary to achieve convergence.
The mesh adaptation procedure A from step C. of Algorithm 3.5 enforced a maximal cell
width of hmax = 0.03 throughout the runs.

The initial domains are plotted alongside the corresponding numerically optimized domains
in Figure 3.12a, together with the associated QSDs for the effective dynamics (3.30).

In Figure 3.13, we plot the evolution of the effective separation of timescales during the
optimization process, for the six runs of Algorithm 3.5. State 5 is the most locally metastable
state for the effective diffusion, with an effective separation of timescales of nearly 500.

In Figure 3.14, we plot the evolution of the first four Dirichlet eigenvalues of the effective
generator during the six runs of Algorithm 3.5, showcasing frequent eigenvalue crossings. In
all cases, we observe that the second and third Dirichlet eigenvalues coalesce during an early
phase of the optimization process, which suggests that encountering degenerate eigenvalues is
the rule rather than the exception. For the purpose of fixing a timescale in Figure 3.14, we
(somewhat arbitrarily) set γ = 5 ps−1 in the definition of the effective generator (3.50).

In Figure 3.15, we illustrate the usefulness of the choice of ascent direction in Algorithm 3.5
using the numerical degeneracy parameter εdegen. Omitting the numerical degeneracy parameter
and trusting the non-degenerate shape gradients may lead to oscillations in the objective
function, due to non-differentiable features of the objective landscape near points of near-
degeneracy. The algorithm adapting the choice of ascent direction in the case of approximately
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Figure 3.13: Effective separation of timescales throughout six runs of Algorithm 3.5, initialized with
coresets around the six free energy minima depicted in Figure 3.10.



202 3.5. Numerical experiments

Figure 3.14: Behavior of the four smallest Dirichlet eigenvalues throughout the six runs of Algorithm 3.5
depicted in Figure 3.13, displaying frequent eigenvalue coalescence and crossings.
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(a) Value of the objective function versus number of
iterations, with zoom on iterations 10–50.

(b) Second and third Dirichlet eigenvalue versus num-
ber of iterations.

Figure 3.15: Effect of the numerical degeneracy parameter εdegen in Algorithm 3.5, during the
optimization of state 1 (see Figure 3.10). Setting εdegen > 0 ensures local ascent of the objective
function, leading to an overall improvement in the convergence behavior (Figure 3.15a), and effectively
suppresses eigenvalue crossings (Figure 3.15b).

degenerate eigenvalues leads to a significant improvement in the speed of increase of the
objective function, and successfully suppresses eigenvalue crossings and oscillations in the value
of the objective.

Parametrization of the states. The boundary vertices (ϕi, ψi)1⩽i⩽NV of the optimized
mesh for state 5 were transformed from (ϕ, ψ)-space into (ri, θi)1⩽i⩽NV for a system (r, θ) of
polar coordinates centered at the free energy minimum inside state 5. A finite Fourier series

R(t) :=
Nmodes∑
k=0

[ak cos(kt) + bk sin(kt)]

was then fitted to these points via ordinary least squares with Nmodes = 20, and the final
definition we took for the optimized state was

Ω = {(r, θ) : r < R(θ)} .

This definition assumes that the domain is star-shaped around the minimum, which is indeed
the case here. The boundary of the free energy basin, which was computed using finite-
difference gradient descent on the estimated free energy (see Figure 3.10), was similarly fitted
with a Fourier series.

The Fleming–Viot process. To quantify the performance gained from using optimized
definitions of metastable states at the level of the original high-dimensional dynamics, we must
quantify the separation of timescale directly. We focus on state 5, the most locally metastable
domain according to the effective dynamics, and argue numerically that the state optimized
with the surrogate coarse-grained objective leads to a significant improvement in the separation
of timescales, when compared with a reference domain given by the basin of attraction of the
local minimum in state 5, for a steepest-descent dynamics on the free energy landscape.
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We achieve this by using a Fleming–Viot process (see for instance [95]), which allows to
infer both metastable timescales of interest, namely the exit rate starting from the QSD and
the convergence rate to the QSD.

Algorithm 3.16 (Discrete-time Fleming–Viot process). One step of the Fleming–Viot process
with hard-killing, given a domain Ω ⊂ Rd, a stride length ∆tFV, and given a number Nproc ⩾ 1
of replicas in state (X(i)

t0 )1⩽i⩽Nproc, consists in iterating the following procedure from k = 0.

A. At step k: evolve each replica with independent Brownian motions for a physical time ∆tFV

using a discretization of the underdamped Langevin dynamics.

B. For any 1 ⩽ i ⩽ Nproc, if X(i)
t0+k∆tFV

̸∈ Ω, kill this replica, and branch it in the next step
from the state of a replica chosen uniformly at random among the survivors (that is, the
set of replicas which did not exit Ω in step k).

C. Set k ← k + 1 and proceed from step A.

This algorithm corresponds to the Fleming–Viot process with hard-killing for the discrete-
time Markov chain obtained by subsampling the numerical trajectories in time at integer
multiples of ∆tFV. Algorithm 3.16 should be understood as a particle approximation of the
dynamics conditioned on remaining inside Ω, in the sense that the empirical distribution of
replicas at time t converges to the conditional distribution µt,X0 (recall (3.4)) as Nproc →∞,
see [330, Theorem 2.2]. This convergence can in some cases be controlled uniformly in time,
see [291, Theorem 3.1] for an early approach, and [191, Theorem 2] for a recent result in the
overdamped case. In particular, the empirical stationary distribution of the Fleming–Viot
process approaches the QSD as N →∞.

The time evolution of a single particle from the Fleming–Viot process (say X(1)), resembles
a ν-return process (where ν is the QSD): it evolves according to the dynamics until it reaches
the boundary of the state, and is then instantly resurrected according to the empirical
distribution of the Fleming–Viot process whose invariant measure approximates ν⊗Nproc . This
approximation underpins the estimation of the exit rate from Ω starting from ν, and also step
C. of Algorithm 3.18.

For each value of the friction parameter γ and the two definitions of the state, we sample Nγ

independent trajectories of the Fleming–Viot process (starting from a random initial condi-
tion X0 which we make precise below), lasting tsim = 60 ps in total. The first teq = 30 ps were
used to probe the decorrelation behavior to the QSD, and the last 30 ps were used to sample
the QSD (or an approximation thereof), and stationary exit events.

Estimation of the exit rate. To estimate the metastable exit rate λ1(Ω), we compute the
empirical stationary exit rate for the Fleming–Viot process by counting the number Nexit,Ω(t)
of branching events recorded after time t. The exit rate is estimated (for each value of γ and
definition of the state) as

λ̂1(Ω) = Nexit,Ω(tsim)−Nexit,Ω(teq)
Nproc (tsim − teq) . (3.52)
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Under the approximation that the stationary Fleming–Viot process is a collection of Nproc

independent ν-return processes, the counting process Nexit,Ω is a Poisson process with rate
measure λ1(Ω)Nproc dt, which motivates the choice of estimator (3.52). Confidence intervals
for this exit rate were constructed from the independent realizations of the Fleming–Viot
process.

Estimation of the convergence rate to the QSD. We assess the convergence of the
conditional measure µt,X0 (see (3.4)) to the QSD ν at the level of convergence in total variation
distance for their ϕ and ψ marginals (and not their (ϕ, ψ)-marginals, due to data scarcity).
This choice is motivated by the assumption that the CVs ϕ and ψ correspond to the “slow”
variables in the system, meaning that other degrees of freedom should have relaxed to their
quasi-stationary state by the time ϕ and ψ do. We first approximate the conditional law µt,X0

and the QSD ν with empirical approximations µ̂t,X0 and ν̂. The approximations ν̂ (or rather
their ϕ and ψ marginal histograms) were constructed by aggregating samples of the CV
values recorded over all realizations of the Fleming–Viot process and the last 60 ps of their
trajectories. The approximations µ̂k∆thist (rather, their histograms) were constructed for k ⩾ 1
at regular time intervals of length ∆thist = 0.2 ps by aggregating samples of the CV values
across realizations, and on the time interval ((k − 1)∆thist, k∆thist].

We estimate the total variation distances between marginals (where f♯µ denotes the push-
forward of the measure µ by the function f):

∥ϕ♯µk∆thist − ϕ♯ν∥TV, ∥ψ♯µk∆thist − ψ♯ν∥TV

by considering the L1-distances between the one-dimensional histograms, constructed us-
ing 50 regular bins. We denote by ek∆thist(ϕ), ek∆thist(ψ) the corresponding estimators, and
define et(ϕ), et(ψ) for any t ⩾ ∆thist by linear interpolation.

Values of the “mixing-time” at level ε = 0.05, defined as MTε(f) = inf {t ⩾ ∆thist : et(f) <
ε}, for f ∈ {ϕ, ψ} were computed. Additionally, we inferred a “decorrelation rate”, by
performing an affine fit on log et(f) on t ∈ [1,MT0.1(f)] ps if MT0.1 − 1 ⩾ 4 ps. Otherwise, no
fit was performed. We give an example of convergence curves for the value of the friction
parameter γ = 10 ps−1 in Figures 3.16a and 3.16b, for the free energy basin and the optimized
state, respectively. The horizontal line correspond to the value ε = 0.05 of the tolerance
threshold for the mixing time. The regression line corresponding to the smallest decorrelation
rate is also plotted. Error curves are color-coded according to the procedure with which the
initial configuration is sampled, as made precise in the next paragraph.

Sampling of initial configurations. To assess the dependence of the decorrelation
errors et(ϕ), et(ψ) on the initial configuration of the system, we compute a realization
of et(ϕ), et(ψ) for various distributions of initial configurations X0, each one correspond-
ing to a critical point of the free energy.

◦ Four distributions corresponding to the four free energy saddle points surrounding state
5 (see Figure 3.10). First, a steered MD simulation was performed to bring the system
close to the target critical point, following which a harmonically restrained simulation was
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(a) Free-energy basin. (b) Optimized domain.

Figure 3.16: Convergence of the marginals of the Fleming–Viot process to the corresponding quasi-
stationary marginals for γ = 10 ps−1. The dependence on the initial condition is color-coded as in
Figure 3.17, except for the gray curves which correspond to initial conditions close to the free energy
minimum. We observe, after a short transient phase, exponential convergence to the quasi-stationary
marginals, and also a slight decrease in the decorrelation rate for the optimized state.

performed, with a biasing potential centered at the critical point. Only initial conditions
with “entering” velocities were considered. We mean by this that, for the purposes of this
experiment, we discarded samples which moved away from the free energy minimum in
CV space during an equilibrium MD simulation of 2 fs, or which had a final configuration
outside of the free energy basin.

◦ One distribution corresponding to the local free energy minimum in state 5. Again,
a steered MD simulation was performed to bring the system close to the free energy
minimum, followed by a harmonically restrained simulation. However, no “velocity check”
was performed in this case.

In both cases, the steering phase was performed for 1 ps, and the harmonically restrained phase
for 5 ps, both with an inverse force constant of η = 40 mol · kcal−1. Timesteps of 0.5 fs and 1 fs
were used respectively for the steering phase and the harmonically-restrained equilibration
phase.

These two families of initial conditions correspond roughly to two natural definitions of the
core-set C from Algorithm 3.16 associated with Ω. Initial conditions associated with free energy
saddle points correspond to a coreset C = A(z5) ∩ Ω, where z5 is the free energy minimum
associated with Ω, and A(z5) denotes the corresponding free energy basin. Initial conditions
steered towards the free energy minimum correspond to the definition C = B(z5, rc) for some
small rc > 0 in CV space. In the case where Ω = A(z5), the first core-set corresponds to the
state itself: C = Ω, which is the standard situation in ParRep.

In Figure 3.17, we show the empirical stationary ξ-marginal ξ∗ν̂ of the Fleming–Viot process,
for the two state definitions we compare, and the value of the friction parameter γ = 5 ps−1.
Additionally, the sampled initial values of the collective variable are scattered, and color-coded
according to the associated free energy saddle point. The color coding is the same as in
Figures 3.16a and 3.16b.
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Figure 3.17: Empirical ξ-marginal for the stationary Fleming–Viot process for γ = 10 ps−1. Left: free
energy basin. Right: numerically optimized domain. On both figures, sampled initial configurations
for the Fleming–Viot process are overlaid on the stationary histogram, and distinguished by color
according to the corresponding free energy saddle point. Initial conditions sampled around the free
energy minimum are not depicted.

Results. We present the results in Table 3.18: for each of the states and values of γ ∈
{1, 2, 5, 10, 20} ps−1, we report the estimated exit rate (ER) λ̂1(Ω), in ps−1, as well as various
metrics quantifying the speed of convergence to the QSD.

◦ The decorrelation rate (DR) in ps−1, defined as the least infered decorrelation rate among
the observables ϕ, ψ and ensembles of initial configurations.

◦ The mixing time from saddle points (MTs) in ps, defined as the largest mixing time MT0.05(f)
for f ∈ {ϕ, ψ} and initial conditions steered towards one of the four free energy saddle
points according to the procedure described in the previous paragraph.

◦ The mixing time from the minimum (MTm) in ps, defined as the largest mixing
time MT0.05(f) for f ∈ {ϕ, ψ}, and initial conditions steered towards the free energy
minimum.

To each of these metrics, we associate a corresponding measure of the separation of metastable
timescales, namely the respective ratios DR/ER, 1/(MTs · ER) and 1/(MTm · ER) (where
the inverse mixing times are interpreted as “mixing rates”). The full results are given in
Tables 3.18a and 3.18b, for the free energy basin and optimized state, respectively. The
timescale ratios are also plotted for visual comparison in Figure 3.18. We consistently observe
a gain in timescale separation when using the optimized state, especially for higher values of
the friction parameter, where the gain is estimated to be about ×3 for the optimized state,
across all measures of timescale separation. At lower values of the friction parameter, the
gain is less pronounced, but still substantial. The improvements in timescale separation are
reported in Figure 3.18c. The various timescale separation metrics are generally in agreement
about this improvement.

3.6 Conclusions and perspectives

This work raises a number of perspectives which could prove interesting for future research.
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(a) Free-energy basin.
γ ER DR DR/ER MTs (ER ·MTs)−1 MTm (ER ·MTm)−1

1 (4.31± 0.20)× 10−3 0.48 111.7 6.8 34.1 0.8 290.0
2 (4.21± 0.21)× 10−3 0.47 110.5 7.2 33.0 1.0 237.0
5 (3.69± 0.21)× 10−3 0.36 97.1 9.4 28.8 1.8 150.6
10 (3.26± 0.19)× 10−3 0.28 84.9 11.8 26.0 2.0 153.6
20 (2.52± 0.16)× 10−3 0.19 72.4 16.8 23.6 3.0 132.1

(b) Optimized domain.
γ ER DR DR/ER MTs (ER ·MTs)−1 MTm (ER ·MTm)−1

1 (1.86± 0.15)× 10−3 0.25 134.0 8.6 62.5 1.6 336.0
2 (1.70± 0.13)× 10−3 0.40 237.0 7.6 77.6 1.2 491.0
5 (1.43± 0.12)× 10−3 0.26 184.0 13.6 51.4 1.4 500.0
10 (1.01± 0.11)× 10−3 0.27 265.0 12.6 78.9 2.0 497.0
20 (7.55± 0.92)× 10−4 0.17 228.0 17.0 77.9 3.0 442.0

(c) Improvement of the optimized domain over the free energy basin in timescale separation metrics.
γ DR/ER (ER ·MTs)−1 (ER ·MTm)−1

1 1.2 1.83 1.16
2 2.14 2.35 2.07
5 1.89 1.78 3.32
10 3.12 3.03 3.24
20 3.15 3.3 3.35

Figure 3.18: Results of the Fleming–Viot simulations, showing that the optimized state consistently
outperforms the free energy basin. Reported errors are at the level ±1.96σ.

◦ The most salient point is the extension of the shape perturbation results of Theorem 3.2
to the case of non-reversible and/or hypoelliptic diffusions. We expect that, due to the
non-symmetry and/or non-ellipticity of the generator (3.3), this represents a significant
theoretical endeavour.

◦ A standing question would be how to systematically optimize the definition of the core-
sets in Algorithm 3.18 (see Appendix 3.B below), either numerically or in some limiting
asymptotic regime. This question is related to the search for quantitative estimates of
the prefactor C(x) in the error estimate (3.6).

◦ At this point, a convergence proof for the method described in Algorithm 3.5 is lack-
ing. It would be interesting to obtain consistency results with respect to the various
approximation parameters.

◦ The direct shape optimization method, due to the FEM discretization, is limited to
settings where low-dimensional (m = 2 or 3) representations of the dynamics (i.e. good
CVs) are available. To go beyond this limitation, a natural approach would be to
follow a parametric approach, setting Ωθ = Φθ(C) for some reference domain C ⊂ Rd,
where θ 7→ Φθ is a parametric family of homeomorphisms, represented for instance using
a neural network. The main question becomes how to define a neural architecture for
which the Dirichlet eigenvalue problem associated with the transported operator (3.58)
is solvable, and for which perturbations of the eigenvalues are tractable.

◦ Instead of computing the thermodynamic coefficients Fξ, aξ (see Equations (3.28), (3.29))
associated with the effective dynamics (3.30), one could seek kinetically-tuned effective
dynamics. One approach would be to train a parametric model of a dynamics of the
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Figure 3.19: Timescale separation ratios. Blue lines correspond to the free energy basin, and red lines
to the optimized domain. Across all metrics, the optimized domain outperforms the free energy basin.

form (3.1) on CV trajectory data, using EDMD-like techniques or neural SDEs in the
hope of obtaining a dynamical description which is more robust to a suboptimal choice
of CV. Note that the results of Theorem 3.2, since they are currently limited to the case
of reversible dynamics, place a constraint on the class of allowable models.

Appendix 3.A: Proof of Theorem 3.2

We prove Theorem 3.2 in this appendix. The proof relies on the transport of the variational
formulation of the generalized eigenvalue problem on Ωθ to the reference domain Ω. This
leads to the definition of a family of generalized eigenproblems associated with bilinear forms
parametrized by θ. The corresponding eigenvalues are exactly the Dirichlet eigenvalues of −Lβ
on Ωθ. One then proves the Fréchet-differentiability of these bilinear forms, or equivalently,
by polarization, of the associated quadratic forms. Since the first-order perturbations are
themselves unbounded quadratic forms, this regularity only holds with respect to the topology
of relatively bounded perturbations of the reference quadratic forms. Once this has been
established, classical results of perturbation theory from [192] can be leveraged to show the
Fréchet differentiability of the inverse operator, and finally the Gateaux-differentiability of
multiple eigenvalues.

Remark 3.17. By adapting the approach based on the implicit function theorem discussed
in [164, Section 5.7] for the Dirichlet Laplacian (which corresponds to the special case a ≡ Id
and V ≡ 0 in our setting), one can also show that the map θ 7→ λk(Ωθ) is C1 around θ = 0
in a somewhat less technical manner. However, this approach is only adapted to the case of
simple eigenvalues. Since the main purpose of Theorem 3.2 is to identify ascent directions for
functionals of the Dirichlet eigenvalues of Lβ with respect to the perturbation θ, and since
multiple eigenvalues have been noted to occur in eigenvalue shape optimization problems (see
e.g. [163, Theorem 2.5.10] or [261, Section 4.5]), including in our own numerical experiments
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(see Figure 3.14 above), it is of practical interest to devise numerical strategies adapted to this
reality.

Proof of Theorem 3.2. At various places, we assume that

∥θ∥W1,∞ < h0

for some h0 > 0 whose value will be reduced several times. We also fix a regular open and
bounded set D ⊂ Rd, sufficiently large so that

⋃
x∈ΩBRd(x, h0) ⊂ D. This ensures in particular

that Ωθ ⊂ D for all ∥θ∥W1,∞ < h0.

We say that an estimate of the form

J(Ω, θ) ⩽ C(D)h(θ),

with J : B(Rd)×W1,∞ → R, h :W1,∞ → R and C(D) > 0, holds “uniformly inside D” if it
holds for all pairs (Ω, θ) with Ω ⊂ D an open Lipschitz set and θ ∈ BW1,∞(0, h0).

Transport of the variational formulation. Introduce, for θ ∈ W1,∞, the bilinear forms

∀u, v ∈ H1
0 (Ωθ), a0(u, v; Ωθ) = 1

β

∫
Ωθ

∇u⊤a∇v e−βV , b0(u, v; Ωθ) =
∫

Ωθ

uv e−βV .

For ∥θ∥W1,∞ < h0 sufficiently small, the map Φθ(x) = x+θ(x) is a bi-Lipschitz homeomorphism
of Rd, and using the Lebesgue change of variables formula, it holds

a0(u, v; Ωθ) = 1
β

∫
Ω

(
∇u⊤a∇v e−βV

)
◦ Φθ |det ∇Φθ|

= 1
β

∫
Ω
∇ (u ◦ Φθ)⊤∇Φ−⊤

θ a ◦ Φθ∇Φ−1
θ ∇ (v ◦ Φθ) e−βV ◦Φθ |det ∇Φθ|

:= aθ(u ◦ Φθ, v ◦ Φθ; Ω),

where we used ∇ (u ◦ Φθ) = ∇Φθ (∇u) ◦ Φθ in the penultimate line, and ∇Φ−1
θ denotes the

matrix inverse of ∇Φθ. Similarly,

b0(u, v; Ωθ) =
∫

Ω
(u ◦ Φθ) (v ◦ Φθ) e−βV ◦Φθ |det ∇Φθ| := bθ(u ◦ Φθ, v ◦ Φθ; Ω).

From now on, all bilinear forms act on the fixed domain Ω, which we therefore omit in the
notation for the bilinear forms, i.e. we define for all u, v ∈ H1

0 (Ω),

aθ(u, v) = 1
β

∫
Ω
∇u⊤∇Φ−⊤

θ a ◦ Φθ∇Φ−1
θ ∇ve−βV ◦Φθ |det ∇Φθ| ,

bθ(u, v) =
∫

Ω
uve−β◦Φθ |det ∇Φθ| .

(3.53)

Spectral properties. Now, considering an eigenpair (λθ, uθ) for −Lβ on L2
β(Ωθ), it holds,

for all v ∈ H1
0,β(Ωθ) = H1

0 (Ωθ), that

aθ (uθ ◦ Φθ, v ◦ Φθ) = λθbθ(u ◦ Φθ, v ◦ Φθ).
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Since, using the isomorphism (3.11), any function v ∈ H1
0 (Ω) can be written under the

form v ◦ Φ−1
θ ◦ Φθ with v ◦ Φ−1

θ ∈ H1
0 (Ωθ), the transported eigenvector wθ = uθ ◦ Φθ satisfies

aθ(wθ, v) = λθbθ(wθ, v) ∀v ∈ H1
0 (Ω).

In other words, wθ is a generalized eigenvector for (aθ, bθ). Let us make this statement precise.

We first introduce the following estimates, which hold, for h0 < 1, uniformly inside D for
some C1(D), C2(D) > 0:

∥∇Φ−1
θ − Id∥L∞(Ω;Md) ⩽

∥θ∥W1,∞

1− ∥θ∥W1,∞
⩽ C1(D)∥θ∥1,∞W ,

∥∇Φ−1
θ − (Id−∇θ) ∥L∞(Ω;Md) ⩽

∥θ∥2W1,∞

1− ∥θ∥W1,∞
⩽ C2(D)∥θ∥2W1,∞ .

(3.54)

These follow by expanding ∇Φθ(x)−1 = (Id +∇θ(x))−1 into a Neumann series and estimating
the (submultiplicative) Md-norm of the first and second partial remainders respectively. In
fact we can take C1(D) = C2(D) = (1 − h0)−1 here, but we nevertheless distinguish these
constants for the sake of clarity.

Secondly, by Jacobi’s formula for the Fréchet derivative of the determinant of a d× d matrix,
it holds almost everywhere in Rd (by Rademacher’s theorem) that

|det∇Φθ(x)| = det(1 +∇θ(x)) = 1 + Tr ∇θ(x) +O(|∇θ(x)|2Md
);

whence, uniformly inside D for some constants C3(D), C4(D) > 0, it holds

∥det∇Φθ − 1∥L∞(Ω) ⩽ C3(D) ∥θ∥W1,∞ ,

∥det∇Φθ − 1− div θ∥L∞(Ω) ⩽ C4(D) ∥θ∥2W1,∞ .
(3.55)

Note that we used Tr∇θ = div θ and |TrM | ⩽ d|M |Md
for all M ∈Md.

From the estimates (3.54) and (3.55), we deduce that the symmetric bilinear form aθ, with
domain H1

0 (Ω) ⊂ L2(Ω), satisfies the following upper bound uniformly inside D:

aθ(u, u) ⩽ 1
β
∥a∥L∞(D;Md)∥e−βV ∥L∞(D)(1 + C3(D)h0)(1 + C1(D)h0)2∥∇u∥2L2(Ω), (3.56)

as well as the lower bound

aθ(u, u) ⩾ 1
β
εa(D)mV (D)(1− C1(D)h0)2(1− C3(D)h0)∥∇u∥2L2(Ω)

⩾
1
β
εa(D)mV (D)(1− C1(D)h0)2(1− C3(D)h0)µ0(Ω)∥u∥2L2(Ω)

⩾
1
β
εa(D)mV (D)(1− C1(D)h0)2(1− C3(D)h0)µ0(D)∥u∥2L2(Ω),

(3.57)

with µ0 > 0 is the principal Dirichlet eigenvalue of the Laplacian, and where we use µ0(Ω) ⩾
µ0(D) in the last line (see for instance [50, Proposition 16]), and recall the definition (Ell)
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of εa(D). In (3.57), we define

mV (D) := exp
(
−β

[
ess sup

D
V

])
> 0.

Note that the lower bound in (3.57) is positive for h0 sufficiently small, therefore aθ is H1(Ω)-
coercive and L2(Ω)-bounded from below, uniformly inside D. Moreover, it follows from (3.56)
and (3.57) that aθ is closed, since the squared form norm ∥u∥2aθ

= aθ(u, u)+∥u∥2L2(Ω) on H1
0 (Ω)

is equivalent to the squared H1(Ω)-norm. Therefore, by a representation result for positive
symmetric closed forms [192, Theorem VI.2.6], there exists a self-adjoint operator Aθ satisfying

aθ(u, v) = ⟨Aθu, v⟩L2(Ω) , ∀(u, v) ∈ D(Aθ)×H1
0 (Ω),

with D(Aθ) ⊂ D(A1/2
θ ) = H1

0 (Ω) and Aθ being L2(Ω)-bounded from below, with the same
lower bound as aθ:

⟨Aθu, u⟩L2(Ω) ⩾
1
β
εa(D)mV (D)(1− C1(D)h0)2(1− C3(D)h0)µ0(D)∥u∥2L2(Ω).

In particular, the resolvent A−1
θ is bounded and compact in view of the compact embed-

ding H1
0 (Ω) ⊂ L2(Ω) given by the Rellich–Kondrachov theorem.

Note that, by integration by parts, Aθ extends the positive (for h0 sufficiently small) operator

−L̃β,θφ = − 1
β

div
(
|det∇Φθ| e−βV ◦Φθ∇Φ−⊤

θ a ◦ Φθ∇Φ−1
θ ∇φ

)
∀φ ∈ D(L̃β,θ) = C∞

c (Ω),
(3.58)

therefore, the closed operator Aθ, which extends −L̃β,θ, also corresponds to its Friedrichs
extension (see [192, Section VI.2.3]). For the sake of consistency, we also write A0 for the
operator −Lβ. Similarly, bθ has the representation bθ(u, v) = ⟨Bθu, v⟩L2(Ω), where Bθ is the
bounded, positive linear operator given by multiplication by e−βV ◦Φθ |det ∇Φθ|, which is both
bounded from above and from below uniformly inside D:

mV (D)(1−C3(D)h0)∥u∥2L2(Ω) ⩽ bθ(u, u) = ⟨Bθu, u⟩L2(Ω) ⩽ ∥e
−βV ∥L∞(D)(1+C3(D)h0)∥u∥2L2(Ω).

(3.59)
It follows (see [153, Proposition 1] or the discussion in [192, Section VII.6.1]) that the reciprocals
of the eigenvalues of the compact, positive operator A−1

θ Bθ on L2(Ω) (which is also self-adjoint
for the topologically equivalent scalar product ⟨Bθ·, ·⟩L2(Ω)) are the solutions to

Aθwθ = λθBθwθ, λθ > 0, wθ ∈ D(Aθ).

In fact it is more convenient than solving the latter generalized eigenvalue problem to con-
sider the spectrum of the compact operator A−1

θ Bθ, which is composed of positive, isolated
eigenvalues of finite multiplicity.
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Perturbation estimates. Let us define the first-order perturbations of the linear forms (3.53).
More precisely, we define, for u, v ∈ H1

0 (Ω), the symmetric bilinear forms

da0(θ)(u, v) = 1
β

∫
Ω
∇u⊤

(
∇a⊤θ − a∇θ −∇θ⊤a

)
∇v e−βV + 1

β

∫
Ω
∇u⊤a∇v div

(
θe−βV

)
,

db0(θ)(u, v) =
∫

Ω
uv div(θe−βV ).

(3.60)
Writing, for u ∈ H1

0 (Ω),

ra(θ, u) = aθ(u, u)− a0(u, u)− da0(θ)(u, u),
rb(θ, u) = bθ(u, u)− b0(u, u)− db0(θ)(u, u),

(3.61)

we next show that the following bounds hold for all u ∈ H1
0 (Ω) and θ ∈ BW1,∞(0, h0):

|da0(θ)(u, u)| ⩽ Ca,1(D)∥θ∥W1,∞a0(u, u), |db0(θ)(u, u)| ⩽ Cb,1(D)∥θ∥W1,∞b0(u, u),
|ra(θ, u)| ⩽ Ca,2(D)∥θ∥2W1,∞a0(u, u), |rb(θ, u) ⩽ Cb,2(D)∥θ∥2W1,∞b0(u, u),

(3.62)

where Ca,1(D), Ca,2(D), Cb,1(D), Cb,2(D) are positive constants. These estimates, together with
the linearity of the maps θ 7→ da0(θ) and θ 7→ db0(θ), establish the Fréchet differentiability
of the bilinear forms aθ, bθ, in the topology of relative a0-form-boundedness and b0-form-
boundedness respectively, at θ = 0. Note that the Kato–Rellich theorem (see for instance [318,
Theorem 6.4]) then implies that D(Aθ) = D(A0) in a W1,∞-neighborhood of θ = 0. Therefore,
we may assume that h0 is sufficiently small so that D(Aθ) = D(A0) for all θ ∈ BW1,∞(0, h0).

The expressions (3.60) are motivated by formal first-order expansions in θ in the expres-
sions (3.53). In order to establish them, we first note that the following estimates hold
uniformly inside D: ∥∥∥∇Φ−1

θ

∥∥∥
L∞(Ω;Md)

⩽ 1 + C1(D)h0,

∥det∇Φθ∥L∞(Ω) ⩽ 1 + C3(D)h0,

∥a ◦ Φθ∥L∞(Ω;Md) ⩽ ∥a∥L∞(D;Md) ,∥∥∥e−βV ◦Φθ

∥∥∥
L∞(Ω)

⩽
∥∥∥e−βV

∥∥∥
L∞(D)

,∥∥∥∇Φ−1
θ − (Id−∇θ)

∥∥∥
L∞(Ω;Md)

⩽ C2(D)∥θ∥2W1,∞ ,

∥det∇Φθ − 1− div θ∥L∞(Ω) ⩽ C4(D)∥θ∥2W1,∞ ,∥∥∥a ◦ Φθ − a−∇a⊤θ
∥∥∥
L∞(Ω;Md)

⩽
1
2

∥∥∥∇2a
∥∥∥
L∞(D;Md⊗Md)

∥θ∥2L∞(Rd;Rd) ,∥∥∥e−βV ◦Φθ −
(
e−βV − β∇V ⊤θe−βV

)∥∥∥
L∞(Ω)

⩽
1
2

∥∥∥∇2
(
e−βV

)∥∥∥
L∞(D;Md)

∥θ∥2L∞(Rd;Rd) ,

∥θ∥L∞(Ω;Rd), ∥∇θ∥L∞(Ω;Md) ⩽ h0,

∥div θ∥ ⩽ dh0.

(3.63)

The two first estimates in (3.63) follow immediately from (3.54) and (3.55). The third and
fourth follow from the inclusion Ωθ ⊂ D, the fifth and sixth are already given in (3.54) and (3.55).
The seventh and eighth follow from the regularities V ∈ W2,∞(D), a ∈ W2,∞(D;Md) given



214 Appendix 3.A: Proof of Theorem 3.2

by Assumption (Reg), and the inclusion Ωθ ⊂ D. The penultimate estimate is clear, and the
last one follows from |TrM | ⩽ d|M |Md

.

From the estimates (3.54), (3.55) and (3.63), we obtain, by the Leibniz rule in the Banach
algebra L∞(Ω;Md), that the map

α :

W
1,∞ → L∞(Ω;Md),
θ 7→ ∇Φ−⊤

θ a ◦ Φθ∇Φ−1
θ | det∇Φθ|e−βV ◦Φθ ,

is Fréchet differentiable at θ = 0, with

Dα(0)θ = −∇θ⊤ae−βV +∇a⊤θe−βV − a∇θe−βV + a div
(
θe−βV

)
.

Moreover, there exist Ma,1(D),Ma,2(D) > 0 such that, uniformly inside D, it holds

∥Dα(0)θ∥L∞(Ω;Md) ⩽Ma,1(D)∥θ∥W1,∞ ,

∥α(θ)− α(0)−Dα(0)θ∥L∞(Ω;Md) ⩽Ma,2(D)∥θ∥2W1,∞ .

By a similar argument, the map

γ :

W
1,∞ → L∞(Ω),
θ 7→ |det∇Φθ|e−βV ◦Φθ ,

is Fréchet differentiable at θ = 0, with

Dγ(0)θ = div
(
θe−βV

)
,

and the estimates

∥Dγ(0)θ∥L∞(Ω) ⩽Mb,1(D)∥θ∥W1,∞ ,

∥γ(θ)− γ(0)−Dγ(0)θ∥L∞(Ω) ⩽Mb,2(D)∥θ∥2W1,∞ ,

hold uniformly inside D for some positive constants Mb,1(D),Mb,2(D) > 0.

We now show (3.62). It holds

da0(θ)(u, u) = 1
β

∫
Ω
∇u⊤Dα(0)θ∇u,

ra(θ, u) = 1
β

∫
Ω
∇u⊤ (α(θ)− α(0)−Dα(0)θ)∇u,

db0(θ)(u, u) =
∫

Ω
u2Dγ(0)θ,

rb(θ, u) =
∫

Ω
u2 (γ(θ)− γ(0)−Dγ(0)θ) ,
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whence, uniformly inside D:

|da0(θ)(u, u)| ⩽ Ma,1(D)
β

∥θ∥W1,∞∥∇u∥2L2(Ω;Rd),

|rb(θ, u)| ⩽ Ma,2(D)
β

∥θ∥2W1,∞∥∇u∥2L2(Ω;Rd),

|db0(θ)(u, u)| ⩽Mb,1(D)∥θ∥W1,∞∥u∥2L2(Ω),

|rb(θ, u)| ⩽Mb,2(D)∥θ∥2W1,∞∥u∥2L2(Ω).

Using (3.57) and likewise the lower bound in (3.59), it follows that (3.62) holds with constants

Ca,1(D) = Ma,1(D)
εa(D)mV (D)(1− C1(D)h0)2(1− C3(D)h0)

, Cb,1(D) = Mb,1(D)
mV (D)(1− C3(D)h0) ,

Ca,2(D) = Ma,2(D)
εa(D)mV (D)(1− C1(D)h0)2(1− C3(D)h0)

, Cb,2(D) = Mb,2(D)
mV (D)(1− C3(D)h0) .

At this point, we have obtained the necessary estimates casting the problem in the form
treated in [152, 153], using abstract arguments of perturbation theory. We next largely follow
the approach of these works, but nevertheless give a full proof below, not only for the sake of
self-completeness but also because we require stronger intermediate regularity results than
those obtained in [152] in order to prove the third item in Theorem 3.2.

Continuous Fréchet differentiability of the inverse operator. As previously noted, λk(Ωθ)
is the reciprocal of the k-th largest eigenvalue of the operator

S(θ) := A−1
θ Bθ.

To obtain the results of Theorem 3.2, it is then sufficient to study the regularity of the
eigenvalues of θ 7→ S(θ). Assuming these are Gateaux-semi-differentiable, in order to obtain
the second item in Theorem 3.2, we may indeed write, for 0 ⩽ ℓ < m:

d
dtλk+ℓ(Ωtθ)

∣∣∣∣
t=0+

= −λk(Ω)2 d
dt

1
λk+ℓ(Ωtθ)

∣∣∣∣
t=0+

, (3.64)

where one recognizes right-Gateaux-derivatives of the eigenvalues of S at 0 on the right-hand
side of this equality. A similar observation holds for Fréchet-differentiability.

The first step is to show that θ 7→ A−1
θ Bθ is C1 in a W1,∞-neighborhood of θ = 0 for

the L2
β(Ω) operator norm.

From the estimates (3.62), it holds from the representation result [192, Lemma VI.3.1]
that there exists L2(Ω)-bounded operator-valued maps θ 7→ D

(1)
A0
θ,RA0(θ), D(1)

B0
θ,RB0(θ) ∈

B(L2(Ω)) such that

da0(θ)(u, v) =
〈
D

(1)
A0
θA

1/2
0 u,A

1/2
0 v

〉
, db0(θ)(u, v) =

〈
D

(1)
B0
θB

1/2
0 u,B

1/2
0 v

〉
,

ra(θ, u, v) =
〈
RA0(θ)A1/2

0 u,A
1/2
0 v

〉
, rb(θ, u, v) =

〈
RB0(θ)B1/2

0 u,B
1/2
0 v

〉
,

(3.65)

where A1/2
0 is the positive self-adjoint operator defined on D(A1/2

0 ) = H1
0 (Ω) (the form domain
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of A0) by functional calculus, such that A1/2
0 A

1/2
0 = A0 on D(A0), and where the bilinear

forms ra(θ, ·, ·), rb(θ, ·, ·) are defined by polarization from the expressions (3.61). Moreover,
the operators D(1)

A0
, D

(1)
B0

are clearly linear, and the bounds∥∥∥D(1)
A0
θ
∥∥∥

B(L2(Ω))
⩽ Ca,1(D)∥θ∥W1,∞ ,

∥∥∥D(1)
B0
θ
∥∥∥

B(L2(Ω))
⩽ Cb,1(D)∥θ∥W1,∞ ,

∥RA0(θ)∥B(L2(Ω)) ⩽ Ca,2(D)∥θ∥2W1,∞ , ∥RB0(θ)∥B(L2(Ω)) ⩽ Cb,2(D)∥θ∥2W1,∞

(3.66)

are satisfied uniformly inside D, with the constants appearing in (3.62).

Let f ∈ L2(Ω), and set

u := A
−1/2
0 (Id +D

(1)
A0

+RA0(θ))−1A
−1/2
0 f ∈ D(A1/2

0 ),

where the inverse is well-defined for ∥θ∥W1,∞ < h0 sufficiently small, by the estimates (3.66).
By the representation result [192, Theorem VI.3.1], it holds for any v ∈ D(A1/2

0 ) = H1
0 (Ω),

that

aθ(u, v) =
〈
(Id +D

(1)
A0
θ +RA0(θ))A1/2

0 u,A
1/2
0 v

〉
L2(Ω)

=
〈
A

−1/2
0 f,A

1/2
0 v

〉
L2(Ω)

= ⟨f, v⟩L2(Ω) .

By the representation theorem for symmetric positive closed forms [192, Theorem VI.2.1], it
holds u ∈ D(Aθ) and Aθu = f , whence

A−1
θ = A

−1/2
0

(
Id +D

(1)
A0
θ +RA0(θ)

)−1
A

−1/2
0 ,

and writing the Neumann series expansion, it then holds that

A−1
θ = A

−1/2
0

(
Id−D(1)

A0
θ
)
A0

−1/2 + R̃A−1
0

(θ),

with quadratically bounded remainder: ∥R̃A−1
0

(θ)∥B(L2(Ω)) ⩽ CA0,2(D)∥θ∥2W1,∞ uniformly in-
side D for some constant CA0,2(D) > 0 and some operator-valued map R̃A−1

0
: W1,∞ →

B(L2(Ω)). Since D(1)
A0

is controlled uniformly inside D in the L2(Ω)-operator norm, we only
need to check that this is also the case for A−1/2

0 , but this follows from the lower bound (3.57),
which is uniform inside D.

Therefore, θ 7→ A−1
θ is Fréchet-differentiable at θ = 0, with

DA−1
0 θ = −A−1/2

0 D
(1)
A0
θA

−1/2
0 .

Since θ 7→ Bθ is Fréchet-differentiable at θ = 0 from (3.66), the inverse operator θ 7→ S(θ) is
also Fréchet-differentiable at θ = 0, with

DS(0)θ = −A−1/2
0 D

(1)
A0
θA

−1/2
0 B0 +A−1

0 B
1/2
0 D

(1)
B0
θB

1/2
0 , (3.67)

and with quadratically bounded remainder:

S(θ) = S(0) +DS(0)θ +RS(0)(θ), ∥RS(0)(θ)∥B(L2(Ω)) ⩽ CS0,2(D)∥θ∥2W1,∞ (3.68)
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uniformly inside D for some CS0,2(D) > 0 and some operator-valued map RS(0) : W1,∞ →
B(L2(Ω)).

At this point, we note that, due to the uniformity of the estimates (3.57) and (3.63) inside D,
the same analysis shows that, for ∥θ∥W1,∞ sufficiently small, S is Fréchet differentiable at θ
and the expansion

S(θ+δθ) = S(θ)+DS(θ)δθ+RS(θ)(δθ), ∥RS(θ)(δθ)∥B(L2(Ω)) ⩽ CS0,2(D)∥δθ∥2W1,∞ , (3.69)

is valid, with crucially the same constant as in (3.68), and some other operator-valued
map RS(θ) :W1,∞ → B(L2(Ω)).

Indeed, the previous argument applies upon replacing Ω by the bounded Lipschitz do-
main Ωθ ⊂ D as long as ∥Φδθ ◦ Φθ − Id∥W1,∞ < h0. A simple computation shows that ∥Φδθ ◦
Φθ− Id∥W1,∞ ⩽ ∥θ∥W1,∞ +∥δθ∥W1,∞ +∥θ∥W1,∞∥δθ∥W1,∞ , so that taking ∥θ∥W1,∞ , ∥δθ∥W1,∞ <√

1 + h0 − 1 suffices.

Therefore, upon further reducing h0, we assume from now on that S is Fréchet-differentiable
inside BW1,∞(0, h0). In fact, the uniformity with respect to θ of the remainder in (3.69) implies
that S is C1 in a W1,∞-neighborhood NS of θ = 0 for the L2(Ω)-operator norm, which we now
show.

Let θ1, θ2 ∈ W1,∞(Rd) be sufficiently small, and write θ2 = θ1 + δθ1. Additionally, take w ∈
W1,∞ with ∥w∥W1,∞ = 1, and write δθ2 = ∥δθ1∥W1,∞w. By the expansion (3.69), it holds

S(θ2 + δθ2) = S(θ2) +DS(θ2)δθ2 +RS(θ2)(δθ2),
S(θ2 + δθ2) = S(θ1) +DS(θ1)(δθ1 + δθ2) +RS(θ1)(δθ1 + δθ2).

(3.70)

Substituting the further expansion

S(θ2) = S(θ1) +DS(θ1)δθ1 +RS(θ1)(δθ1)

in the first line of (3.70), we find after simplification

[DS(θ2)−DS(θ1)] δθ2 = RS(θ1)(δθ1 + δθ2)−RS(θ1)(δθ1)−RS(θ2)(δθ2).

Estimating the L2(Ω)-operator norm using (3.69), we find

∥ [DS(θ2)−DS(θ1)]w∥L2(Ω)∥δθ1∥W1,∞ ⩽ CS0,2
(
∥δθ1 + δθ2∥2W1,∞ + ∥δθ1∥2W1,∞ + ∥δθ2∥2W1,∞

)
⩽ 6CS0,2∥δθ1∥2W1,∞ ,

since ∥δθ1∥W1,∞ = ∥δθ2∥W1,∞ and therefore ∥δθ1 + δθ2∥W1,∞ ⩽ 2∥δθ1∥W1,∞ . Therefore,

∥[DS(θ2)−DS(θ1)]w∥L2(Ω) ⩽ 6CS0,2∥θ2 − θ1∥W1,∞ ,

which, upon taking the supremum over {w ∈ W1,∞, ∥w∥W1,∞ = 1}, shows that DS is Lipschitz
(and in particular continuous) for the L2(Ω)-operator norm in a W1,∞-neighborhood of θ = 0.

We now show the first item in Theorem 3.2. We have already proved that θ 7→ S(θ)
and θ 7→ B(θ) are C1 in a W1,∞-neighborhood of θ = 0. From the bounds (3.59), the same
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regularity holds for θ 7→ B(θ)±1/2. Therefore, the mapW
1,∞(Rd)→ Ksa(L2(Ω))

θ 7→ B
1/2
θ S(θ)B−1/2

θ

is C1, at θ = 0, hence Lipschitz on some neighborhood ÑS ⊂ W1,∞ of 0, where Ksa(L2(β))
denotes the subspace of compact self-adjoint operators in B(L2(Ω)).

A well-known consequence of the Courant–Fischer principle (the so-called Weyl perturbation
inequality, see for example [314, Section 1.3.3] for the analogous case of Hermitian matrices)
implies that, given a Hilbert space H, for any j ⩾ 1, the eigenvalue mapKsa(H)→ R

A 7→ µj(A)

is 1-Lipschitz in the H-operator norm, where µk(A) denotes the k-th largest eigenvalue of A
(counted with multiplicity). By composition, for any j ⩾ 1, the map θ 7→ µj(B1/2

θ S(θ)B−1/2
θ ) =

µj(S(θ)) is also Lipschitz on ÑS . The claim then easily follows since θ 7→ (λk+ℓ(Ωθ))0⩽ℓ<m =
(1/µk+ℓ(S(θ)))0⩽ℓ<m with µk+ℓ(S(θ)) > 0 for any θ, and the map x 7→ (1/xi)1⩽i⩽m is locally
Lipschitz on (0,+∞)m.

From now on we view S(θ), for θ ∈ W1,∞ sufficiently small, as an operator on L2
β(Ω),

stressing that, in this setting, S(0) is a compact self-adjoint operator, although for θ ̸= 0, these
operators are generally non-symmetric, but still compact with real spectrum (since the S(θ)
are conjugate to self-adjoint operators on L2(Ω)).

Finite-dimensional reduction around eigenvalues clusters. We recall that, by assump-
tion, λk(Ω) has multiplicity m ⩾ 1. By compactness of the family S(θ) and the continuity
of its eigenvalues, there exists a complex, positively oriented contour Γ : [0, 1]→ C separat-
ing 1/λk(Ω) from the eigenvalues of S(0) different from 1/λk(Ω), and h0 > 0 such that, for
any θ ∈ BW1,∞(0, h0), S(θ) has exactly m eigenvalues inside Γ, counted with multiplicity. We
denote the Riesz projector by

Πθ = − 1
2iπ

∫
Γ
Rζ(θ) dζ, (3.71)

where we define the resolvent of S(θ) as

Rζ(θ) = (S(θ)− ζ)−1 = B−1
θ (A−1

θ − ζB
−1
θ )−1.

Note that Πθ is a projector onto the S(θ)-invariant subspace

Span {uk+ℓ(Ωθ), 0 ⩽ ℓ < m} ,

and is L2
β(Ω)-orthogonal when θ = 0. We next show that θ 7→ Πθ is C1 in aW1,∞-neighborhood

of θ = 0 for the L2
β(Ω)-operator norm.

By continuity of the eigenvalues of S(θ) with respect to θ, we may choose h0 sufficiently
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small and C(D) > 0 so that, uniformly inside D and for all ζ ∈ Γ, it holds

∥Rζ(θ)∥B(L2(Ω)) ⩽ C(D). (3.72)

We furthermore assume h0 to be sufficiently small so that the expansion (3.69) holds. Let θ, δθ ∈
BW1,∞(0, h0). The second resolvent identity states that, for any ζ ∈ Γ,

Rζ(θ + δθ)−Rζ(θ) = Rζ(θ + δθ)(S(θ)− S(θ + δθ))Rζ(θ),

so that, rearranging, we obtain

Rζ(θ) = Rζ(θ + δθ) (Id + [S(θ + δθ)− S(θ)]Rζ(θ)) ,

whence, for ∥S(θ + δθ)− S(θ)∥B(L2(Ω)) ⩽ ∥Rζ(θ)∥
−1
B(L2(Ω)), we have the expression

Rζ(θ + δθ) = Rζ(θ)
( ∞∑
k=0

(−1)k [(S(θ + δθ)− S(θ))Rζ(θ)]k
)
.

Then, by the expansion (3.69) and the uniform bound (3.72), one can find h0,K(D) > 0 such
that, uniformly inside D, and for any ζ ∈ Γ, δθ ∈ W1,∞ with ∥θ + δθ∥W1,∞ < h0, it holds

Rζ(θ + δθ) = Rζ(θ)−Rζ(θ)DS(θ)δθRζ(θ) +Q(θ, δθ, ζ), ∥Q(θ, δθ, ζ)∥ ⩽ K(D)∥δθ∥2W1,∞ .

Therefore Rζ is Fréchet-differentiable at θ, and its Fréchet derivative is given by DRζ(θ)δθ =
−Rζ(θ)DS(θ)δθRζ(θ), which is continuous in θ in aW1,∞-neighborhood of θ = 0 for the L2

β(Ω)-
operator norm, owing to the C1-regularity of S and the continuity of Rζ . By dominated
convergence in (3.71) using the bound (3.72) and the fact that DS(θ) is bounded in the L2

β(Ω)-
operator norm uniformly inside D, it follows that θ 7→ Πθ is also C1 in the L2

β(Ω)-operator
norm in a W1,∞-neighborhood of θ = 0. We denote its Fréchet derivative by δθ 7→ DΠθδθ.

The last key step is to connect the invariant m-dimensional subspaces ΠθL
2
β(Ω) and Π0L

2
β(Ω)

via a linear isomorphism which is Fréchet differentiable with respect to θ at θ = 0. This will
allow to relate eigenvalue variations of S(θ) to those of a conjugated operator Ŝ(θ) acting
on the fixed m-dimensional Hilbert space Π0L

2
β(Ω) on which perturbation results are readily

available. This follows the general construction discussed in [192, Section I.4.6] for continuous
families of projectors, to which we refer for additional details. Introduce the bounded operators

Q(θ) = (Πθ −Π0)2, U(θ) = (ΠθΠ0 + (Id−Πθ)(Id−Π0)) (Id−Q(θ))−1/2,

where (Id−Q(θ))−1/2 can be defined via the following expansion for ∥Πθ −Π0∥ < 1:

(Id−Q(θ))−1/2 =
∞∑
k=0

(
−1/2
k

)
(−Q(θ))k.

Note that U(0) = Id. The definition of U(θ) is motivated by the observation

Cθ,0D0,θ = Cθ,0D0,θ = Id−Q(θ),
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where
Cθ,0 = Π0Πθ + (Id−Π0)(Id−Πθ) : ΠθL

2
β(Ω)→ Π0L

2
β(Ω),

and D0,θ is the analogous operator obtained by exchanging the roles of θ and 0 in the definition
of Cθ,0. Simple computations (see also the discussion in [192, Section I.4.6]) then show
that U(θ) : ΠθL

2
β(Ω)→ Π0L

2
β(Ω) is an isomorphism, and that Πθ,Π0 are conjugated via

Πθ = U(θ)−1Π0U(θ), where U(θ)−1 = (Π0Πθ + (Id−Π0)(Id−Πθ)) (Id−Q(θ))−1/2.

(3.73)
Setting

Ŝ(θ) = U(θ)S(θ)U(θ)−1,

it holds, since Πθ commutes with S(θ) and U(θ) is bijective, that

Ŝ(θ)Π0L
2
β(Ω) ⊂ Π0L

2
β(Ω),

so that Ŝ(θ)|Π0L2
β

(Ω) is a well-defined linear map. The bounded operator S(θ)|ΠθL
2
β

(Ω) is
diagonalizable, as it is conjugate to the operator

B
1/2
θ S(θ)B−1/2

θ

∣∣∣
B

1/2
θ

ΠθL
2
β

(Ω)
,

which is self-adjoint for the L2(Ω) inner product. Therefore, the conjugate operator Ŝ(θ)|Π0L2
β

(Ω)
is also diagonalizable, and the spectra of these two operators are identical, counting with
multiplicity.

Moreover, due to the C1 regularity of θ 7→ Πθ, the map U(θ) is also C1 in aW1,∞-neighborhood
of θ = 0, and since DQ(0) = 0, it also holds D(Id−Q(θ))−1/2

∣∣∣
θ=0

= 0, whence

DU(0)θ = (DΠ0θ) Π0 − (DΠ0θ) (Id−Π0) = 2 (DΠ0θ) Π0 −DΠ0θ = 0,

since the last expression is the Fréchet differential of Π2
θ − Πθ = 0 at θ = 0. Simi-

larly, DU−1(0)θ = 0, so that θ 7→ Ŝ(θ) is C1 as a map W1,∞(Rd;Rd) → B(Π0L
2
β(Ω)) in

a W1,∞-neighborhood of θ = 0, with

DŜ(0)θ = DS(0)θ.

We stress that Π0L
2
β(Ω) is a m-dimensional vector space, on which Ŝ(θ) defines a C1-family

of diagonalizable endomorphisms. In particular, for fixed θ ∈ W1,∞, there exists tθ > 0 such
that the map t 7→ Ŝ(tθ)|Π0L2

β
(Ω) is differentiable on (−tθ, tθ), so that from finite-dimensional

perturbation theory (see [192, Section II.5.4, Theorem 5.4 and Remark 5.5 and Section II.5.5,
Theorem 5.6]), and since 1/λk(Ω) is semisimple in the sense of [192, Section I.4] (as Ŝ(0) is
diagonalizable on Π0L

2
β(Ω)), there exist m maps (µℓ)1⩽ℓ⩽m, differentiable on (−tθ, tθ) and

satisfying (3.13), such that

∀ 1 ⩽ ℓ ⩽ m, µ′
ℓ(0) ∈ Spec (Π0DS(0)θΠ0) ,

where Π0DS(0)θΠ0 is viewed as a linear map on Π0L
2
β(Ω).
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Computation of the Gateaux derivatives. It remains to show the formula (3.14). This
reduces to computing the components of the matrix representation of Π0DS(0)θΠ0 for the L2

β(Ω)
scalar product, in the given L2

β(Ω)-orthonormal basis
{
u

(ℓ)
k (Ω), 1 ⩽ ℓ ⩽ m

}
. For convenience,

we denote by
∀1 ⩽ ℓ ⩽ m, uℓ = u

(ℓ)
k (Ω), and λ = λk(Ω).

Recall the relation (3.64). Setting

Mij(θ) = −λ2 ⟨Π0DS(0)θΠ0ui, uj⟩L2
β

(Ω) ,

and using (3.67), we find, since Π0 is L2
β(Ω)-self-adjoint and Π0ui = ui for each 1 ⩽ i ⩽ m,

⟨Π0DS(0)θΠ0ui, uj⟩L2
β

(Ω) = ⟨DS(0)θΠ0ui,Π0uj⟩L2
β

(Ω)

= ⟨B0DS(0)θui, uj⟩L2(Ω)

=
〈
B0
(
−A−1/2

0 D
(1)
A0
θA

−1/2
0 B0 +A−1

0 B
1/2
0 D

(1)
B0
θB

1/2
0

)
ui, uj

〉
L2(Ω)

=
〈(
−A1/2

0 D
(1)
A0
θA

1/2
0 A−1

0 B0 +B
1/2
0 D

(1)
B0
θB

1/2
0

)
ui, A

−1
0 B0uj

〉
L2(Ω)

= −λ−2
〈
A

1/2
0 D

(1)
A0
θA

1/2
0 ui, uj

〉
L2(Ω)

+ λ−1
〈
B

1/2
0 D

(1)
B0
θB

1/2
0 ui, uj

〉
L2(Ω)

,

taking adjoints of the L2(Ω)-self-adjoint operators A−1
0 , B0 in the fourth line, and using the

eigenrelation A−1
0 B0ui = ui/λ for all 1 ⩽ i ⩽ m in the last line. It follows that

Mij(θ) =
〈
A

1/2
0 D

(1)
A0
θA

1/2
0 ui, uj

〉
L2(Ω)

− λ
〈
B

1/2
0 D

(1)
B0
θB

1/2
0 ui, uj

〉
L2(Ω)

= da0(θ)(ui, uj)− λdb0(θ)(ui, uj),

where we used the representation formulas (3.65). Substituting in the expressions for the
first-order perturbations (3.60) finally yields (3.14).

Fréchet differentiability for simple eigenvalues. We now assume that λk(Ω) is a simple
eigenvalue. For ∥θ∥W1,∞ sufficiently small, it holds from the conjugation (3.73) that rank Πθ = 1,
and

1
λk(Ωθ)

=
〈
Ŝ(θ)uk(Ω), uk(Ω)

〉
L2

β
(Ω)

.

Since θ 7→ Ŝ(θ) is C1 in a W1,∞-neighborhood of θ = 0 and λk(Ω) > 0, the map θ 7→ λk(Ωθ)
is also C1 in a W1,∞-neighborhood of θ = 0 by the chain rule. A closed-form for the Fréchet
derivative Dλk(Ω0)θ at θ = 0 is then given by M11(θ), or by the boundary form

Dλk(Ω0)θ = − 1
β

∫
∂Ω

(
∂uk(Ω)
∂n

)2
n⊤anθ⊤n e−βV

in the case ∂Ω is C1,1 or if Ω is convex, as in Corollary 3.4.
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Appendix 3.B: The Parallel Replica algorithm and its efficiency.

In this appendix, we motivate the shape-optimization objective 3.8 by discussing its relevance
to a class of accelerated MD methods, the so-called Parallel Replica class of algorithms.

The maximization of (3.7) is motivated by algorithms in accelerated molecular dynamics,
where the separation of timescales is key in ensuring the efficiency of the Parallel Replica
method (ParRep); see [305, Section 6.2] or [268, Section 2.7], where the authors already discuss
the influence of the domain definition on the metric (3.7). In this context, the quantity defined
in (3.7) is called the scalability metric, and is directly related to the efficiency of ParRep [334].
While many ParRep-like methods have been proposed (see for instance [325, 42, 12, 266]), we
present in this section one of the simplest versions, for which the objective of maximizing (3.7)
with respect to Ω is most easily motivated.

At its core, ParRep provides a way, given a metastable domain Ω ⊂ Rd, to trade some details
of the dynamics inside Ω against a kinetically correct sample of the exit from Ω (in the sense
that both the exit time and the exit point are unbiased), coming at a lower cost in wall-clock
time, using parallel computing resources. Given a good coverage of the configuration space
by a set of good metastable states (Ωα)α∈I , one can then effectively parallelize in time the
sampling of a long, spatially coarse-grained trajectory.

A major advantage of ParRep compared to other accelerated MD methods (see [332, 312])
is that it is largely agnostic to the form of the dynamics and therefore applies to a wide range
of Markov processes. The theoretical justification of the method, however, requires proving
the existence and uniqueness of the QSD, see [206, 275] for results on the Langevin dynamics
in the overdamped and underdamped settings, respectively.

We now describe the Parallel Replica method. While the original formulation [334] of the
algorithm used disjoint metastable states, defined as basins of attraction for the steepest
descent dynamics on the energy landscape, we formulate a variant which is more general, in
the sense that it accommodates metastable states which may overlap, and whose union does
not necessarily cover the whole configuration space.

We first introduce a number of hyperparameters.

Parameter Description

Nproc ∈ N∗ the number of replicas,
(Ωi)i∈I , a set of metastable states, and for each i ∈ I:
Ci ⊂ Ωi, an associated core-set,
tcorr(Ωi) > 0, a decorrelation timescale, and
tphase(Ωi) > 0 a dephasing timescale.

Input parameters for Algorithm 3.18.

We assume that the core-sets are pairwise disjoint:

∀ i, j ∈ I, i ̸= j, Ci ∩ Cj = ∅.
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This condition ensures that there is no ambiguity as to which state is entered in step A of the
algorithm below.

Algorithm 3.18 (ParRep with rejection and core-sets.). The algorithm proceeds by iterating
the following steps:

A Initialization: run the dynamics until it enters a core-set Ci, at time t0, for some i ∈ I.
Denote τ = inf{t ⩾ t0 : Xt ̸∈ Ωi} the next exit time from the corresponding state Ωi.

B1 Decorrelation (successful case): if the dynamics remains for a time tcorr(Ωi) inside Ωi, it
is presumed to be distributed according to the QSD νi in Ωi. This introduces a bias, but
which decays quickly with tcorr(Ωi) according to (3.6), provided λ2(Ωi)− λ1(Ωi) is large.

B2 Decorrelation (unsuccessful case): if the dynamics exits at τ < t0 + tcorr(Ωi), record the
exit event (τ,Xτ ), and proceed from step A.

C Dephasing: Simulate Nproc independent copies
(
X(i)

)
1⩽i⩽Nproc

of the dynamics starting

from X
(i)
0 = Xt0+tcorr(Ωi), for a time tphase(Ωi) > 0.

D Conditioning: reject replicas which exited Ωi during step C. Denote by N ⩽ Nproc the
random variable counting the number of surviving replicas.
The (X(i)

tphase(Ωi))1⩽i⩽N are now presumed to be i.i.d. according to νi. Again, this is correct
up to some bias decaying quickly with tphase(Ωi).

E Parallel exit: evolve the N replicas independently until the first exits from Ωi, say X(j)
τ (j) ̸∈ Ωi,

i.e. τ (j) = min
1⩽i⩽N

τ (j). According to the property (3.5), the equality

(
t0 + tcorr(Ωi) +N

[
τ (j) − tphase(Ωi)

]
, X

(j)
τ (j)

) law= (τ,Xτ )

holds in law.

F Set Xt0+tcorr(Ωi)+N(τ (j)−tphase(Ωi)) = X
(j)
τ (j) and proceed from step A.

Let us make a few remarks about Algorithm 3.18. Steps C and E can be run on a parallel
computer with Nproc processors. Assuming synchronized MD engines, these two steps therefore
only cost tphase(Ωi) and τ (j)−tphase(Ωi) respectively in wall-clock time. Since τ (j)−tphase(Ωi) ∼
E(N/λ1(Ωi)) conditionally on N , this provides to a large acceleration if N is large, at the cost
of an overhead tphase(Ωi) in step C, which does not correspond to a physical time evolution.

Because exit events sampled during step B2 are driven by the original dynamics, they are
unbiased. Therefore, ParRep differs from other accelerated MD methods in that it correctly
samples the full distribution of exit events, including those corresponding to short, correlated
exit times.

Step B can also be performed in parallel to step C, and this is often done in practice. In
this variant of Algorithm 3.18, the replicas are initialized at X(i)

0 = Xt0 for 1 ⩽ i ⩽ Nproc, and
one usually chooses tcorr(Ωi) = tphase(Ωi). Moreover, in the case B2, the exit of the reference
dynamics Ωi kills the replicas running in step C.
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The path obtained by concatenating the segments

(Xt)t0⩽t<t0+tcorr(Ωi),
{

(X(i)
t )t⩽tphase(Ωi)<τ (j) , 1 ⩽ j ⩽ N

}
and (X(j)

t )tphase(Ωi)⩽t<τ (j)

has, in law, the same length as the path (Xt)t0⩽t<τ under the sequential dynamics (neglecting
the bias in steps B and C). Therefore, Algorithm 3.18 can be understood as sampling a
discontinuous modification to the original dynamics, which jumps N times from νi to νi in
the quasi-stationary portion (Xt)t0+tcorr(Ωi)⩽t<τ of the trajectory.

The core-set Ci encode how one defines an entrance into Ωi, while the set Ωi encodes how one
defines an exit from Ωi. We argue that the latter is the most important parameter as it impacts
all the steps B–E, with Ci is only involved in step A. The sets Ci can be defined using physical
intuition. In our numerical experiments (see Section 3.5.3 below), we consider two natural
definitions of these core-sets, namely small balls around free energy minima, or the intersection
of the associated free energy basin with the state Ωi. An outstanding question, which we
leave for future work, is whether one can optimize the definition of the core-sets Ci, given
definitions for the states Ωi, to make Algorithm 3.18 efficient. Heuristically, the set

⋃
i∈I Ci

should be visited often by the dynamics, and starting from ∂Ci, convergence to νi should be
both likely and fast (so as to minimize the time spent in step B). This question is related to
the minimization of the pre-exponential factor in the error estimate (3.6).

A pathology may occur in the event no replica survives in step C. This possibility can be
assumed to be rare provided Ωi is locally metastable and Nproc is large, for reasonable choices
of Ci. Nevertheless, the rejection sampling performed in step D can be replaced by a branching
mechanism known as the Fleming–Viot process (see Algorithm 3.16 below), which has the
advantage of ensuring N = Nproc replicas survive, at the cost of introducing additional (small)
correlations between replicas at the end of step D, which therefore induces some bias in step E.

Crucial hyperparameters are the decorrelation times tcorr(Ωi), and dephasing times tphase(Ωi)
for i ∈ I. These should be valid, in the sense that the bias introduced in step B and the
correlations between replicas in step C should be small, but setting tcorr(Ωi), tphase(Ωi) to
large values will lead to excessive spending of wall-clock time in these two steps, leading to an
overall decrease in the achieved speedup. A simple choice is to set

tcorr(Ωi) = tphase(Ωi) = − log εcorr/(λ2(Ωi)− λ1(Ωi)) (3.74)

where 0 < εcorr < 1 is a small, domain-independent tolerance parameter. This choice, which has
already been suggested (see [305, 268]), is motivated by taking logarithms in the estimate (3.6),
and neglecting the contribution | logC(x)|/(λ2(Ωi) − λ1(Ωi)) to the bias coming from the
prefactor, which depends on the initial condition x. The choice (3.74) also motivates the need
for quantitative estimates of the spectral gap λ2(Ωi) − λ1(Ωi), for which various strategies
have been proposed, see [50, Section 3.3] for recent results in this direction.

Let us fix i ∈ I, and compare the expected wall clock-time to sample a metastable excursion
inside Ωi using Algorithm 3.18 to the expected wall-clock time using a sequential simulation.
We assume successful decorrelation in step B, rejection sampling in step C and the choice (3.74)
where 0 < εcorr < 1 is sufficiently small so that the bias and correlations introduced in steps
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∂Ω1

∂Ω2

∂C1
∂C2

Figure 3.20: A trajectory sampled using Algorithm 3.18. Dotted lines correspond to step A, dashed
lines to step B: a successful decorrelation B1 in Ω1, followed by a failed decorrelation B2 in Ω2. The
solid line corresponds to the trajectory (X(j)

t )tphase(Ω1)⩽t<τ(j) in step E. The discontinuity hides a
(parallel) time evolution of length (N − 1)(τ (j) − tphase(Ω1)) in step D.

B1 and C can be safely neglected. By (3.5), we have Eν [N ] = e−λ1(Ωi)tphase(Ωi)Nproc expected
replicas at the end of step C, i.i.d. according to the QSD. Replacing N by its expected value
under ν (and making a so-called annealed approximation in doing so), the expected wall-clock
time in step E is given by eλ1(Ωi)tphase(Ωi)/(λ1(Ωi)Nproc), by standard properties of exponential
random variables. Therefore, the combined wall-clock time in steps B1–E is given by

tB1–E
PR (Ωi) = tcorr(Ωi) + tphase(Ωi) + eλ1(Ωi)tphase(Ωi)/(λ1(Ωi)Nproc).

The second term accounts for the overhead of simulating N trajectories in step B., which can
be done in parallel. By contrast, the expected wall-clock time to simulate the same process
using direct simulation is given by

tB1–E
DNS (Ωi) = tcorr(Ωi) + 1/λ1(Ωi).

Recalling the definition (3.7) of N∗(Ωi), substituting in the definition (3.74) and rearranging,
we find

tB1–E
DNS (Ω)
tB1–E
PR (Ωi)

= N∗(Ωi)− log εcorr
(N∗(Ωi)/Nproc)e−(log εcorr)/N∗(Ωi) − 2 log εcorr

. (3.75)

One can check that the right-hand side of (3.75) is an increasing function ofN∗(Ωi) forNproc > 0
and 0 < εcorr < 1. Therefore, N∗(Ωi) should be maximized to maximize the effectiveness of
the ParRep algorithm. This objective is only reasonable if the bulk of the simulation time is
captured by steps of type B1, C, D and E in Algorithm 3.18. That is, trajectories drawn
from (3.1) should spend most of the time inside metastable states, and not in excursions
between them. This constraint is related to the intrinsic metastability of the system as a



226 Appendix 3.C: Properties of the coefficients of the effective dynamics

whole: in systems for which a significant portion of time is spent in non-metastable regions of
phase space, accelerated MD methods are not expected to be efficient, regardless of the choice
of states.

We stress that the previous discussion is one of a number of possible ways to present the
efficiency of ParRep and its variants, but the conclusion is always the same: one should
maximize N∗(Ω) with respect to Ω to obtain maximal benefits from the algorithm inside the
metastable state Ω. The methods described in this work should also allow to directly optimize
the ratio (3.75), as well as other objectives whose free parameters are the states defining the
Dirichlet eigenvalues λ1(Ω) and λ2(Ω) of −Lβ.

In Figure 3.21, we depict the objective (3.75) as a function of N∗(Ω) and the number Nproc

of available processors, as well as the parallel efficiency metric tB1–E
DNS (Ω)/

(
Nproct

B1–E
PR (Ω)

)
.

This metric measures the wall-clock time speedup per number of processors, and therefore how
effective Algorithm 3.18 utilizes parallel computing resources for the purpose of acceleration.
A simple estimate show that, in the regime N∗(Ω)≫ 1, Nproc should be chosen of the order
of O (N∗(Ω)) to reach a target parallel efficiency 0 < α < 1 for Algorithm 3.18 inside Ω. In
materials science applications, the separation of timescales (3.7) is often much larger than the
number of available processors, and parallel efficiency upwards of α = 0.95 are often reported,
see [268]. The contour line of parallel efficiency α = 0.5 is depicted on the right-hand side of
Figure 3.21.

Remark 3.19. It would be somewhat more satisfactory, owing to (3.6), to take the spatially-
dependent prefactor C(x) into account in the choice (3.74) of decorrelation time. An unresolved
step in this direction is to obtain quantitative estimates of this prefactor, at least in limiting
regimes or simple analytic cases. We leave this point for future work. At any rate, we expect
the corresponding shape-optimization problem to be substantially more difficult to handle.

Another family of methods (see [156]) attempt to estimate tcorr(Ω) + tphase(Ω) “on the fly”
using statistical information generated by a Fleming–Viot process in a combined step (B,C,D).
In the work [156], this strategy is implemented using a Gelman–Rubin (non)-convergence
diagnostic to estimate the decorrelation time. This opens up the possibility of applying ParRep
to situations in which little a priori information is available on the timescales at hand, such as
biological systems. However, some questions remain on how to optimally balance reliability
and efficiency concerns in this context.

Appendix 3.C: Properties of the coefficients of the effective
dynamics

We give sufficient conditions for the regularity assumptions of Proposition 3.9 using the
following identities, proven for example in [229, Lemma 3.10] for a C∞ function φ : Rd → R,
but which are still valid (with the same proof) under weaker regularity assumptions on φ.
Define the partial integration operator with respect to ξ:

Pξφ(z) :=
∫

Σz

φ det(Gξ)−1/2 dHΣz ,
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Figure 3.21: Effect of the separation of timescales (3.7) and number Nproc of processors on Algo-
rithm 3.18. Left: wall-clock time speedup over direct simulation (Equation (3.75), with values on a
log10-scale). Contours corresponding to ten-fold decreases in wall-clock time using ParRep are plotted
in white, starting from the break-even contour below which direct simulation is faster. Right: parallel
efficiency metric, with contour line α = 0.5.

which is continuous, for instance from L1(Rd) to L1(Rm) by the coarea formula. Then it holds

∇ (Pξφ) = Pξ (∇ξφ) , ∇ξφ := div
(
φG−1

ξ ∇ξ
⊤
)
,

where in the last line, div denotes the row-wise divergence applied to the m × d matrix
field φG−1

ξ ∇ξ⊤. In particular, for 1 ⩽ α, γ ⩽ m, it holds formally that

∂2
αγPξφ = Pξ

[
[Mξ]⊤γ ∇

(
[Mξ]⊤α ∇φ+ φdiv [Mξ]α

)
+ div [Mξ]γ

(
[Mξ]⊤α ∇φ+ φ div [Mξ]α

)]
,

where [Mξ]α denotes the α-th row of the matrix G−1
ξ ∇ξ⊤. From this identity, it follows that

the mapping Pξ : W2,∞(Rd) → W2,∞(Rm) is continuous when Mξ ∈ W2,∞(Rm;Rm×d),. In
turn, this property is satisfied if ξ ∈ W3,∞(Rd;Rm) and if the condition inf

x∈Rd
Gξ(x) > 0 holds

in the sense of symmetric matrices.

If this condition on ξ is satisfied, it is then easy to show that the conditions of Proposition 3.9
hold for instance if

V ∈ W2,∞(Rd), a ∈ W2,∞(Rd;Md), ∃ εa > 0 : u⊤a(x)u ⩾ εa|u|2 for almost every x ∈ Rd,

which are uniform versions of Assumptions (Ell) and (Reg), accounting for the fact that Σz

may not be compact for all z ∈ Rm.

In practice, it is however often the case that both the dynamics (3.1) and the CV ξ take values
in compact manifolds, typically the tori L(R/Z)d and Lξ(R/Z)m, corresponding respectively to
a periodic simulation domain and a set of angular CVs. In this case, the regularity of Fξ and aξ
follows immediately from the smoothness of ξ and the condition rank Gξ = m everywhere.

Data availability. Code and trajectory data used in the production of the numerical results
of Section 3.5 are publicly available in the repositories [46] and [47] respectively.
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Chapter 4
Fixing the flux: a dual approach to
computing transport coefficients

Man muss immer umkehren (One must always invert).
Carl Gustav Jacob Jacobi, 1832

Abstract. We present a method to compute transport coefficients in molecular
dynamics. Transport coefficients quantify the linear dependencies of fluxes in
non-equilibrium systems subject to small external forcings. Whereas standard non-
equilibrium approaches fix the forcing and measure the average flux induced in the
system driven out of equilibrium, a dual philosophy consists in fixing the value of
the flux, and measuring the average magnitude of the forcing needed to induce it.
A deterministic version of this approach, named Norton dynamics, was studied in
the 1980s by Evans and Morriss. In this work, we introduce a stochastic version of
this method, first developing a general formal theory for a broad class of diffusion
processes, and then specializing it to underdamped Langevin dynamics, which are
commonly used for molecular dynamics simulations. We provide numerical evidence
that the stochastic Norton method provides an equivalent measure of the linear
response, and in fact demonstrate that this equivalence extends well beyond the
linear response regime. This work raises many intriguing questions, both from the
theoretical and the numerical perspectives.

4.1 Introduction

Molecular dynamics (MD), much like computational statistical physics at large, aims at
predicting macroscopic properties of a molecular medium by the use of computer simulations.
In order to do so, a classical model of the interactions between atoms is constructed, and

229
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dynamical evolution laws are specified. One can then simulate typical trajectories of the system
through phase space, which, provided they are long enough, allows to estimate to a prescribed
level of statistical accuracy the quantities of interest. See [20] for a general theoretical account
of statistical physics, [324, 7, 133] for an emphasis on numerical methods, and [220, 233]
for an overview of the mathematical aspects of molecular simulation. MD simulations may
prove useful when the properties of interest are impractical to measure due to physical or
cost constraints associated with the experimental setup, or alternatively serve as surrogate
tests for theoretical models. At any rate, MD has grown to occupy an important role in
many applications ranging from pharmacology and molecular biology to materials science and
condensed matter physics, besides having had a significant impact on statistical methodology
at large, through the dissemination of tools such as the Metropolis–Hastings algorithm [247].
First applications of MD included the computation of static properties at equilibrium, in
particular thermodynamic quantities or free energy differences, which still are of considerable
interest today. We refer to [26] for a historical perspective.

Another, more difficult problem is the measurement of dynamical properties, quantities which
depend on the trajectory itself, and capture the behavior of systems undergoing a macroscopic
time evolution: this is the object of non-equilibrium statistical physics. Of particular interest
is the computation of transport coefficients, giving a measure of the sensitivity in the response
of a system at equilibrium to the magnitude of perturbations driving it out of equilibrium.
See [119, 321] for overviews, and [233, Section 5] for a mathematical presentation. Transport
coefficients are of practical importance, since they characterize the diffusion, heat conduction or
viscosity properties of a molecular medium, and enter as parameters in macroscopic evolution
equations such as the Navier–Stokes equation. One standard approach to compute transport
coefficients by molecular dynamics relies on the celebrated Green–Kubo formula [142], which
expresses transport coefficients as integrated time-correlations between appropriate fluxes in
the system at equilibrium. Another standard approach, see for instance [79], is to directly
simulate the non-equilibrium perturbation, and to measure the resulting average response,
which is, at the macroscopic level and in the limit of a small perturbation, proportional to
the magnitude of this perturbation: this is the so-called non-equilibrium molecular dynamics
(NEMD) approach, reviewed in [82]. Estimators deriving from these approaches however suffer
from large statistical errors, as quantified in [307, Proposition 2.4] for instance, and convergence
requires the simulation of very long trajectories, which comes at a high computational cost. A
key metric to measure this cost is, for any given method, the asymptotic variance of estimators
of the transport coefficient. Although some variance reduction techniques have been proposed
to compute transport coefficients (see [309] for a recent review), efficiently estimating these
quantities is still an important area of research.

From a thermodynamic point of view, the NEMD approach can be understood as fixing
the magnitude of the non-equilibrium forcing, and measuring the resulting flux in the system
driven out of equilibrium, which is conceived as a microscopic state variable. For a small
enough magnitude of the forcing, this flux responds approximately linearly to the forcing, and
the transport coefficient is precisely the associated proportionality constant. This method also
yields a construction of the non-equilibrium ensemble, by defining it as the steady state of the
system evolving according to the microscopic dynamics.
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However convenient from an implementation standpoint, there is no physical reason to a
priori favor an ensemble in which the forcing field is exactly fixed. At the macroscopic level,
fluxes and forces play a symmetric role, which opens the possibility for dual approaches in the
computation of non-equilibrium responses. Other approaches have been proposed to construct
non-equilibrium ensembles in which the forcing does not play such a distinguished role. One
can cite McLennan ensembles [77], expressing non-equilibrium steady-states as first-order
perturbations of the Boltzmann distribution, where the leading order correction term is the
time-integral of some conjugate response; or the dynamical approaches by Komorowski et
al [197], whereby an average flux is induced by a time-periodic forcing. When considering a
dual perspective, the most radical approach is to fix the flux exactly, and measure the average
magnitude of the forcing needed to induce it in the microscopic dynamics. This yields an
alternative measure of the transport coefficient. By analogy with Ohm’s law, one can think of
the NEMD approach as a way to measure a conductance, and the radical dual approach as a
way to measure a resistance.

The microscopic implementation of this dual approach is what we will refer to as the Norton
method, in accordance with the terminology proposed by Evans and Morriss in [120], by
reference to the Norton–Thévenin reciprocity from electrical circuit theory. This approach
amounts to considering a constrained dynamics on a submanifold of phase space consisting
of a level-set of the flux observable. The idea of using constrained dynamics to simulate
non-equilibrium systems already appeared in the 1983 work [117], where it was applied to
capture the mobility, and was also explored in [173]. It was further applied to shear viscosity
computations in [116], where the consistency of the approach was demonstrated. From a
theoretical perspective, formal results under ergodic hypotheses were obtained, including linear
response expressions for the transport coefficient in [120], as well as a result on the equivalence
of non-equilibrium ensembles in [115].

However, Norton dynamics were only considered in a deterministic setting, and, despite
promising results, their potential for practical use was not fully explored. In particular, the
numerical performance of estimators of transport coefficients based on time averages of this
dynamics has not, to the best of our knowledge, been studied yet. Our aim is to extend the
Norton philosophy to the stochastic setting, both for academic motivations (obtaining new
results on equivalence of ensembles in non-equilibrium systems), and for numerical reasons, as
Norton dynamics potentially allow to more efficiently compute transport coefficients. We will
consider both general diffusion processes, and Langevin-type dynamics, which are commonly
used in molecular dynamics [262].

Contributions of this work. Let us highlight our main contributions:

◦ We define a stochastic version of the Norton method, which is convenient from the
theoretical point of view as rigorous ergodicity results exist for stochastic dynamics, and
are also relevant for simulation since stochastic dynamics are nowadays very commonly
used in molecular dynamics.

◦ We specialize the Norton method to underdamped Langevin dynamics, and apply it to
compute the mobility and shear viscosity of a fluid. We demonstrate numerically that the
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Norton method gives consistent estimations of the linear response in the thermodynamic
limit.

◦ We observe on the numerical examples we consider that the non-equilibrium responses
coincide in fact far outside of the linear regime, raising the question of equivalence
between non-equilibrium ensembles.

◦ We offer numerical evidence that, in some situations, the Norton method is preferable
to the standard NEMD approach, in the sense that the Norton estimators for the
transport coefficients lead to estimates with a smaller statistical error than their NEMD
counterparts.

Many points in the mathematical analysis of the Norton approach are left open at this stage.
This should be seen as an invitation to further study the properties of these intriguing dynamics

Outline. This paper is organized as follows. We recall in Section 4.2 a general framework
for stochastic dynamics out of equilibrium. In Section 4.3, we introduce the Norton approach,
deriving an expression for the diffusion process defining the dynamics, before generalizing the
approach to the case of multiple constraints and time-dependent fluxes. In Section 4.4, we
specialize the setting to non-equilibrium kinetic Langevin dynamics used for mobility and shear
viscosity computations, describing how to apply the Norton philosophy. We also give a physical
interpretation of the Norton dynamics, as one satisfying an oblique version of Gauss’s principle
of least constraint. In Section 4.5, we discuss how to discretize stochastic Norton dynamics,
describing in particular a family of schemes obtained by an operator splitting approach. We
present the results of our numerical experiments in Section 4.6, demonstrating the consistency
with usual NEMD in the thermodynamic limit, and motivating that Norton simulations can
be more efficient than NEMD ones. We conclude in Section 4.7 by discussing the many open
questions and perspectives raised by the Norton method in the stochastic context.

4.2 Non-equilibrium molecular dynamics

We recall in this section the standard framework of NEMD, first presenting the reference
dynamics, before introducing the non-equilibrium dynamics and defining transport coefficients.
We finally discuss the statistical properties of NEMD estimators of the transport coefficient.
We refer the interested reader to [233, Section 5] and [307] for a more in-depth discussion of
the mathematical properties of the NEMD method.

Reference dynamics. We consider a class of non-equilibrium ensembles, obtained as the
steady-states of certain stochastic processes corresponding to a perturbation of a reference
process (usually a dynamics at equilibrium). We denote by X the state space of the system.
Typically, we consider X = Rd or Td, with T = R/Z the one-dimensional torus, or a product
of the two. We introduce a smooth vector field b : X → Rd, corresponding to the equilibrium
drift, and a matrix valued map σ : X → Rd×m corresponding to the diffusion. The reference
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dynamics is the following stochastic differential equation (SDE):

dXt = b(Xt) dt+ σ(Xt) dWt,

where (Wt)t⩾0 a standard m-dimensional Brownian motion. Common choices include the
overdamped Langevin dynamics

dXt = −∇V (Xt) dt+
√

2
β

dWt,

and the underdamped or kinetic Langevin dynamics (see Equation (4.26) below).

Non-equilibrium perturbations. We consider in this work the case where the perturbation
arises from an external non-gradient forcing in the drift of the underlying diffusion process,
determined by a smooth vector field F : X → Rd. Such dynamics allow the computation of
the shear viscosity and mobility of fluids as explained in Section 4.4, as well as the thermal
conductivity in atom chains, see [216],[345].

The non-equilibrium dynamics is given by the following SDE:

dXη
t = (b+ ηF )(Xη

t ) dt+ σ(Xη
t ) dWt. (4.1)

The parameter η ∈ R is a scalar modulating the strength of the perturbation. The equilibrium
dynamics is recovered in the absence of a non-equilibrium forcing, i.e. the case η = 0. The
infinitesimal generator of the dynamics (4.1) can be decomposed as the sum

Lη = L+ ηL̃, L = b · ∇+ 1
2σσ

⊺ : ∇2, L̃ = F · ∇, (4.2)

where ∇2 denotes the Hessian matrix and : denotes the Frobenius inner product defined
by A : B = Tr(A⊺B). Note that L is the generator of the reference dynamics, and L̃ encodes
its perturbation. The invariant probability measure satisfies the stationary Fokker-Planck
equation

L†
ηψη = 0, (4.3)

where L†
η is the flat L2(X )-adjoint of the generator. Existence and regularity results for

solutions of (4.3) depend on the particular form of the dynamics, as do properties pertaining
to convergence to the steady-state. It is often possible to leverage the standard analytical
framework of parabolic and elliptic partial differential equations to prove this convergence,
although for degenerate diffusions such as the underdamped Langevin dynamics, one has to
resort to more sophisticated tools, such as hypoellipticity [174] to obtain regularity of the
steady-state, or hypocoercivity [329] to show exponential decay of the evolution semigroup.

We assume in the remainder of this section that, for |η| small enough, the dynamics admits
a unique invariant probability measure for which it is ergodic, and denote the corresponding
expectation by Eη. Given a response observable R : X → R such that

E0 [R] = 0, (4.4)
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which we think of as measuring a flux in the system out of equilibrium, we define the associated
transport coefficient as the following limit, provided it is well defined:

α = lim
η→0

Eη [R]
η

. (4.5)

Rigorous assumptions under which this limit exists are given in [149]. This definition suggests
a simple and natural method to estimate these coefficients: one can compute ergodic averages
of R over trajectories of the non-equilibrium dynamics (4.1), and estimate the linear relation
between η and R for one or several values of η in the linear response regime. The finite-difference
estimator for the limit (4.5) is given by the following ergodic average:

α̂T,η = 1
ηT

∫ T

0
R(Xη

t ) dt. (4.6)

The consistency of such estimators is a consequence of the pathwise ergodicity for the pro-
cess (4.1), which in many cases can be proven using the results of [196]. The latter result also
implies the uniqueness of the steady-state. The existence of the steady-state is often obtained
by Lyapunov techniques, see for instance [280, Theorem 8.3].

Statistical properties of the estimator α̂T,η. A challenge posed by the NEMD method
is that the estimator (4.6) is plagued by large statistical errors when |η| is small, which is
often required to remain in the linear response regime, and avoid biases arising from nonlinear
terms in the response. More precisely, one can show that the asymptotic variance of the
estimator (4.6) scales as η−2 as η approaches 0. Indeed, under technical decay conditions on
the evolution semigroup generated by (4.2), one can easily show that the asymptotic variance
is given by

σ2
η = lim

T→∞
TVarη (α̂T,η) = 2

η2

∫ ∞

0
Eη[ΠηR(Xη

t )ΠηR(Xη
0 )] dt,

where Varη denotes the variance with respect to Eη, and Πη is the centering operator Πηφ =
φ− Eη[φ]. Defining the correlation time by

Θη(R) =
∫ ∞

0

Eη[ΠηR(Xη
t )ΠηR(Xη

0 )]
Eη[(ΠηR)2] dt,

we further get, using a first-order expansion in powers of η (whose validity has to be verified
on a case-by-case basis),

σ2
α,η = 2

η2 Varη(R)Θη(R) = 2
η2 Var0(R)Θ0(R) + O

(1
η

)
. (4.7)

In summary, the asymptotic variance is, at dominant order in |η|, the asymptotic variance of
the time averages of R under the equlibrium dynamics, divided by η2.

The leading order of the asymptotic variance highlights why it is often computationally
expensive to obtain accurate estimates of transport coefficients. Although the computation
of such coefficients is recognized as being a difficult problem in practice, only a handful of
research works have been proposed to alleviate this issue, including replacing the forcing F by
a so-called synthetic forcing devised to induce the same transport coefficient while the range
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of the linear response [307], or relying on carefully constructed couplings [88]. We refer the
reader to [309, Section 4] for a recent overview of current variance reduction techniques in
non-equilibrium molecular dynamics.

4.3 A stochastic Norton method

The Norton approach exploits the macroscopic duality between thermodynamic forces and
fluxes: at the macroscopic level, one can equivalently choose to measure the current induced by
a constant force, or the resistance opposed to a constant current. The microscopic translation
of this duality is the introduction of a new non-equilibrium ensemble in which the flux is held
fixed. As in the NEMD case, we define this ensemble as the invariant probability measure for
a particular stochastic process, which we refer to as the Norton dynamics.

In Section 4.3.1, we present the Norton pertubation approach for a generic reference dynamics
of the form (4.1). We then proceed in Section 4.3.2 to write the dynamics in closed form, by
making explicit the constraining force on the flux. In Section 4.3.3, we give the expression of
the Norton analogs of the transport coefficient (4.5), and discuss how their statistical properties
can be formally analyzed. We finally show in Section 4.3.4 how the Norton approach can be
extended to the cases of multiple forcings, or time-dependent flux constraints.

4.3.1 Presentation of the dynamics

At the dynamical level, the Norton ensemble is defined as the invariant probability measure of
the following stochastic differential equation: dY r

t = b(Y r
t ) dt+ σ(Y r

t ) dWt + F (Y r
t ) dΛrt ,

R(Y r
t ) = R(Y r

0 ) = r.
(4.8)

Here, the evolution of the state is given by the dynamics of Y r
t ∈ X , and r ∈ R is the magnitude

of the response flux, which is maintained constant. The stochastic dynamics therefore evolves
on the submanifold

Σr = {y ∈ X , R(y) = r} = R−1{r}

of the full state space. The dynamics (4.8) can formally still be considered as a perturbation
of the equilibrium dynamics, in the same direction as the Thévenin process (4.1), but with
a random intensity given by the stochastic process Λr

t , acting as the control by which the
constant-flux condition is enforced. Provided E0[R] = 0, we can further interpret the Norton
dynamics Y 0

t ∈ Σ0 as an equilibrium dynamics, constrained to exactly preserve the flux. The
relationship between the equilibrium ensemble in which the response fluctuates, and the Norton
equilibrium ensemble in which it is exactly fixed at zero, is reminiscent of the relationship
between the canonical and microcanonical ensembles when R is a spatial average over local
quantities.

We next proceed to show that Λr can in fact be defined as an Itô process adapted to the
natural filtration of the m-dimensional Brownian motion W . More precisely, we decompose
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the intensity of the forcing using the following ansatz:

Λrt = Λr0 +
∫ t

0
λ(Y r

s ) ds+ Λ̃rt , Λ̃rt =
∫ t

0
λ̃(Y r

s ) dWs, (4.9)

where λ, λ̃ are functions defined on X , with λ taking values in R and λ̃ in R1×m. This ansatz
is natural for constrained dynamics (see for instance [229, Chapter 3]), and will be confirmed a
posteriori (see in particular (4.11) and (4.16) in Section 4.3.2 below). The average forcing in the
Norton ensemble can then be defined as the expectation of λ under the steady-state probability
measure, neglecting the zero-mean contribution of λ̃ (see Section 4.3.3). Numerically, these
averages can be computed as ergodic averages over discretized trajectories of the Norton
dynamics, as discussed in Section 4.5.3.

4.3.2 A closed form for the forcing process

We make precise here the expressions of the function λ(Y r
t ) and the martingale Λ̃rt in (4.9),

which allows us to write the Norton dynamics without explicit reference to the forcing. We
assume that Λr is of the form (4.9), and verify a posteriori that this ansatz is valid. Applying
Itô’s formula to the constant response condition R(Y r

t ) = r yields

∇R(Y r
t ) · [b(Y r

t ) dt+ σ(Y r
t ) dWt + F (Y r

t ) dΛrt ] + 1
2∇

2R(Y r
t ) : d ⟨M r⟩t = 0, (4.10)

where ⟨M⟩t denotes the quadratic covariation process for the martingale part in the Itô
decomposition of Y r:

dM r
t = σ(Y r

t ) dWt + F (Y r
t ) λ̃(Y r

t ) dWt. (4.11)

Using the uniqueness of the Itô decomposition, we can identify the martingale increment
in (4.10) as

dΛ̃rt = −∇R(Y r
t ) · σ(Y r

t ) dWt

∇R(Y r
t ) · F (Y r

t ) , (4.12)

provided that ∇R · F ̸= 0 almost surely, which we assume here and in the sequel. Plugging
this equality in (4.11) in turn gives

M r
t =

∫ t

0

(
Id− F (Y r

s )⊗∇R(Y r
s )

F (Y r
s ) · ∇R(Y r

s )

)
σ(Y r

s ) dWs =
∫ t

0
PF,∇Rσ(Y r

s ) dWs,

so that the covariation of the martingale increment is

d ⟨M r⟩t =
[
PF,∇Rσσ

⊺P
⊺
∇F,R

]
(Y r
t ) dt. (4.13)

In the latter two expressions, we make use of the following non-orthogonal projector-valued
maps, defined for vector fields A,B such that A(x) ·B(x) ̸= 0:

PA,B(x) = A(x)⊗B(x)
A(x) ·B(x) , PA,B(x) = Id− PA,B(x). (4.14)
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y

Σr

TΣr (y)

∇R(y)

F (y)

∆y

PF,∇R(y)∆y

Figure 4.1: Action of the projector PF,∇R: the increment ∆y is projected onto the tangent
space TΣr

(y) = {z ∈ Rd | ∇R(y) · z = 0} in the direction F (y).

The action of the projector is given, for ξ ∈ Rd and x ∈ X , by

PA,B(x)(ξ) = B(x) · ξ
A(x) ·B(x)A(x).

For notational convenience, we introduce

ΠF,∇R,σ(y) =
[
PF,∇Rσσ

⊺P
⊺
F,∇R

]
(y). (4.15)

We next proceed to identifying the bounded-variation increments on both sides of (4.10). After
rearrangement and substitution of (4.13), one obtains the following expression:

λrt = λ(Y r
t ), λ = − 1

F · ∇R

(
b · ∇R+ 1

2∇
2R : ΠF,∇R,σ

)
. (4.16)

Substituting the expression for Λr
t in (4.8) yields the following expression for the Norton

dynamics:

dY r
t = PF,∇R(Y r

t ) [b(Y r
t )dt+ σ(Y r

t ) dWt]−
(
∇2R : ΠF,∇R,σ

)
(Y r
t )

2∇R(Y r
t ) · F (Y r

t ) F (Y r
t ) dt. (4.17)

It can now be checked a posteriori, using Itô’s formula, that the dynamics (4.17) is such
that R(Y r

t ) = r for all t ⩾ 0, provided the coefficients are smooth. In Figure 4.1, we illustrate
geometrically the action of the projector PF,∇R at a point y on a vector ∆y.

Without further specifying the particular choice for the reference dynamics, the response
flux observable R and non-equilibrium forcing F , it is difficult to make general comments
about the well-posedness of (4.17). Let us however emphasize that a crucial condition for the
dynamics to be well-defined is that the denominator F (Y r

t ) · ∇R(Y r
t ) in the expression of the

projector PF,∇R and in the last term of (4.17) (which represents some curvature correction)
should not vanish. Thinking of the extreme case where ∇R and F are everywhere orthogonal,
we see that this requirement translates into a controllability condition: in this case, any forcing
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in the direction F has no effect on the flux, thus there is no way to control the latter using
such a perturbation. More generally, starting from a configuration for which F · ∇R(q) = 0, it
is not possible to maintain the value of the response function using the forcing F . We therefore
assume in the sequel that the condition

∀y ∈ Σr, F (y) · ∇R(y) ̸= 0, (4.18)

is satisfied. We discuss the validity of this condition for the numerical examples we consider in
Section 4.6.

Remark 4.1. Although the dynamics derived in this section corresponds to a perturbation
on the drift of the reference dynamics, it may be of interest to extend the Norton approach to
perturbations affecting the diffusion coefficient. In the case of underdamped Langevin dynamics,
such methods would for instance allow to study the behavior of nonequilibrium temperature
profiles in constant heat flux ensembles, for the computation of thermal conductivity. We leave
this point for future work.

4.3.3 Norton analogs of the transport coefficient

We assume the well-posedness of the dynamics (4.8) (or equivalently (4.17)), and also the
existence and uniqueness of the invariant steady-state probability measure for this dynamics,
whose expectation is denoted by E∗

r . We assume that

E∗
0[λ] = 0. (4.19)

This condition is the Norton counterpart of the centering condition (4.4) for the observable
in usual NEMD simulations. When (4.19) holds, the transport coefficient for the Norton
dynamics is defined by analogy with (4.5) as

α∗
F,R = lim

r→0

r

E∗
r [λ] , (4.20)

provided the limit exists. In equation (4.20), α∗
F,R can be interpreted as the inverse of the

resistance to the non-equilibrium forcing. Note that the average forcing in the denominator
of the right-hand side of (4.20) only involves the bounded varation part of (4.9), since the
expectation of the martingale part vanishes.

Provided the Norton dynamics is ergodic with respect to the steady-state, a natural estimator
of the transport coefficient can be constructed by replacing ensemble averages by trajectory
averages, similarly to what is done in standard NEMD simulations. More precisely, the
estimator is computed using ergodic averages of λ(Y r

t ) under E∗
r , that is,

α̂∗
T,r = rT∫ T

0
λ(Y r

t ) dt
. (4.21)

The statistical properties of this estimator can be analyzed similarly to what is done for the
estimator (4.6), leading to a result similar to (4.7). Assuming that a central limit theorem
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holds, and that F , R are such that E∗
0[λ] = 0, we can formally write the asymptotic variance

associated with the estimator (4.21) as

σ2,∗
α,r = lim

T→∞
TVar∗

r(α̂∗
T,r) = r4

E∗
r [λ]4 lim

T→∞
TVar∗

r

(
1
α̂∗
T,r

)

= r4

E∗
r [λ]4

2
r2 Var∗

r(λ)Θ∗
r(λ),

(4.22)

where Var∗
r denotes the variance with respect to E∗

r , and the Norton correlation time is defined
similarly to the NEMD case by

Θ∗
r(λ) =

∫ ∞

0

E∗
r [Π∗

rλ(Y r
t )Π∗

rλ(Y r
0 )]

E∗
r [(Π∗

rλ)2]
dt,

where Π∗
r is the centering operator with respect to E∗

r. The second equality in (4.22) follows
from the Delta method [327, Chapter 3] applied to the reciprocal of α̂∗

T,r. Using the first-order
expansion given by (4.20), and assumptions similar to the ones leading to (4.7), we may further
write, for |r| small:

σ2,∗
α,r =

2
(
α∗
F,R

)4

r2 Var∗
r(λ)Θ∗

r(λ) + O
(1
r

)

=
2
(
α∗
F,R

)4

r2 Var∗
0(λ)Θ∗

0(λ) + O
(1
r

)
,

As in the NEMD setting, one has to verify the validity of each of the expansion in powers
of |r| for each of the quantities considered. However, whereas in the NEMD setting this may
be done in some cases by using a perturbative expansion of the non-equilibrium measure
in powers of η (as done in [307], for instance), there is in the Norton setting an additional
technical difficulty in that the invariant measure for the Norton dynamics (4.8) is supported on
the (d−1)-dimensional manifold Σr, which is disjoint from the Norton equilibrium manifold Σ0,
and also of zero Lebesgue measure, so that it is both singular with respect to the invariant
measure of the Norton equilibrium dynamics and to that of the reference dynamics (4.1). A
dedicated analysis has therefore to be performed to justify these approximations, and rigorously
establish the validity of (non-)linear response formulas.

4.3.4 Two straightforward generalizations

For ease of presentation, we restricted ourselves in Sections 4.3.1 to 4.3.3 to the case where
only one flux is fixed. However, the derivation of Norton dynamics can be straightforwardly
extended to the case where several fluxes are simultaneously constrained. In fact, one can
even consider situations where the response depends on time. These two generalizations can
of course be combined.

Multiple constraints. We consider in this paragraph the case where c ⩾ 1 forces F1, . . . , Fc

act on the reference system with magnitudes Λr
1,t, . . . ,Λr

c,t, chosen to maintain constant the
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value of c fluxes R1, . . . , Rc. The dynamics is given by
dY r

t = b(Y r
t ) dt+ σ(Y r

t ) dWt +
c∑
i=1

Fi(Y r
t ) dΛr

i ,

Ri(Y r
t ) = ri, 1 ⩽ i ⩽ c,

where ri gives the prescribed value of the corresponding flux Ri. By defining the following
maps defined on X

R =


R1
...
Rc

 ∈ Rc, F =


| |
F1 . . . Fc

| |

 ∈ Rd×c,

as well as the following vectors,

Λr
t =


Λr

1,t
...

Λr
c,t

 ∈ Rc, r =


r1
...
rc

 ∈ Rc,

the Norton dynamics can be written similarly to (4.8), upon replacing r by r: dY r
t = b(Y r

t ) dt+ σ(Y r
t ) dWt + F (Y r

t ) dΛr
t ,

R(Y r
t ) = R(Y r

0 ) = r.
(4.23)

Computations identical to the ones leading to (4.17) may be performed. As these are verbatim
the same, we simply state the result and refer the reader to Appendix 4.A for the complete
derivation. The dynamics (4.23) can be written in closed form, using non-orthogonal projectors,
as

dY r
t = PF,∇R(Y r

t ) [b(Y r
t ) dt+ σ(Y r

t ) dWt]

− F (Y r
t )

2 (∇R(Y r
t )⊺F (Y r

t ))−1
(
∇2R(Y r

t )⊺ : ΠF,∇R,σ(Y r
t )
)
,

(4.24)

where ∇R : X → Rd×c and ∇2R : X → Rd×d×c are respectively the Jacobian and Hessian
matrices of the fluxes. Here, we define the contraction product by

∀ (A,B) ∈ Rd×d×c × Rd×d, A : B =

 d∑
j,k=1

AkjiBkj


1⩽i⩽c

∈ Rc,

the projector PF,∇R is given, for A,B ∈ Rd×c, by

PA,B = A(B⊺A)−1B⊺, PA,B = Id−PA,B,

and ΠF,∇R,σ is defined similarly to (4.15) by

ΠF,∇R,σ = PF,∇Rσσ
⊺P

⊺
F,∇R.
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Note that the invariant measure is supported on a codimension c submanifold Σr, and that
the controllability condition becomes

∀y ∈ Σr, det(∇R(y)⊺F (y)) ̸= 0.

The average value of the forcing can be written as the ergodic average of the following
vector-valued observable, which is the analog of (4.16):

λ = −(∇R⊺F )−1
[
∇R⊺b+ 1

2
(
∇2R⊺ : ΠF,∇R,σ

)]
=


λ1
...
λc

 .

Dynamics such as (4.23) should in particular allow for the numerical computation of Onsager
coefficients in the Norton ensemble. By Onsager matrix, we mean the collection of coefficients

αij = lim
ηj→0

Eη,j [Ri]
ηj

, 1 ⩽ i, j ⩽ c,

where η = (ηj)1⩽j⩽c and Eη,j denotes the expectation with respect to the steady-state of the
nonequilibrium dynamics (4.1) with Fj taken as the nonequilibrium forcing of magnitude ηj .
Using estimators of the form (4.6), each column of the matrix α may be estimated from a
single nonequilibrium trajectory. For the same dynamics perturbed in the direction Fη, the
average of the vector-valued response R is given asymptotically by αη as ∥η∥ → 0.

For Norton dynamics in this context, using a trajectory of the dynamics (4.23) and estimators
of the form (4.21), one can estimate a full row of the matrix

βij = lim
ri→0

E∗
r,i[λj ]
r

, 1 ⩽ i, j ⩽ c,

where E∗
r,i denotes expectation with respect to the steady-state of the dynamics (4.23) in which

we take r to be the vector whose components are 0 except the i-th one, which is equal to r.
For general r, we expect that the average of the forcing λ is given asymptotically by βr, as
∥r∥ → 0. This suggests that β is the Norton analog to the inverse of the Onsager matrix α−1,
generalizing the definition (4.20).

Time-dependent fluxes. One can also extend the dynamics to the case where we replace
the condition R(Y r

t ) = r by R(Y R
t ) = Rt, when Rt is the Itô process defined by

Rt = R(Y R
0 ) +

∫ t

0
r̄s ds+

∫ t

0
r̃s dBs,

with B a one-dimensional Brownian motion independent of W , and r̄, r̃ stochastic processes
adapted to the natural filtration of B. These dynamics in particular cover the deterministic
case r̃t = 0, so that one can for instance consider time-periodic fluxes

r̄t = sin(2πωt), r̃t = 0,
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or a stochastic process Rr whose ergodic properties are well-understood, such as an Ornstein–
Uhlenbeck process centered at r:

dRrt = γ(r −Rrt ) dt+ s dBt.

One expects the resulting steady-state to be non-singular with respect to the invariant measure
of the reference dynamics (4.1), which may be of some use from a theoretical perspective. The
analog of (4.8) is given by dY R

t = b(Y R
t ) dt+ σ(Y R

t ) dWt + F (Y R
t ) dΛR

t ,

R(Y R
t ) = R(Y R

0 ) = Rrt .

Following the same strategy as in the constant response case, one can express the dynamics
in closed form as

dY r
t = PF,∇R(Y R

t )
[
b(Y R

t ) dt+ σ(Y R
t ) dWt

]
+ r̄t dt+ r̃t dBt
∇R(Y R

t ) · F (Y R
t )

F (Y R
t )

− 1
2∇R(Y R

t ) · F (Y R
t )

(
∇2R :

[
F ⊗ F

(∇R · F )2 r̃
2
t + ΠF,∇R,σ

])
(Y R
t )F (Y R

t ) dt, (4.25)

and the bounded-variation contribution to the forcing as

λR
t =

[ 1
∇R · F

(
r̄t − b · ∇R−

1
2∇

2R :
[

F ⊗ F
(∇R · F )2 r̃

2
t + ΠF,∇R,σ

])]
(Y R
t ),

which is still an Itô process adapted to the larger filtration (σ(Bs,Ws : 0 ⩽ s ⩽ t))t⩾0 . We
refer to the Appendix 4.B for details of the computations.

4.4 Mobility and shear viscosity computations for Langevin
dynamics

So far, we have made very few assumptions about the type of reference dynamics, driving
force or flux. We now turn to presenting a framework in which the computation of physically
meaningful transport coefficients may be performed, namely that of non-equilibrium (kinetic
or underdamped) Langevin dynamics. We first recall the NEMD method for underdamped
Langevin dynamics in Section 4.4.1, before specifying the expressions of the non-equilibrium
forcings and response observables relevant for mobility and shear viscosity computations in
Section 4.4.2. We finally derive the corresponding Norton dynamics in Section 4.4.3, and
interpret it in terms of a principle of least constraint.

4.4.1 Standard non-equilibrium Langevin dynamics

The non-equilibrium framework we consider is that of a perturbation of the Langevin dynamics
by an external driving force F . The state of the system is described by a vector q ∈ D,
describing the position of atoms, and a vector of corresponding momenta p ∈ RdN , where d
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is the physical dimension and N is the number of atoms. The configurational domain D is
usually considered to be RdN or (LT)dN for some box length L > 0. The evolution of the
system is governed by the Hamiltonian

H(q, p) = V (q) + 1
2p ·M

−1p,

where V : D → R is the potential energy function. In practice, V is determined empirically
to give an approximation of the ground-state energy for the Schrödinger Hamiltonian corre-
sponding to the Born–Oppenheimer description of the system. The dynamics is given by the
following stochastic differential equation:dqt = M−1pt dt,

dpt = [−∇V (qt) + ηF (qt)] dt− γM−1pt dt+ σ dWt.
(4.26)

The parameter β > 0 is proportional to the inverse temperature, M is a positive-definite
symmetric mass matrix (typically a diagonal matrix), and γ and σ are two dN × dN matrices
satisfying the fluctuation-dissipation relation

σσ⊺ = 2γ
β
.

The friction coefficient γ is thus a symmetric positive semi-definite matrix, and W is a
standard dN -dimensional Brownian motion. Typically, γ is taken to be either a constant or
a positive diagonal matrix, so that one simply writes σ =

√
2γ/β. The parameter η once

again governs the magnitude of the non-equilibrium perturbation. One can show that at
equilibrium (η = 0), the Boltzmann–Gibbs distribution

µ(q, p) dq dp = Z−1e−βH(q,p) dq dp (4.27)

is an invariant probability measure for (4.26). In view of the separability of the Hamiltonian
into a configurational and a kinetic part, the Boltzmann–Gibbs measure can be written in
tensor form, as the product of a configurational measure

m(q) dq = 1
Zm

e−βV (q) dq,

and of a Gaussian kinetic measure

κ(p) dp = det
(2πM

β

)−1/2
e− β

2 p·M−1p dp.

Momenta and positions are thus uncorrelated at equilibrium. Since the perturbation is generally
non-gradient, there is however no way to write out the expression of the invariant probability
measure of the non-equilibrium dynamics (η ̸= 0). Momenta and positions typically have a
correlation of order η under this measure.
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4.4.2 Non-equilibrium forcings and fluxes

In this work, we consider transport coefficients corresponding to fluxes which can be written
under the form

R(q, p) = G(q) · p, (4.28)

where G : D → RdN is a vector field. Such forms of the response can be understood as
measuring correlations between the momenta and some possibly non-linear feature of the
configurational coordinates. In particular, such responses have zero-mean at equilibrium, owing
to the tensor form of the Boltzmann–Gibbs measure and the fact that the average momentum
under κ vanishes. The form (4.28) is general enough to capture the cases of mobility and shear
viscosity computations for molecular fluids, which we now proceed to present, and which are
our numerical test cases.

Mobility computations. We first describe the NEMD method for the computation of
diffusion properties. Here, we consider a periodic domain D = (LT)d. The NEMD method is
obtained by taking F as a constant vector field in (4.26), and the velocity in the direction F

as the response, which measures the particle flux in the direction F . We assume that F is
normalized as ∥F∥ = 1. Thus the perturbation and response observable are defined respectively
by

F (q) = F ∈ R3N , R(q) = F ·M−1p. (4.29)

Using the symmetry of M , one may rewrite R(q, p) under the form (4.28). For practical
computations, we consider two cases:

◦ Single drift: this corresponds to a perturbation where the force acts on a single component
of the momentum, which can be assumed (by indistinguishability of the particles) to be
the x component of the first particle:

FS = (1, 0, . . . )⊺ ∈ RdN . (4.30)

◦ Color drift (see [119, Chapter 6]): this corresponds to a perturbation in which the force
acts on half of the particles in one direction, and on half of the particles in the opposite
direction, which we choose by convention to be the x direction:

FC = 1√
N

(1, 0, . . . , 0︸ ︷︷ ︸
∈Rd

,−1, 0, . . . , 1, 0 . . . )⊺ ∈ RdN . (4.31)

The corresponding transport coefficients are related to the diffusion properties of the molecular
system. More precisely, the transport coefficient αFS for the single drift forcing can be related
to the diffusion coefficient

D = lim
T→∞

1
2dNT

dN∑
i=1

E0

(∫ T

0
M−1ps,i ds

)2


for an isotropic system via
αFS = βD,
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as shown in [285]. When the potential energy function satisfies

N∑
i=1

∂

∂qi,x
V (q) = 0, (4.32)

a condition satisfied for instance for pairwise interactions depending only on the relative
distances (as for (4.55) below), then the transport coefficient αFC for the color drift is related
to αFS through

αFC = αFS −
2⌊N/2⌋
N(N − 1)

(1
γ
− αFS

)
. (4.33)

See Appendix 4.C for the proof of this relation. In particular αFC coincides with αFS in the
thermodynamic limit N →∞.

The interest of considering these two drift perturbations is to assess whether the Norton
method requires the forcing to act on the bulk of the sytem (color drift case) to be consistent
with the NEMD method. The other extreme is that of a forcing acting on a single particle
(single drift case).

Shear viscosity computations. The Norton framework described in this section also allows
for the computation of the shear viscosity; see [320] for a review of various approaches to
compute this transport coefficient. Instead of considering bulk forcings which require modifying
the periodic boundary conditions (as studied in [103] for instance), we consider the method
introduced in [141], for which the non-gradient force is periodic. The mathematical properties
of this approach in the case of Langevin dynamics are studied in [190]. In this setting, we
consider an anisotropic three-dimensional configurational domain of the form

D = (LxT× LyT× LzT)N .

We further allow for an anisotropic friction coefficient γ which is diagonal and defined by
three directional friction coefficients γx, γy, γz > 0. A forcing is applied on the momenta in
the longitudinal direction x, with an intensity depending on the transverse configurational
coordinate y, according to a predefined forcing profile f : LyT → R:

∀ 1 ⩽ j ⩽ N, F (q)j,x = f(qj,y), F (q)j,y = F (q)j,z = 0.

In the non-equilibrium steady-state, the system displays an average longitudinal velocity
profile depending only the transverse coordinate and the magnitude of the non-equilibrium
perturbation. More precisely, given an approximation of the identity (ψε)ε>0 on LyT, define

ux(y) = lim
ε→0

lim
η→0

Ly
ηN

Eη

 N∑
j=1

(
M−1p

)
j,x
ψε(qj,y − y)

 . (4.34)



246 4.4. Mobility and shear viscosity computations for Langevin dynamics

The term Ly in the numerator is motivated by the fact that the average with respect to the y
coordinate of the term inside the limits is the velocity, up to a factor 1/η:

1
Ly

∫
LyT

 Ly
ηN

Eη

 N∑
j=1

(
M−1p

)
j,x
ψε(qj,y − y)

 dy = 1
ηN

N∑
j=1

Eη
[(
M−1p

)
j,x

]

= 1
η
Eη
[(
M−1p

)
1,x

]
,

using the indistinguishability of the particles to obtain the last equality. Thus ux corresponds to
a localized linear response of the longitudinal velocity, which can be estimated in practice from
trajectory averages using a binning procedure. One can then derive the following differential
equation relating ux to the shear viscosity ν:

−νu′′
x(y) + γxρux(y) = ρf(y),

where ρ = N/(LxLyLz) is the particle density of the system. Since this profile is periodic in
the transverse coordinate, the shear viscosity can be related to the Fourier coefficients of ux
and f , namely

U1 = 1
Ly

∫ Ly

0
ux(y) e

2iπy
Ly dy, F1 = 1

Ly

∫ Ly

0
f(y) e

2iπy
Ly dy,

through

ν = ρ

(
F1
U1
− γx

)(
Ly
2π

)2
.

For practical purposes, we choose f such that F1 is analytically known, which is for instance
the case if f is a sinusoidal profile. Taking the limit ε→ 0, in (4.34), the Fourier coefficient U1

can be rewritten as

U1 = lim
η→0

1
ηN

Eη

 N∑
j=1

(
M−1p

)
j,x

exp
(

2iπqj,y
Ly

) .
This expression is precisely the linear response (4.5) for the following response observable,
which is an empirical Fourier coefficient for the longitudinal velocity profile:

R(q, p) = 1
N

N∑
j=1

(
M−1p

)
j,x

exp
(

2iπqj,y
Ly

)
. (4.35)

This response is also of the form (4.28). One can in turn estimate it using trajectory averages,
as in (4.6), yielding the estimator

Û1,η,T = 1
ηTN

N∑
j=1

∫ T

0

(
M−1pt

)
j,x

exp
(

2iπqj,y,t
Ly

)
dt. (4.36)
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4.4.3 The Norton method for Langevin dynamics

We write more explicitly in this section the Norton dynamics for observables of the form (4.28).
The general dynamics (4.8) greatly simplifies in this situation, and also admits a nice physical
interpretation.

Closed form of the dynamics. Note first that ∇2
pR(q, p) = 0 when R is of the form (4.28),

which together with the fact that the noise is degenerate (it acts only on the momenta in (4.26))
implies that the quadratic covariation term in (4.17) vanishes. The forcing F , too, acts only
on the momenta, so that computing the projectors (4.14) for the choices

A(q, p) =
(

0
F (q)

)
, B(q, p) = ∇R(q, p) =

(
∇G(q)p
G(q)

)
,

yields the following expression for the projector associated with the Norton dynamics:

I2dN −
A⊗B
A ·B

(q, p) =

 IdN 0

−F (q)⊗∇G(q)p
F (q) ·G(q) IdN −

F (q)⊗G(q)
F (q) ·G(q)

 .
Since

IdN −
F (q)⊗G(q)
F (q) ·G(q) = PF,G(q),

where we slightly abuse the notation (4.14), it follows that the Norton dynamics (4.17) is given
by 

dqt = M−1pt dt,

dpt = PF,G(qt)
(
−∇V (qt) dt− γM−1pt dt+

√
2γ
β

dWt

)

− ∇G(qt)pt ·M−1pt
F (qt) ·G(qt)

F (qt) dt.

(4.37)

Note that the configurational part of the dynamics is unaffected, which is consistent with
the choice of a non-equilibrium perturbation acting solely on the momenta. The forcing
observable (4.16) is given by

λ(q, p) = G(q) · (∇V (q) + γM−1p)−∇G(q)p ·M−1p

F (q) ·G(q) , (4.38)

and the controllability condition is given by

(G · F )(q) ̸= 0. (4.39)

Remark 4.2. We have restricted ourselves to a simple Langevin dynamics where the drift
term is the sum of a gradient force and a linear friction term, and the noise is additive. The
derivation can however be extended verbatim to a more general dynamics of the formdqt = M−1pt dt,

dpt = b(qt, pt) dt+ σ(qt, pt) dWt,
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for general drift terms b and diffusion matrices σ. For these kinetic dynamics, the associated
Norton dynamics is given by

dqt = M−1pt dt,

dpt = PF,G(qt) [b(qt, pt) dt+ σ(qt, pt) dWt]−
∇G(qt)pt ·M−1pt
F (qt) ·G(qt)

F (qt) dt.

Physical interpretation. In the particular case of Langevin dynamics, the Norton method
has the physical interpretation that it obeys a version of Gauss’s principle of least constraint.
The connection between Gauss’s principle and non-equilibrium thermodynamics was already
pointed out in [117], see also the discussion in [119, Section 5.2]. The principle of least
constraints is a statement of classical dynamics equivalent to D’Alembert’s principle, stating
that the force applied to a system subject to a set of holonomic or non-holonomic constraints
minimizes at every point in time the Euclidean distance to the force of the same system free
from any constraints. Although we describe this interpretation in a deterministic setting, we
stress that it remains valid, at least on a formal level, upon considering a stochastic version of
the dynamics. More precisely, we assume that the dynamics for the unconstrained system can
be written under the form q̇ = M−1p,

ṗ = fref(q, p),
(4.40)

and that the constraint is of the form R(q) = r (holonomic case) or R(q, p) = r (non-holonomic
case). We can then write the dynamics of the constrained system asq̇ = M−1p,

ṗ = fcons(q, p),

where fcons(q, p) is the force on the constrained system obeying Gauss’s principle, which
dictates that fcons(q, p) is the orthogonal projection of fref(q) onto the affine hyperplane Hq,p of
admissible forces. This hyperplane can be determined by differentiating the constraint in time
and setting it to zero. To obtain a constraint on the time derivative of the momenta ṗ, this
differentiation has to be performed once in the non-holonomic case and twice in the holonomic
case. A simple computation shows that the hyperplane of admissible forces is thus given in
the holonomic case by

Hq,p =
{
ξ ∈ RdN

∣∣∣∣ ξ ·M−1∇R(q) +
(
M−1p

)⊗2
: ∇2R(q) = 0

}
,

and in the non-holonomic case by

Hq,p =
{
ξ ∈ RdN

∣∣∣ ξ · ∇pR(q, p) +
(
M−1p

)
· ∇qR(q, p) = 0

}
. (4.41)

In particular, fcons(q, p) − fref(q, p) is proportional to ∇pR(q, p) in the non-holonomic case,
and to M−1∇R(q) in the holonomic case. The use of holonomic constraints is widespread
in MD, where they are used to simulate systems with molecular constraints (such as fixed
bond lengths or bond angles). See [220, Chapter 4] for a general introduction, and [230] for a
detailed study of the underdamped Langevin case.
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The Norton dynamics (4.37) for a response function R of the form (4.28) also satisfies a
version of Gauss’s principle of least constraint with respect to a non-Euclidean metric for
which F (q) is everywhere orthogonal, in the sense of this metric, to G(q)⊥, the Euclidean
orthogonal to G(q). More precisely, this metric is induced by the configuration-dependent
norm

∥ξ∥2q = (ξ · F (q))2 +
∥∥∥∥ξ − ξ ·G(q)

∥G(q)∥2G(q)
∥∥∥∥2
,

where ∥ · ∥ denotes the usual Euclidean norm. This metric is defined and non-degenerate if F
and G are both non-zero, which is implied by the controllability condition (4.18). As we show
below, the force on the constrained system is, in this metric, obtained as

argmin
ξ∈Hq,p

∥ξ − fref(q, p)∥q = PF,G(q)fref(q, p)−
∇G(q)p ·M−1p

F (q) ·G(q) F (q), (4.42)

where Hq,p is the hyperplane defined in (4.41) associated with the non-holonomic con-
straint R(q, p) = G(q) · p = r. This is precisely the Norton force corresponding to the
unconstrained system (4.40).

To prove (4.42), we proceed as follows. Note first that Hq,p in (4.41) is an affine translate
of ∇pR(q, p)⊥ = G(q)⊥, the Euclidean orthogonal to G(q), so that its normal direction with
respect to the scalar product induced by ∥ · ∥q is F (q). Furthermore, the norm ∥ · ∥q is
constructed precisely so that the projector PF,G(q), whose action is depicted in Figure 4.1, is
an orthogonal projector onto G(q)⊥, for the scalar product associated with ∥ · ∥q. This implies
that the minimizer in (4.42) is of the form

ξ∗(q, p) = fref(q, p)− αF (q) ∈ Hq,p.

The value of α is determined by the condition

(fref(q, p)− αF (q)) ·G(q) +∇G(q)p ·M−1p = 0,

hence
α = fref(q) ·G(q) +∇G(q)p ·M−1p

F (q) ·G(q) ,

and finally

ξ∗(q, p) = fref(q)− αF (q) = PF,G(q)fref(q)−
∇G(q)p ·M−1p

F (q) ·G(q) F (q).

Loosely speaking, the Norton dynamics is the least non-equilibrium like of all dynamics on
the constant response manifold, if one measures similarity in terms of the force considered in
the ∥ · ∥q metric.

4.5 Numerical discretizations of Norton dynamics

We describe in this section a discretization of the Norton dynamics, first for the general
dynamics (4.8) in Section 4.5.1, before specializing it to the setting of Langevin dynamics. The
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numerical schemes are based for Langevin dynamics on splitting schemes, inspired by the ones
typically used in the NEMD setting, but have the additional property of exactly preserving the
flux throughout the numerical trajectory. For completeness, we describe splitting schemes in
the case of standard NEMD Langevin dynamics in Section 4.5.2, and then in the Norton setting
in Section 4.5.3. We finally describe in Section 4.5.4 a way to estimate the bounded variation
part of the forcing (4.16) from the numerical trajectories, in order to approximate (4.21).

4.5.1 Numerical schemes for general Norton dynamics

We discuss here the simulation of the Norton dynamics (4.8), which requires a discretization in
time. Formally, given a time step ∆t > 0, a numerical scheme for the equilibrium dynamics (4.1)
is defined by a map Φ∆t : X × Rm → X which, iterated with independent and identically
distributed (i.i.d.) standard m-dimensional Gaussian variables (Gn)n⩾0 yields a discretization
of the dynamics:

Xn+1 = Φ∆t(Xn,Gn),

i.e. Xn is an approximation of Xn∆t. For example, the Euler–Maruyama scheme for the
Thévenin dynamics (4.1) corresponds to

ΦEM
∆t (x, g) = x+ ∆t [b(x) + ηF (x)] +

√
∆t σ(x)g.

In principle, it would be possible to consider discretizations directly based on the autonomous
form of the Norton dynamics (4.17), and average the forcing observable λ along the so-obtained
numerical trajectories. However, a key property we require from a numerical scheme is
that the constant flux manifold should be preserved under the discrete dynamics. Standard
discretizations of (4.17) usually do not satisfy such preservation properties. Moreover, since
the autonomous form of the dynamics involves second-order derivatives of the response, which
may be cumbersome or expensive to compute, it is typically more convenient numerically to
take another approach, obtained by enforcing the constraint via a Lagrange multiplier. Given a
stochastic scheme Φ∆t for the reference dynamics, we can consider the following discretization
of the Norton dynamics: 

X̃n+1 = Φ∆t(Xn, Gn),
Xn+1 = X̃n+1 + ∆tΛn,∗F (Xn),

R(Xn+1) = r.

(4.43)

Note that we chose here, somewhat arbitrarily, to perform the projection with respect to F (Xn).
Other possible choices include F (X̃n+1) or F (Xn+1), the latter choice generally yielding an
implicit scheme. In any case, finding Λn,∗ requires solving

R
(
X̃n+1 + ∆tΛn,∗F (Xn)

)
= r,

which is typically a non-linear equation, for which the appropriate numerical strategy depends
on the situation at hand. A typical choice is to resort to Newton’s method or a fixed-point
iteration, as done when enforcing holonomic constraints in MD (see [148, Section VII.1]
and [222, Chapter 7]), as well as [293, 10] for pioneering works motivated by applications in
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MD.

Note that Λn,∗ approximates the full forcing increment Λ(n+1)∆t − Λn∆t, and in particular
incorporates the martingale increment. This martingale part should be removed when estimat-
ing E∗

r[λ] in order to reduce the variance of the estimator under consideration. This can be
done at first order in

√
∆t by using a control variate derived from its analytic expression (4.12),

and the following equality in law:
√

∆t Gn law= W(n+1)∆t −Wn∆t. This leads to the following
estimator of λ∆t:

Λn = Λn,∗ +
√

∆t∇R(Xn) · σ(Xn)Gn

∇R(Xn) · F (Xn) . (4.44)

The efficiency of such variance reduction methods has already been demonstrated for the
estimation of mean Lagrange multipliers associated with holonomic constraints, for example
in the context of free energy computations (see [83] and [229, Remark 3.33]). An estimation of
the ensemble average E∗

r [λ] can be obtained by considering trajectory averages

λ̂Niter = 1
Niter

Niter∑
n=1

λn, λn = 1
∆tΛ

n.

As hinted at above, this strategy has the clear advantage that one does not have to com-
pute λ(Xn) along the trajectory (which may be tedious to implement in practice), since
consistent approximations thereof appear as natural byproducts of the integration procedure.

4.5.2 Splitting schemes for (non-)equilibrium Langevin dynamics

In the particular case where the reference dynamics is the Langevin dynamics (4.26), one can
resort to a class of discretization strategies based on operator splittings of the infinitesimal
generator, which we briefly recall for completeness in this section (see [219, 221], and [220,
Chapter 7] for more details). By carefully choosing the order of the operators appearing in
this splitting in the equilibrium setting, one can devise highly stable numerical schemes, which
have a lower bias when sampling configurational averages in the overdamped limit γ → ∞
compared with other choices of the splitting order (see [219]), while also showing desirable
energy-conservation properties in the Hamiltonian limit γ → 0. Such schemes have become
the standard choice to integrate kinetic Langevin dynamics in MD applications. The general
procedure is as follows.

The generator of the (non-)equilibrium Langevin dynamics can be written as the sum of
four terms,

Lη = LA + LB + γLO + ηL̃,

with 

LA = M−1p · ∇q,
LB = −∇V · ∇p,

LO = −M−1p · ∇p + 1
β

∆p,

L̃ = F · ∇p.

The operators LA, LB + ηL̃ and γLO can be viewed as infinitesimal generators in their own
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right, which correspond respectively to the three following elementary dynamics. The dynamics
generated by LA is given by dqt = M−1pt dt,

dpt = 0,
(4.45)

while LB + ηL̃ gives rise to dqt = 0,
dpt = (−∇V (qt) + ηF (qt)) dt.

(4.46)

Finally, LO generates the following Ornstein–Uhlenbeck process on the momenta:
dqt = 0,

dpt = −γM−1pt dt+
√

2γ
β

dWt.
(4.47)

The three elementary dynamics (4.45), (4.46), (4.47) are analytically integrable. Split-
ting schemes for the Thévenin dynamics are obtained by composing the evolution opera-
tors e∆tLA , e∆t

(
LB+ηL̃

)
and e∆tLO corresponding to each of these elementary dynamics. For

instance, the evolution operator for the celebrated BAOAB method corresponds to

e
∆t
2

(
LB+ηL̃

)
e

∆t
2 LAe∆tγLOe

∆t
2 LAe

∆t
2

(
LB+ηL̃

)
.

These schemes can be formally justified, and rigorously analyzed with the Baker–Campbell–
Hausdorff formula, yielding error estimates à la Talay–Tubaro on the invariant measure in
the linear response regime where |η| is small, as well as on estimators of transport coefficients,
see [221].

4.5.3 Splitting schemes for Langevin–Norton dynamics

For the Langevin dynamics (4.37) in the Norton setting, a strategy similar to the one in
Section 4.5.2 can be used. The generator of the Norton dynamics can be split as the sum of
three operators, each of which is the generator of an elementary dynamics, still denoted by A, B
and O. In fact, these are the Norton counterparts of the elementary dynamics (4.45), (4.46)
and (4.47), which therefore preserve the flux by construction. This splitting strategy is
still motivated by the fact that each elementary dynamics individually preserves the flux
observable (4.28). However, in contrast to the NEMD case, the flow of the A-dynamics is
generally not known in analytical form, and one has to resort to a numerical scheme to
approximate it.

In order to make the numerical scheme precise, the first step is to split the generator as

L = LA + LB + γLO, (4.48)
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with 
LA = M−1p · ∇q −

(∇G) p ·M−1p

F ·G
F · ∇p,

LB = −PF,G∇V · ∇p,

LO = −PF,GM−1p · ∇p + 1
β
PF,GP

⊺
F,G : ∇2

p.

This decomposition is motivated by the flux conservation properties LBR = LOR = 0, which
immediately imply that LAR = 0, since the overall dynamics with generator L conserves the
non-equilibrium response by construction.

Decomposition into elementary dynamics. Analogously to the NEMD case, we interpret
the various operators on the right-hand side of (4.48) as the generators of elementary dynamics,
and use the same terminology as in Section 4.5.2. In fact, these elementary dynamics are
precisely the Norton counterparts (4.17) to each of the NEMD elementary dynamics, so that
they indeed individually preserve the response. They read

A dynamics:


dqt = M−1pt dt,

dpt = −∇G(qt)pt ·M−1pt
F (qt) ·G(qt)

F (qt) dt.

B dynamics:

dqt = 0,
dpt = −PF,G(qt)∇V (qt) dt.

O dynamics:


dqt = 0,

dpt = PF,G(qt)
(
−γM−1pt dt+

√
2γ
β

dWt

)
.

(4.49)

Note that, in contrast to the NEMD setting, the A-dynamics is not analytically solvable, so
that one has to resort to a numerical approximation similar to those discussed in Section 4.5.1
to integrate it (see Section 4.5.4). However, the Norton counterparts of the B and O dynamics
remain analytically integrable, as we discuss below.

Analytic integration of the B and O dynamics. The B-dynamics is a time-linear
evolution in the momenta, whose solution is given by

(qt, pt) =
(
q0, p0 − tPF,G∇V (q0)

)
=
(
q0, PF,G(q0)p0 + PF,G(q0) [p0 − t∇V (q0)]

)
.

In view of the equality G(q) · p = G(q) · PF,G(q)p, and since PF,G is a projector onto G⊥, it is
immediate that the B-dynamics preserves the response flux. One could also simply notice that
it is the Norton counterpart to the NEMD B-dynamics (4.46).

The O-dynamics is a projected Ornstein–Uhlenbeck process. To analytically integrate this
dynamics, we assume that PF,G and γM−1 commute. If this is not the case, the analytical
integration below should be replaced by an appropriate numerical scheme, such as a midpoint
rule. Using standard arguments of Itô calculus, and the fact that PF,G is a projector, it is
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straightforward to check that the solution is given for all t ⩾ 0 by qt = q0 and

pt = PF,G(q0)p0 + PF,G(q0)
(

e−tγM−1
p0 +

∫ t

0
e−γM−1(t−s)

√
2γ
β

dWs

)
.

This is a Gaussian process, which has the following alternative representation in distribution:

pt = PF,G(q0)p0 + PF,G(q0)

e−tγM−1
p0 +

√
1− e−2tγM−1

β
MG

 ,
where G is a standard dN -dimensional Gaussian. By the same arguments as for the B-dynamics,
the Norton O-dynamics preserves the response flux, and is likewise the Norton counterpart to
the NEMD O-dynamics (4.47).

4.5.4 Estimation of the average forcing

By composing the evolution operators of elementary Norton dynamics, one obtains a natural
splitting approximation of the evolution operator for the forcing process of the full Norton
dynamics. The numerical translation of this observation is that one can estimate trajectory
averages of λ directly from examining individual integration steps of the splitting scheme. We
describe in this section the general procedure to this end.

For a fixed time step ∆t > 0 and response magnitude r ∈ R, we define three discrete flows
acting on the augmented state (q, p, ℓ) ∈ D × RdN × R. The role of the auxiliary variable ℓ
is to accumulate the bounded-variation component of Lagrange multipliers enforcing the
constant-flux constraint during the integration step. It is thus initialized at 0 at the start of
each integration step, accumulating the contributions of each part of the splitting.

Discrete integration of the A dynamics. The discrete flow associated with the A-step is
given by

ΦA
∆t,r (q, p, ℓ) =

(
q + ∆tM−1p, p+ ξA

∆t,r(q, p)F
(
q + ∆tM−1p

)
, ℓ+ ξA

∆t,r(q, p)
)
,

where ξA
∆t,r(q, p) is the Lagrange multiplier characterized by the constant-flux condition

R
(
ΦA

∆t,r(q, p, ℓ)
)

= r,

with some abuse of notation in the arguments of R. When the response is of the form R(q, p) =
G(q) · p, we can explicitly solve for the Lagrange multiplier, as

ξA
∆t,r(q, p) = r −G

(
q + ∆tM−1p

)
· p

F (q + ∆tM−1p) ·G (q + ∆tM−1p) . (4.50)

The Norton A-step is therefore equivalent to first evolving the system’s coordinate variables
according to the corresponding NEMD A-step before correcting the momenta, by applying a
constraining force in the direction of F (q + ∆tM−1p), the forcing evaluated at the updated
position. As mentioned after (4.43), there is some freedom in the choice of point at which to
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evaluate the forcing when projecting onto the submanifold Σr = R−1{r}. The motivation for
choosing F (q + ∆tM−1p) is that the two functions appearing in the scalar product F ·G in
the denominator of the left-hand side of (4.50) are evaluated at the same point.

Discrete integration of the B dynamics. The discrete flow associated with the Norton B-
step is given by

ΦB
∆t,r(q, p, ℓ) =

(
q, p−∆t∇V (q) + ξB

∆t,r(q, p)F (q), ℓ+ ξB
∆t,r(q, p)

)
,

where ξB
∆t,r is again a Lagrange multiplier enforcing the constraint, given for a response G(q) ·p

by
ξB

∆t,r(q, p) = r −G (q) · (p−∆t∇V (q))
F (q) ·G (q) .

This again corresponds to a step of the NEMD B-dynamics, re-projected onto Σr in the
direction F (q). This coincides in fact with the analytic integration of the elementary B-
dynamics (4.49) when G(q) · p = r.

Discrete integration of the O dynamics. The flow associated with the Norton O-step
is stochastic, hence we formulate it conditionally on a standard dN dimensional Gaussian G
increment. In fact, we show below that, in the case where γ and M are scalar multiples of the
identity matrix, a convenient update is

ΦO
∆t,r (q, p, ℓ| G) =

(
q, α∆tp+ σ∆t

√
∆tG + ξO

∆t,r(q, p,G)F (q), ℓ+ r(1− α∆t)
F (q) ·G(q)

)
, (4.51)

where α∆t and σ∆t are given by

α∆t = e−γM−1∆t, σ∆t =

√
1− α2

∆t
β∆t M.

To motivate (4.51), we start by deriving the expression of the Lagrange multiplier ξO
∆t,r, which

can be solved for our particular form of response (4.28) as

ξO
∆t,r(q, p,G) = r − α∆tG(q) · p− σ∆t

√
∆tG(q) · G

F (q) ·G(q) .

Again, this corresponds to integrating the NEMD O-dynamics over one time step before
correcting the momenta in the direction F (q). Since the contribution of G to this ξO

∆t,r
is a centered Gaussian, we can remove it entirely to only accumulate the non-martingale
component in ℓ. This is exactly equivalent to the variance reduction technique discussed
in (4.44). Using G(q) · p = r, one arrives at the expression given in (4.51) for the action
of ΦO

∆t,r on ℓ. Once again, ΦO
∆t,r(q, p, ℓ)q,p corresponds to the analytic flow of the Norton O-

dynamics (4.49) over one time step ∆t, with deterministic initial condition (q, p).

If γ and M are genuine matrices, one does not have an exact cancellation of the martingale
component of ξO

∆t,r, and one has to resort to a variance reduction strategy in the spirit of
Equation (4.44).
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Construction of the splitting scheme. The steps A,B,O can be composed according to
the order of the splitting, and the bounded-variation increment of the constraining process
over one time step can be estimated from the final increment in ℓ. For example, conditionally
on Gn+1, a standard dN dimensional Gaussian, the update rule for the Norton BAOAB scheme
is given by

(qn+1, pn+1, ℓn+1) = ΦB
∆t/2,r ◦ ΦA

∆t/2,r ◦ ΦO
∆t,r(· | Gn+1) ◦ ΦA

∆t/2,r ◦ ΦB
∆t/2,r(q

n, pn, 0). (4.52)

Note that we start from ℓn = 0, and then accumulate the various increments of the constraining
process to obtain ℓn+1. For concreteness, let us explicitly write the update rules for the
numerical scheme (4.52) and a response observable R(q, p) = G(q) · p:

pn+ 1
5 = pn − ∆t

2 ∇V (qn) + ξB
∆t/2,r(q

n, pn)F (qn),

ℓn+ 1
5 = ξB

∆t/2,r(q
n, pn),

qn+ 2
5 = qn + ∆t

2 M−1pn+ 1
5 ,

pn+ 2
5 = pn+ 1

5 + ξA
∆t/2,r(q

n, pn+ 1
5 )F (qn+ 2

5 ),

ℓn+ 2
5 = ℓn+ 1

5 + ξA
∆t/2,r(q

n, pn+ 1
5 ),

pn+ 3
5 = α∆tp

n+ 2
5 + σ∆tGn+1 + ξO

∆t,r(qn+ 2
5 , pn+ 2

5 ,Gn+1)F (qn+ 2
5 ),

ℓn+ 3
5 = ℓn+ 2

5 + r(1− α∆t)
F (qn+ 2

5 ) ·G(qn+ 2
5 )
,

qn+1 = qn+ 2
5 + ∆t

2 M−1pn+ 3
5 ,

pn+ 4
5 = pn+ 3

5 + ξA
∆t/2,r(q

n+ 2
5 , pn+ 3

5 )F (qn+1),

ℓn+ 4
5 = ℓn+ 3

5 + ξA
∆t/2,r(q

n+ 2
5 , pn+ 3

5 ),

pn+1 = pn+ 4
5 − ∆t

2 ∇V (qn+1) + ξB
∆t/2,r(q

n+1, pn+ 4
5 )F (qn+1),

ℓn+1 = ℓn+ 4
5 + ξB

∆t/2,r(q
n+1, pn+ 4

5 ).

(4.53)

The average value of λ over the corresponding time step can then be estimated via

λn+1 = ∆t−1ℓn+1. (4.54)

Since all the substeps are by construction preserving the value of the response function,
splitting schemes based on (4.48) define discrete-time Markov chains on Σr. Fixing a splitting
and a time step ∆t, one can hope that the Markov chain admits a unique invariant probability
measure π∗

r,∆t close to the invariant measure of the continuous time Norton dynamics for ∆t > 0
sufficiently small. Assessing the quality of these schemes (measured in terms of weak or strong
error estimates, or errors on the invariant measure) as a function of the time step ∆t, the
magnitude of the perturbation r and the ordering of the splitting is an open question.

Remark 4.3. Let us emphasize that, when the form of the response function does not allow
for analytical expressions of the Lagrange multipliers, one can still apply a splitting procedure
similar to (4.53), upon replacing the explicit expressions of ξX∆t,r (for X ∈ {A,B,O}) by
the numerical solution of some nonlinear equation determining these quantities. It is still
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possible to cancel at dominant order the martingale increment by subtracting the first order
approximation in

√
∆t of the latter quantity.

4.6 Numerical results

We present in this section the results of various numerical simulations for the Lennard–Jones
fluid. The numerical experiments we perform have several aims:

◦ The first one is to verify that, at least in our setting, the Norton dynamics is a viable
approach for the computation of transport coefficients, in the sense that Norton estimators
of the linear response coincide with those obtained from NEMD computations. Of course,
this cannot be expected for low dimensional systems. Consider for example the case
of kinetic Langevin dynamics for a single one-dimensional particle on the unit torus T,
with M = F = 1, and R(q, p) = p. The invariant measure for the Norton dynamics is
then easily seen to be the product of the uniform measure on T with the Dirac measure δr
on momentum space, from which it follows in view of (4.38) that

E∗
r [λ] =

∫ 1

0
V ′(q) dq + γr = γr,

since V is periodic, whence the Norton transport coefficient is γ−1, which differs in
general from its NEMD counterpart.

◦ Once the validity of the Norton approach has been established, the second aim is to assess
the numerical efficiency of the Norton method, relatively to the standard NEMD method.
A crucial point is to determine whether the Norton approach leads to a reduction in the
asymptotic variance (4.22) compared to (4.7) for estimators of the transport coefficient,
as this quantity determines the magnitude of the statistical error, and therefore the
simulation time needed to attain a given level of accuracy.

In Section 4.6.1, we present the system and notation used throughout all numerical ex-
periments. In Section 4.6.2, we show instances of excellent agreement in the linear response
between Norton and NEMD dynamics. We also exhibit a case in which the response profiles
do not coincide. We further show that the agreement (when it holds) extends far into the
non-linear response regime. In Section 4.6.3, we investigate the properties of the Norton and
NEMD systems in the thermodynamic limit, showing that the linear responses coincide far
before convergence to the thermodynamic limit, and exhibiting an interesting concentration
property for the distribution of values of λ, both at equilibrium and in the non-equilibrium
regime. Finally, in Section 4.6.4 we assess the efficiency of the Norton approach in terms of
asymptotic variance, showing that in some cases the standard NEMD approach is significantly
outperformed.
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4.6.1 Description of the numerical experiments

Presentation of the system. In all experiments, we consider perturbations of the kinetic
Langevin dynamics for a Lennard–Jones fluid. The potential energy function is given by

VLJ(q) =
∑

1⩽i<j⩽N
v (∥qi − qj∥) , (4.55)

where v is the radial function

v(r) = 4ε
((

σ

r

)12
−
(
σ

r

)6
)
.

Note that v′(21/6σ) = 0. The parameters ε and σ modulate respectively the energy and spatial
range of the interaction. It is convenient to state results in the system of reduced units in
which ε, 21/6σ, the mass m of each particle and the Boltzmann constant kb are set to 1. In
fact, we consider a slightly modified version of the potential (4.55), obtained by truncating the
range of v as

vrc(r) =
[
v(r)− v(rc)− v′(rc)(r − rc)

]
1r⩽rc ,

where rc is a cutoff radius which prescribes the maximum range of interactions, the added
affine term ensuring that vrc is C1. We set rc = 2.5 in our simulations, which were performed
using the Julia package Molly [143]. Both the Norton and NEMD simulations were carried
out using a BAOAB numerical splitting scheme.

Discrete estimators of transport coefficients. We compute approximations of the
mobility by plotting the average response as a function of the forcing magnitude η, and
fitting the slope of the initial linear regime to obtain the transport coefficient. More precisely,
continous time estimators for the transport coefficient (4.6) and its Norton analog (4.21) can
be obtained by defining appropriate discretizations thereof. These discretizations are given by
the following estimators

α̂∆t
Niter,η = 1

Niterη

Niter−1∑
k=0

R(qk, pk), α̂∆t,∗
Niter,r

= rNiter

Niter−1∑
k=0

λk

−1

, (4.56)

respectively in the NEMD case and the Norton case, where λk is defined in (4.54) for the
Norton dynamics preserving some response R. More reliable estimators can further be obtained
by fitting the response profile for several small values of η and r.

In the case of mobility computations, the observable R(q, p) = F ·M−1p is used, yielding
the following NEMD estimator for the mobility:

α̂∆t
Niter,η = 1

Niterη

Niter−1∑
k=0

F ·M−1pk.

For shear viscosity, discretizations of the NEMD estimator (4.36) for the Fourier coefficient U1
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are used, yielding

Û∆t
1,Niter,η = 1

NNiterη

Niter∑
k=0

N∑
j=1

(
M−1pk

)
j,x

exp
(

2iπqkj,y
Ly

)
.

Verification of the controllability condition. We conclude this section by discussing the
controllability condition (4.39) in the case of mobility and shear viscosity computations.

When computing the mobility using a constant forcing, note that, using the expression for
the non-equilibrium response in (4.29), the controllability condition writes

(G · F )(q) = F ⊺M−1F ̸= 0,

since M−1 is a positive definite matrix, so that the controllability condition is trivially satisfied
everywhere. Moreover, the existence of strong solutions to (4.37) can be straightforwardly
deduced from the existence of strong solutions to (4.26), since in this case PF,G = PF,M−1F

is a constant matrix, which therefore preserves locally Lipschitz maps which grow at most
linearly at infinity, see for instance the discussion in [262, Section 3.3].

We examine the controllability condition in the case of a transverse shear forcing profile
in the case M = mId in order to alleviate the notation (the extension to more general mass
matrices being straightforward). Using the expression for the response (4.35), the controllability
condition writes

(G · F )(q) = 1
mN

N∑
j=1

exp
(

2iπqj,y
Ly

)
f(qj,y) ̸= 0.

The quantity G · F could in principle vanish. As the number of particles is increased, this
should however be rather unlikely when the first Fourier coefficient of the forcing f is non-zero.
Indeed, the marginal distribution of a single particle is uniform over the simulation cell at
equilibrium (by translation invariance). Therefore, one expects, for a large number of particles
and not too strong a forcing, that G · F is close to

1
mLy

∫ Ly

0
exp

(
2iπy
Ly

)
f(y) dy,

which is exactly the first Fourier coefficient of f , a non-zero quantity.

4.6.2 Equivalence of (non-)equilibrium responses

We begin by checking the consistency between the standard NEMD approach and the Nor-
ton approach, by applying these two methods to the cases of mobility and shear viscosity
computations discussed in Section 4.4.2.

Mobility computations. We begin by checking the validity of the Norton method on the
simple example of mobility. We used identical equilibrium conditions for NEMD and Norton
computations, namely a three-dimensional system of N = 1000 particles, in a cubic periodic
domain of side length L, such that ρ = N/L3 = 0.6, with a temperature T = 1.25 and a
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Figure 4.2: Response profiles in the linear regime for the NEMD and Norton mobility dynamics. The
slope of the linear regression lines correspond to the estimated transport coefficient. Left: color drift.
Right: single drift.

friction coefficient γ = 1.0. The time step was set to ∆t = 10−3 (this choice ensures that
the relative variations of the energy of the system are of the order of 0.6 for Hamiltonian
dynamics), and simulations were performed for a minimal physical time of Tsim = 250, 000 in
the linear response regime, and Tsim = 8, 000 far in the non-linear response regime. Error bars
have been omitted for the sake of readability, as they are in all cases smaller than the size of
the markers.

In Figure 4.6.2, we plot the response as a function of the forcing magnitude for both the
Norton and NEMD dynamics. Thus, the fixed quantity is plotted in the ordinates for the
Norton system, and in the abscissas for the NEMD system. Least-squares linear regression
lines are plotted, in a dotted red line for the Norton system, and a dashed green line for the
NEMD system. The slopes of these lines, indicated in the legend, give the estimated transport
coefficient. The left plot corresponds to a color drift perturbation (4.31), while the right plot
corresponds to a single drift perturbation (4.30). We observe that, while the agreement is
almost perfect in the case of the color-drift forcing, there is a significant discrepancy in the
linear responses in the case of a single-drift forcing. In fact, using the relation (4.33), it is
readily checked that the Norton estimation of the diffusion coefficient is incorrect. We believe
that for the Norton method to be valid, the microscopic perturbation should as a general
rule act on the bulk of the system. This condition is not satisfied in the case of a single-drift
forcing, which acts on a single particle.

In Figure 4.3, we again look at the color-drift perturbed dynamics, but this time take the
system far from equilibrium, so that the response is non-linear. Remarkably, the non-linear
responses profiles for the Norton and NEMD systems still coincide for extreme values of the
forcing magnitude. This was already formally proven in [115] in a deterministic setting.

Shear viscosity computations In Figures 4.4 to 4.6, we perform an experiment similar to
the one done to estimate the mobility, for a system subject to a longitudinal forcing modulated
in intensity by a transverse profile as described in Section 4.4.2, for the three forcing profiles
considered in [190]. The systems were simulated under the same conditions as for the mobility,
except for the temperature and particle density which were respectively chosen to be T = 0.8
and ρ = N/(LxLyLz) = 0.7.
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Figure 4.3: Non-linear response profiles for the NEMD and Norton mobility dynamics with color drift.
The responses coincide even in the large perturbation regime.

More precisely, Figure 4.4 presents the response obtained for a piecewise linear forcing
profile f(y) = 410⩽y<Ly/2(y − Ly/4)/Ly + 41Ly/2⩽y<Ly

(3Ly/4 − y)/Ly), Figure 4.5 for a
piecewise constant forcing profile f(y) = 1−210<y⩽Ly/2, and Figure 4.6 for a sinusoidal forcing
profile f(y) = sin(2yπ/Ly). In each case, the linear response regime is plotted on the left-hand
side, and the non-linear regime is plotted on the right. Linear regression lines whose slopes
are given in the legend are superimposed to the data points. Each time, both the linear and
non-linear responses for usual NEMD and Norton dynamics perfectly agree.

Consistency in the thermodynamic limit. We now turn to investigating the behavior
of estimators of the shear viscosity in the thermodynamic limit N → ∞. In order for the
thermodynamic limit of the viscosity to be well-defined, the quantity F1/U1 − γx must scale
asymptotically as N−2/3. Indeed, as the system size increases, the length Ly scales as (N/ρ)1/3,
which, plugged in the expression

ν = ρ

(
F1
U1
− γx

)(
Ly
2π

)2

implies the claimed scaling for F1/U1−γx. This discussion determines how to fit the asymptotic
behavior of F1/U1 for increasing system sizes (see Figure 4.7).

In Figure 4.7, we examine the behavior of the response for increasing sizes of the system.
Estimations of U1 were performed at roughly equivalent state points η = 0.3 and r = 0.1 in
the linear response regime using estimators of the form (4.56). We find in particular that the
scaling law F1/U1 − γx ∼ N−2/3 is obeyed, and that the estimates of the prefactor C coincide
for the NEMD and Norton methods. The agreement between the two methods is excellent for
all values of N .
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Figure 4.4: Non-equilibrium normalized Fourier response for shear viscosity computations with a
piecewise linear forcing profile.

Figure 4.5: Non-equilibrium normalized Fourier response for shear viscosity computations with a
piecewise constant forcing profile.

Figure 4.6: Non-equilibrium normalized Fourier response for shear viscosity computations with a
sinusoidal forcing profile.
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Figure 4.7: Behavior of estimators for U1/F1−γx in the large N limit. The simulation results, indicated
by markers, are fitted by CN−α with C ≈ 14 and α ≈ 0.66 with a linear regression of log(U1/F1 − γx)
as a function of logN . The right plot corresponds to the left plot in log-log coordinates.

4.6.3 Concentration properties in the thermodynamic limit

We next investigate the scaling of the variances of the distributions of R and λ as a function of
the system size N , respectively in the canonical equilibrium and Norton ensembles, in the case
of a sinusoidal shear forcing profile. In Figure 4.8, we show equilibrium distributions of R and λ
for increasing values of N . By ‘̀equilibrium,̈ it is meant here that the NEMD dynamics is run
for η = 0 and the Norton dynamics for r = 0. Note first that both distributions are centered
around 0 and symmetric. Moreover, they concentrate around 0 as the system size N increases.
The scaling however differs for the two dynamics. In the canonical ensemble, the usual rate N−1

is observed, consistent with some form of spatial averaging of an intensive quantity. Indeed,
the rate N−1 is the one dictated by a central limit theorem, which makes sense on an intuitive
level for a system displaying only short-range interactions, using a decomposition of the full
system into weakly correlated subsystems, each of them contributing additively to the total
flux.

On the other hand, the scaling of the variance as a function of the system size in the Norton
ensemble appears to be quite different, with a variance decreasing much faster than N−1. This
is confirmed in Figure 4.9, which shows that the second moment of λ decays as N−5/3. The
increase in the scaling exponent is presumably due to the coupling introduced by the constant-
flux condition, which introduces global correlations in the systems, and hence some form of
long range interactions, which are known to lead to significant changes of phenomenology in
some situations.

4.6.4 Asymptotic variance

We finally assess the numerical efficiency of the Norton method. NEMD estimators of the
form (4.56) are ergodic averages of R for trajectories of the discrete-time Markov chain defined
by the numerical scheme, and the central limit theorem for Markov chains implies that the
variance is asymptotically η−2N−1

iterσ
2
∆t(R), where σ2

∆t,η(R) is the asymptotic variance of R
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Figure 4.8: Histograms of forcing and response in equilibrium ensembles. Left: standard equilibrium
Langevin dynamics (η = 0). Right: Langevin–Norton dynamics at zero flux (r = 0).

Figure 4.9: Variance of λ and R in the Norton and canonical equilibrium ensembles.
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under the scheme’s stationary measure π∆t,η:

σ2
∆t,η(R) = Varπ∆t,η

(R) + 2
∞∑
k=1

Covπ∆t,η

(
R(qk, pk)R(q0, p0)

)
= Varπ∆t,η

(R)Θπ∆t,η
(R),

where

Θπ∆t,η
(R) =

1 + 2
∞∑
k=1

Covπ∆t,η

(
R(qk, pk)R(q0, p0)

)
Varπ∆t,η

(R)

 (4.57)

is the number of correlation steps R for stationary initial distribution, and Varπ∆t,η
(R) de-

notes the centered second moment of R under π∆t,η. It can be proved for standard NEMD
dynamics [233] that

σ2
∆t,η(R) = σ2

η(R)/∆t+ O(1),

where σ2
η(R) is the asymptotic variance (4.7) of the continuous process.

For the Norton estimator in (4.56), it can be shown, using the delta method and a
computation similar to (4.22), that the variance of trajectory averages of R is asymptot-
ically N−1

iterr
4Eπ∗

∆t,r
[λ]−4σ2∗

∆t,r(λ), where π∗
∆t,r denotes the invariant probability measure of the

Markov chain (λn)n⩾1 defined in (4.54), and σ2∗
∆t,r(λ) is the associated asymptotic variance

for λ. Again, we write the asymptotic variance as the product of the centered second moment
under the steady-state Varπ∗

∆t,r
(λ0) and the number of correlation steps Θπ∗

∆t,r
(λ).

As N grows to infinity, and for equivalent state points r = ηα, say in the linear response
regime, the numerical results of Section 4.6.3 show that the contribution of the stationary
centered second moment will be asymptotically smaller for Norton estimators than for their
NEMD counterparts, owing to the fast decay of the variance of λ in the Norton ensemble as
N → ∞. This is reason to suspect that Norton estimators of the transport coefficient may
have lower asymptotic variance for large enough N , as long as the scaling of correlation times
for λ in the Norton ensemble does not cancel this effect. To assess whether this is the case, we
plot in Figure 4.10 autocorrelation functions for equilibrium trajectories of λ in the Norton
ensemble and R in the canonical ensemble, for several values of the system size N , again in the
case of a sinusoidal shear forcing profile. These correspond to the summand in (4.57), plotted
as a function of the physical simulation time. We observe that the correlation time is roughly
independent of N . In fact, the autocorrelation profile itself barely changes with increasing
system sizes.

Furthermore, we observe that the correlation time is much smaller in the Norton ensemble
than in the NEMD ensemble. This suggests that even for moderate system sizes, the asymptotic
variance for estimators of the linear response should be smaller for Norton systems than for their
NEMD counterparts, owing to smaller correlation times. We verify this intuition in Figure 4.11
for a fixed system of N = 1000 particles, in the context of shear viscosity computations. The
asymptotic variance for estimators of the Fourier linear response U1 is plotted as a function
of the forcing magnitude, for the various forcing profiles considered in Section 4.6.2. Note
that the asymptotic variances indeed scale as η−2 for NEMD simulations and r−2 for Norton
dynamics, at least for small values of |r| and |η|. Interestingly, we find that Norton estimators
have lower variance in each situation. We expect that this difference will be more pronounced
for larger systems.
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Figure 4.10: Autocorrelation functions at equilibrium for the shear-viscosity Fourier response R
(given by (4.35)). Left: autocorrelation function of λ for the Norton dynamics on R−1{0}. Right:
autocorrelation function of R in standard equilibrium simulations.

Figure 4.11: Asymptotic variance for estimators of the Fourier response U1 as a function of the
perturbation magnitude, in log-log coordinates. The expected scaling line for small values of the forcing
or response is plotted in red.
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4.7 Perspectives for future work

We list in this final section some of the many open questions raised by the stochastic Norton
approach, both on the theoretical and numerical sides. Certain points are currently being
tackled, but a lot remains to be done, and we hope that this work will encourage other
researchers to study Norton dynamics. We classify issues to address in three families.

Analysis of the continuous dynamics. A first task is to show that Norton dynamics are
well-posed and well-behaved. As such results will undoubtedly constitute necessary tools to
investigate the properties of Norton ensembles from a rigorous standpoint, they are of the
utmost importance. We identify the following questions:

◦ Obtain sufficient conditions on the reference dynamics, F and R, for the Norton dynamics
to be well-posed on arbitrarily large time horizons.

◦ Prove the existence and uniqueness of a Norton steady-state.

◦ Show pathwise ergodicity of the Norton dynamics.

◦ Obtain bounds on the rate of convergence of arbitrary initial conditions to the Norton
steady-state.

In view of conditions such as (4.18), it is clear that not all pairs (F,R) give rise to well-posed
Norton dynamics. From a macroscopic point of view, the averages of F and R correspond to
conjugate variables, hence we expect any reasonable microscopic realization to appropriately
relate the associated observables.

Theoretical questions. We list here various physically motivated questions, which would
in particular establish that the Norton method provides a viable way to compute transport
coefficients.

◦ Derive equivalence of ensemble results between the Norton and canonical ensemble at
equilibrium (i.e. r = 0 and η = 0, respectively), in the thermodynamic limit.

◦ Prove the existence of the linear response (4.20) for all systems of finite size, and in fact
develop a theory of linear response theory for Norton ensembles. This would include
relating the transport coefficient to fluctuations in the Norton equilibrium ensemble,
analogously to standard Green–Kubo formulæ in the canonical ensemble. This approach
was formally carried out in [120], for the special case of electrical conductivity or mobility,
in a deterministic setting. Carrying out this development would in particular require
understanding, for small |r|, the relation of the Norton equilibrium steady-state to the
invariant measure of the reference process (4.1), as well as to the nature of the forcing F
and the response R.

◦ Show the consistency of the Norton approach, by proving that the transport coefficients
obtained with NEMD and Norton dynamics have the same thermodynamic limit, for
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bulk forcings. This can be considered as some form of equivalence of ensembles in a
perturbative nonequilibrium setting.

◦ Derive a result on the equivalence of ensembles for the Norton and NEMD approaches
beyond the linear response regime, for equivalent state points (i.e. the average forcing
experienced in Norton dynamics coincides with the fixed forcing in NEMD simulations).

◦ Develop a theory of the effect of long-range interactions in the Norton dynamics induced
by the constant-response constraint.

◦ Extend the Norton approach to nonequilibrium perturbations of the diffusion matrix, in
view of applying it to the study of thermal conductivity.

Numerical analysis of Norton dynamics. A last set of issues to address is related to
properties of Norton dynamics which are of practical interest for the efficient and accurate
computation of transport coefficient in realistic systems. A crucial point is to derive clear
conditions under which one should prefer the Norton approach to the usual NEMD method.
Another point concerns the study of the mathematical properties of the discretized dynamics.

◦ Carry out a rigorous analysis of the scaling of the variance of λ in the thermodynamic
limit.

◦ Explain the shorter correlation times for Norton dynamics compared to the corresponding
NEMD dynamics. This and the previous question would ideally yield rigorous asymptotic
formulas for both the variance and correlation time in terms of η, r and N .

◦ Perform the numerical analysis of splitting schemes for Norton dynamics. This analysis is
a necessary step to derive error bounds relating quantitative properties of the continuous
dynamics with their discrete analogs. Useful results would include error estimates at the
level of discrete trajectories, or at the level of the invariant measures of the associated
Markov chains.
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We gather in these appendices the proofs of various technical statements, namely Equa-
tion (4.24) in Section 4.A, Equation (4.25) in Section 4.B, and Equation (4.33) in Section 4.C.

Appendix 4.A: Derivation of Norton dynamics in the case of
multiple constraints

We write here the proof of (4.24). We proceed as in Section 4.3.2, assuming that the forcing
process Λr may be written as an Itô process before checking a posteriori that this assumption
is justified. More precisely, we write

dΛr
t = dΛ̃r

t + λr
t dt,

where Λ̃r is the martingale part of the Itô decomposition of Λr. Applying Itô’s formula to the
constant-response constraint R(Y r

t ) = R(Y r
0 ) = r yields

∇R(Y r
t )⊺dY r

t + 1
2∇

2R(Y r
t ) : d⟨Y r⟩t = 0. (4.58)

Identifying martingale increments, the uniqueness of the Itô decomposition implies

dΛ̃r
t = − [∇R(Y r

t )⊺F (Y r
t )]−1∇R(Y r

t )⊺σ(Y r
t ) dWt,

which in turns allows to compute the quadratic covariation term

d⟨Y r⟩t =
[
PF,∇Rσσ

⊺P
⊺
F,∇R

]
(Y r
t ) dt = ΠF,∇R,σ(Y r

t ) dt.

Using this expression in (4.58) and the uniqueness of the Itô decomposition once again to
identify bounded-variation parts, we recover

λr
t = −(∇R⊺F )−1

[
∇R⊺b+ 1

2
(
∇2R⊺ : ΠF,∇R,σ

)]
(Y r
t ),

which yields (4.24) upon substituting the expression for dΛr
t .

Appendix 4.B: Derivation of the Norton dynamics in the case
of time-dependent constraints

To prove (4.25), we once again proceed as in Section 4.3.2, writing the Itô decomposition for
the forcing process as

dΛR
t = dΛ̃R

t + λR
t dt.
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Applying Itô’s formula to the time-dependent constraint (4.25), we get

∇R(Y R
t )⊺dY R

t + 1
2∇

2R(Y R
t ) : d⟨Y R⟩t = rt dt+ r̃t dBt,

which, by uniqueness of the Itô decomposition, leads to

dΛ̃R
t = r̃t dBt −∇R(Y R

t ) · σ(Y R
t ) dWt

∇R(Y R
t ) · F (Y R

t )
,

allowing to compute the covariation bracket as

d
〈
Y R

〉
t

= ΠF,∇R,σ(Y R
t ) dt+ F (Y R

t )⊗ F (Y R
t )(

∇R(Y R
t ) · F (Y R

t )
)2 r̃2

t dt.

One can then proceed to identify bounded-variation increments, and isolate λR
t :

λR
t =

rt −
1
2∇

2R(Y R
t ) :

[
ΠF,∇R,σ(Y R

t ) + F (Y R
t )⊗ F (Y R

t )(
∇R(Y R

t ) · F (Y R
t )
)2 r̃2

t

]
−∇R(Y R

t ) · b(Y R
t )

∇R(Y R
t ) · F (Y R

t )
.

Substituting in the expression for the forcing process finally yields (4.25).

Appendix 4.C: Derivation of the relation between color/single
drift linear responses

The proof of (4.33) is taken from unpublished notes by Julien Roussel, see the PhD thesis [288].
We assume for the ease of presentation that M = mId and d = 3, and denote by µ the
equilibrium measure (4.27). The dynamics under consideration is the standard Langevin
dynamics, namely (4.26) with η = 0. Let us define, for 1 ⩽ i, j ⩽ N ,

cij = β

m2

∫ ∞

0
Eµ[pi,x,tpj,x,0] dt.

In view of (4.32), upon summing over i the longitudinal p-components of the SDE (4.26) and
integrating in time,

N∑
i=1

pi,x,t =
N∑
i=1

[
pi,x,0 +

∫ t

0

(
− ∂

∂qi,x
V (qs)−

γ

m
pi,x,s ds+

√
2γ
β

dWi,x,s

)]

=
N∑
i=1

[
pi,x,0 −

γ

m

∫ t

0
pi,x,s ds+

√
2γ
β
Wi,x,t

]
.

Multiplying by p1,x,0 and taking the expectation over trajectories started from canonical initial
conditions (so that the Brownian terms vanishes), it follows that

Eµ

[(
N∑
i=1

pi,x,t

)
p1,x,0

]
=

N∑
i=1

(
Eµ [pi,x,0p1,x,0]− γ

m

∫ t

0
Eµ [pi,x,sp1,x,0] ds

)
.
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By the decay properties of the evolution semigroup (obtained for instance by hypocoercive
approaches, see e.g. [329], as well as the introduction of [37] for a review), the left-hand side
converges to 0 as t→∞, while the integral is well-defined. Since p0 has diagonal covariance
with respect to µ, we get

N∑
i=1

γ

m

∫ ∞

0
Eµ [pi,x,sp1,x,0] ds = Eµ[p2

1,x,0] = m

β
.

Equivalently,
N∑
i=1

ci1 = 1
γ
. (4.59)

Using the indistinguishability of the particles,

∀ 1 ⩽ i, j ⩽ N, cii = c11, cij = c12. (4.60)

We can therefore rewrite (4.59) as

c12 = 1
N − 1

(1
γ
− c11

)
.

This equality can be used to relate the linear responses of the single drift and the color drift.
By the Green–Kubo formula [142], the transport coefficient for the single drift is given by

αFS = c11.

For the color drift, we expand, using the Green–Kubo formula,

αFC = β

m2

∫ ∞

0
Eµ[(FC · pt) (FC · p0)] dt = 1

N

 N∑
i=1

cii + 2
∑

1⩽i<j⩽N
(−1)i+jcij


In view of (4.60), and using ∑

1⩽i<j⩽N
(−1)i+j = −

⌊
N

2

⌋
,

which is easily seen by induction, we get

αFC = c11 −
2⌊N/2⌋
N(N − 1)

(1
γ
− c11

)
,

which is the claimed identity.



Chapter 5
A hypocoercive approach of the overdamped
limit for the kinetic Langevin equation with
multiplicative noise

Iteration, like friction, is likely to generate heat instead of progress.
— Mary Ann Evans (a.k.a. George Eliot), The Mill on the Floss

(Book II), 1860

Abstract. This note provides a simple derivation of the overdamped approxi-
mation for kinetic (or underdamped) equilibrium Langevin dynamics, in the case
of arbitrary matrix-valued, position-dependent damping parameters. While this
problem has previously been addressed using stochastic averaging and PDE homog-
enization methods, our approach is based on uniform hypocoercive estimates, which
may be of interest in their own right. We believe our approach to be of interest since
it allows for a very direct proof, providing a transparent explanation for the origin
of the “noise-induced drift” term in the limiting equation. Besides, while previous
studies of this problem focused on the small-mass limit, our results are given in
the large-friction regime. As an application, we compute the overdamped limit of a
class of kinetic Langevin dynamics with position-dependent mass matrices, which
are for instance used in internal coordinate molecular dynamics.

272
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5.1 Introduction

We study the overdamped limit of the kinetic Langevin equation, defined by the stochastic
differential equation (SDE)

dqλt = ∇U(pλt )dt,

dpλt = −∇V (qλt )dt− λD(qλt )−1∇U(pλt ) dt+
√

2λ
β
D(qλt )−1/2 dW λ

t ,
(5.1)

in the high friction regime λ → +∞, where D : Q → S++
d is a symmetric positive-definite

matrix field called the friction profile, and W λ is a standard Brownian motion in Rd. Instead
of D−1/2 in (5.1), we could take any matrix-field A : Q → Rd×d such that AA⊤ = D−1, with
sufficient regularity (see Assumption 5.1 below). But since any two square roots of D−1 are
conjugated via an orthogonal transformation, we may assume that A = D−1/2 is the positive
square root of D−1, up to a change of Brownian motion. In (5.1), the functions U and V

correspond respectively to the kinetic and potential energies, which sum to the Hamiltonian

H(q, p) = V (q) + U(p).

The position variable q evolves in X , where Q is either the d-dimensional torus LTd for
some L > 0, or Q = Rd, while the momentum variable p ∈ Rd is in all cases unbounded. The
typical choice of kinetic energy is given by the physical definition

U(p) = 1
2p

⊤M−1p, (5.2)

where M is the mass matrix of the system, although other choices have been considered for
sampling, see for instance [310].

For the sake of consistency, we assume that W λ is given by a diffusive rescaling of some
reference Brownian motion W , i.e. W λ

t =
√
λWt/λ for all λ, t > 0.

We introduce the following family of rescaled-in-time, W -adapted processes:

Xλ
t := qλλt, ∀λ > 0, t ⩾ 0. (5.3)

The main result, stated in Proposition 5.6 below, is a pathwise convergence result when λ→
+∞ on compact time intervals for the process Xλ defined in (5.3) towards solutions on Q to
the SDE

dXt = −
[
D(Xt)∇V (Xt)dt−

1
β

divD(Xt)
]

dt+
√

2
β
D1/2(Xt)dWt, (5.4)

with initial data X0 ∈ Q, and where div denotes the row-wise (or column-wise) divergence
operator, which is well-defined under our regularity assumptions (see Assumption 5.1). The
dynamics (5.4) is the so-called Smoluchowski–Kramers dynamics. When D = Id is the identity
matrix, the dynamics (5.4) is the so-called overdamped Langevin equation. The term 1

β divD is
a so-called “noise-induced drift” term, which has gathered attention in the physical literature,
see for example [331] and references therein.
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In the case where the matrix D is a constant, the convergence of the dynamics (5.1)
to the dynamics (5.4) is known since the work of Smoluchowski [306] and Kramers [198].
Moreover, the large friction regime can be mapped to the “small-mass” regime, via an
appropriate nondimensionalisation of the dynamics, see for instance [229, Section 2.2.4]. The
approximation of the dynamics (5.1) by the dynamics (5.4) in the small-mass regime is known as
the Smoluchowski–Kramers approximation. In the case of a state-dependent friction, when the
noise in (5.1) and (5.4) is multiplicative, The Smoluchowski–Kramers approximation is more
complicated to obtain, but has been studied with a variety of methods (see [130, 131, 177, 339]
and references therein), including stochastic averaging and PDE homogenization approaches.
The approximation has also been extended to more general settings, including stochastic
PDEs [69], kinetic diffusions on manifolds [43] and non-linear SDEs [239].

The purpose of this note is to provide a proof of the overdamped approximation (λ→ +∞) by
completely different means, using analytical estimates from the theory of hypocoercivity [329],
and more precisely the L2-hypocoercivity approach developed in [105, 106, 37]. Because of
the techniques used, our result is limited to equilibrium systems, in which the force in (5.1) is
a gradient and the fluctuation-dissipation relation holds between the kinetic damping term
and the diffusion coefficient. However, the result is valid and quantitative in λ (in a weak
sense, see Proposition 5.6 below) for more general kinetic energies U than the physical kinetic
energy (5.2). Moreover, the proof is very simple, and highlights the origin of the noise-induced
drift in a straightforward way. We also identify a gap in the proof of [339, Lemma 3.1], and
provide a correct argument for a similar step in our setting. Finally, we use our result to
derive the overdamped approximation of a more general underdamped Langevin dynamics, in
a case where both the mass and the friction are matrix-valued position-dependent functions,
computing the limiting dynamics in a one-dimensional system.

In Section 5.2, we introduce the necessary notation and hypotheses, and state the main
result. In Section 5.3, we prove the main result, and apply it in Section 5.4 to the more general
case of position-dependent masses. We finally prove in Appendix 5.A some key technical
results, including the hypocoercive estimates of Lemma 5.7, which may be of independent
interest.

5.2 Notation and main result

We introduce the necessary notation, state our hypotheses and our main result (Proposition 5.6).

Notation. Throughout this work, we abuse notation and denote probability measures with
the same symbol as their densities whenever they are absolutely continuous with respect to
the Lebesgue measure. With this convention, the equilibrium (or Gibbs) measure µ is defined
(under Assumption 5.4 below) by the probability measure

µ(dq dp) = µ(q, p) dq dp = exp (−βH(q, p)) /Zµ,β dq dp, Zµ =
∫

Q×Rd
e−βH .

The measure (5.5) is a product µ(dq dp) = κ(dp)⊗ ν(dq), with kinetic and configurational
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marginals

κ(p) dp = e−βU(p)∫
Rd

e−βU
dp, ν(q) dq = e−βV (q)∫

Q
e−βV

dq, (5.5)

For any f ∈ L1(Q× Rd, µ), we define the projector

Π0f(q) =
∫
Rd
f(q, p)κ(dp)

which sends f(q, p) to its partial average with respect to κ. We make frequent use of the
weighted L2-space

L2(µ) =
{
f ∈ L1

loc(Q× Rd) :
∫

Q×Rd
f2 dµ < +∞

}
,

and the closed subspace of µ-centered observables

L2
0(µ) =

{
f ∈ L2(µ) :

∫
Q×Rd

f dµ = 0
}
.

Note that Π0 is a L2(µ)-orthogonal projector, and that (Id−Π0)L2(µ) ⊂ L2
0(µ). We define

weighted Sobolev spaces, for k ⩾ 1 by

Hk(µ) =
{
φ ∈ L2(µ) : ∀α ∈ Nd, |α| ⩽ k, ∂αφ ∈ L2(µ)

}
,

with the usual multi-index notation for α ∈ Nm i.e. |α| =
∑m
j=1 αj , and ∂αf = ∂α1

x1 . . . ∂
αm
xm
f

for f : Rm → R. Other weighted Lp-spaces Lp(µ), Lp(ν), Lp(κ) and the associated Sobolev
spaces are defined in a similar fashion.

The generator of the dynamics (5.1) acts on smooth functions as the differential operator

Lλ = A+ λS,

where A and S are Hamiltonian transport and fluctuation-dissipation operators, defined
respectively by

A = ∇U(p)⊤∇q −∇V (q)⊤∇p, S = −(D−1(q)∇U(p))⊤∇p + 1
β
D−1(q) : ∇2

p.

The L2(µ)-adjoints of partial derivatives are found by integration by parts to be

∂∗
qi

= −∂qi + β∂iV (q), ∂∗
pi

= −∂pi + β∂iU(p), ∀1 ⩽ i ⩽ d,

from which we find

A = 1
β

[
∇∗
p∇q −∇∗

q∇p
]
, S = − 1

β
∇∗
pD

−1(q)∇p,

so that λS and A correspond respectively to the symmetric and antisymmetric parts of Lλ
on L2(µ).
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The generator of the dynamics (5.4), on the other hand, is given by

LKS = −∇V ⊤D∇+ 1
β

divD⊤∇+ 1
β
D : ∇2 = 1

β
eβV div

(
e−βVD∇

)
,

which is a symmetric operator on L2(ν), a property reflecting the reversibility of the dynam-
ics (5.4) with respect to ν.

On the space Rd×d of d× d matrices, we denote by ∥·∥HS the Hilbert–Schmidt (or Frobenius
norm), and by ∥·∥op the Euclidean operator norm.

The processes X,Xλ defined respectively in (5.4) and (5.3) are defined on a probability
space (Ω,F ,Pµ0). Under the probability measure Pµ0 , W is a Brownian motion, which is
independent from

(qλ0 , pλ0) = (X0, p0) ∀λ > 0,

which in turn has law µ0 ∈ P(Q×Rd). As we will consider different choices of µ0, we emphasize
this in the notation Pµ0 , and denote by Eµ0 the associated expectation. We assume that the
SDEs (5.1) and (5.4) have strong solutions on [0, T ] for any T > 0.

Hypotheses on U, V and D. In this paragraph, we introduce various assumptions which
we will use to state and prove our main result.

Assumption 5.1. The coefficients of (5.1) are smooth

V ∈ C∞(Q), U ∈ C∞(Rd), D ∈ C∞(Q;S++
d ),

and ∇V is globally Lipschitz.

Assumption 5.2. For all λ > 0, the generator Lλ is hypoelliptic, in the sense that

g = Lλf, g ∈ C∞(Q× Rd) =⇒ f ∈ C∞(Q× Rd). (5.6)

Hypoellipticity can often be checked using Hörmander’s bracket condition, see [174] or
Lemma 5.9 in Appendix 5.A, in which we give simple sufficient conditions on U , V and D for
the implication (5.6) to hold.

Assumption 5.3. The diffusion D is uniformly bounded and elliptic, and has uniformly
bounded first derivatives:

∃MD ⩾ 1 : ∀x ∈ Q, 1
MD

Id ⩽ D(x) ⩽MDId, D′ ∈ L∞
(
Q;Rd ⊗ Rd×d

)
, (5.7)

where the inequalities are in the sense of symmetric matrices, and where D′, defined by

(
D′(q) [u]

)
ij =

d∑
k=1

∂kDij(q)uk, ∀(q, u) ∈ Q× Rd, ∀1 ⩽ i, j ⩽ d, (5.8)

denotes the Fréchet differential of D.

Note that the conjunction of Assumptions 5.1 and 5.3 implies that the same conditions
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on D−1 and D±1/2.

The next assumption (which contains in particular the conditions [37, Assumptions 3.1
and 3.2]), ensures the validity of some key estimates (Lemma 5.7 below).

Assumption 5.4. The following conditions on U and V are satisfied.

◦ It holds, for any γ > 0:

(1 + |p|γ)e−βU(p) ∈ L1(Rd), (1 + |q|γ + |∇V (q)|γ)e−βV (q) ∈ L1(Q).

In particular, the equilibrium probability measure (5.5) is well-defined.

◦ The marginals κ and ν defined in (5.5) satisfy Poincaré inequalities: there exist Kκ,Kν >

0 such that, for any φ ∈ H1(κ) and ψ ∈ H1(ν),

∥φ− κ(φ)∥L2(κ) ⩽
1
Kκ
∥∇pφ∥L2(κ), ∥ψ − ν(ψ)∥L2(ν) ⩽

1
Kν
∥∇ψ∥L2(ν). (5.9)

◦ There exist constants c1, c2 > 0 and 0 ⩽ c3 ⩽ 1 such that the following bounds hold
pointwise:

∥∇2V ∥2HS ⩽ c2
1

(
d+ |∇V |2

)
, ∆V ⩽ c2d+ c3β

2 |∇V |
2.

◦ The function U is even, and for all multi-indices α1, α2, α3 ∈ Nd such that |αi| ⩽ i

for 1 ⩽ i ⩽ 3, it holds

∂α3U ∈ L2(κ), (∂α2U)(∂α1U) ∈ L2(κ).

A simple case in which all the conditions on V and U imposed by Assumptions 5.1 and 5.4 is
the case where these two functions are smooth and grow quadratically at infinity. In particular,
the conditions on V are vacuous if Q is compact.

The final assumption, which will be used to prove the second item in Proposition 5.6,
restricts the dynamics (5.1) to the physical setting, in which the kinetic energy is a positive
non-degenerate quadratic form.

Assumption 5.5. The function U in (5.1) is given by

U(p) = 1
2p

⊤M−1p

for some constant matrix M ∈ S++
d .

Kramers–Smoluchowski approximation. The main result states two convergence results
for the time-rescaled position process Xλ, in the limit of a large friction intensity λ→ +∞.
Recall that (X0 = qλ0 , p

λ
0) ∼ µ0 for all λ > 0.

Proposition 5.6. Assume that µ0 ≪ µ is such that

(X0, p0) ∼ µ0,
dµ0
dµ ∈ L

p(µ) for some p ∈ (1,+∞].
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Suppose that Assumptions 5.1, 5.2, 5.3 and 5.4 are satisfied, and let q ∈ [1,∞) be the conjugate
exponent to p, i.e. q = p/(p− 1).

◦ for any T > 0 and 0 < α ⩽ 2
q , there exists C(T, α, µ0) > 0 such that

sup
0⩽t⩽T

Eµ0

[
|Xλ

t −Xt|α
]
⩽
C(T, α, µ0)

λα/2 , (5.10)

◦ suppose furthermore that Assumption 5.5 is satisfied. Then the following convergence of
path distributions holds:

Xλ
∗ Pµ0

weakly−−−−→
λ→+∞

X∗Pµ0 ∈ P(C([0, T ];Q)). (5.11)

The key technical tool in the proof is the following result.

Lemma 5.7 (Uniform hypocoercivity in L2(µ)). Let Assumptions 5.3 to 5.4 be satisfied.

◦ For any λ > 0, the generator Lλ is invertible on L2
0(µ). Namely, for any φ ∈ L2

0(µ), the
Poisson equation

Lλf = φ

has a unique solution f = L−1
λ φ ∈ L2

0(µ).

◦ If φ ∈ (Id−Π0)L2
0(µ), it furthermore holds that for some constant C > 0,

∀λ ⩾ 1, ∥L−1
λ φ∥L2(µ) ⩽ C∥φ∥L2(µ), ∥∇pL−1

λ φ∥L2(µ) ⩽
C√
λ
∥φ∥L2(µ). (5.12)

The main interest of this result, beyond providing the L2-hypocoercivity property for the
dynamics (5.1), is the uniformity of the estimates in (5.12). Whereas standard hypocoercive
estimates give ∥L−1

λ φ∥L2(µ) = O(max(λ, λ−1))∥φ∥L2(µ) for general φ ∈ L2
0(µ), this bound can

be improved when φ ∈ ker Π0. The proof of Lemma 5.7, which uses the L2-hypocoercivity
framework of [37], is given in Section 5.A below.

5.3 Proof of Proposition 5.6

We now prove the main result. For the first item in Proposition 5.6, we first establish the result
for µ0 = µ and p = 2, and conclude for a more general initial distribution µ0 via a reweighting
argument. This will in particular establish the weak convergence of all finite-dimensional
time marginals of Xλ towards those of X. To prove the second point, we exploit the specific
form of the dynamics under Assumption (5.5) to obtain the tightness of the family (Xλ

∗ P)λ⩾1

in P(C([0, T ];Q)), which will conclude the argument by a classical corollary of Prokhorov’s
theorem (see [41, Theorem 8.1]).

The first step is a simple computation with Itô’s formula, from which the origin of the
noise-induced drift appears clearly.
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An Itô computation. For any λ > 0, since the quadratic covariation
〈
qλ
〉

in the position
variable vanishes, it holds

d
[
D(qλt )pλt

]
= −D(qλt )∇V (qλt ) dt− λ dqλt +

√
2λ
β
D1/2(qλt ) dW λ

t +D′(qλt )
[
∇U(pλt )

]
pλt dt,

where we recall the definition (5.8) of D′. In particular, for any 1 ⩽ k ⩽ d,

(
D′(q) [∇U(p)] p

)
k =

d∑
i,j=1

∂iDkj(q)∂iU(p)pj .

Isolating dqλt and integrating over [0, λt], we get:

qλλt − qλ0 = − 1
λ

∫ λt

0
D(qλs )∇V (qλs ) ds+

√
2
λβ

∫ λt

0
D1/2(qλs ) dW λ

s

+ 1
λ

∫ λt

0
D′(qλs )

[
∇U(pλs )

]
pλs ds+ D(qλ0 )pλ0 −D(qλλt)pλλt

λ
.

(5.13)

Defining Xλ
t = qλt, this time-rescaling changes (5.13) into

Xλ
t = X0−

∫ t

0

[
D(Xλ

s )∇V (Xλ
s )− 1

β
divD(Xλ

s )
]

ds+
√

2
β

∫ t

0
D1/2(Xλ

s ) dWs+R(t, λ), (5.14)

where we introduced the remainder term

R(t, λ) = D(qλ0 )pλ0 −D(qλλt)pλλt
λ

+ 1
λ

∫ λt

0
ψ(qλs , pλs ) ds, ψ(q, p) = D′(q) [∇U(p)] p− 1

β
divD(q),

(5.15)
and use Xλ

0 = qλ0 = X0.

Since p ∈ L2(κ), U ∈ H1(κ) and D ∈ W 1,∞(κ) (from Assumptions 5.3 and 5.4), an
integration by parts shows that component-wise:

Π0
(
D′(q) [∇U(p)] p

)
= 1
β

divD(q),

so that ψ ∈
(
(Id−Π0)L2(µ)

)d ⊂ L2
0(µ)d. Indeed, from (5.8) and the form (5.5) for κ, for

any 1 ⩽ k ⩽ d,

∫
Rd

(
D′(q) [∇U(p)] p

)
k =

d∑
i,j=1

∫
Rd
∂iDkj(q)(∂iU(p))pj κ(dp)

= 1
β

d∑
i,j=1

∂iDkj(q)
∫
Rd

(∂ipj)κ(dp)

= 1
β

d∑
i,j=1

δij∂iDkj(q)

= 1
β

(divD(q))k .
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In view of the form (5.4) of the limiting equation, we interpret R(·, λ) as a perturbation term.

Using the first item in Lemma 5.7, we introduce, for each λ ⩾ 1, the solution Φλ ∈ L2(µ)d

to the (component-wise) Poisson equation:

LλΦλ = ψ.

Since ψ is smooth and Lλ is hypoelliptic under Assumption (5.2), Φλ is smooth, and we may
write the integral in (5.15) as

1
λ

∫ λt

0
ψ(qλs , pλs ) ds = Φλ(Xλ

t , p
λ
λt)− Φλ(X0, p

λ
0)

λ
−
√

2
β

∫ t

0
∇pΦλ(Xλ

s , p
λ
λs)⊤D(Xλ

s )−1/2 dWs,

(5.16)
using Itô’s formula and making the same rescaling in time as the one leading to (5.14). Using
these estimates, the proof of the first item (5.10) in Proposition 5.6 follows from a Grönwall-type
argument, which we now detail.

Proof of (5.10). Fix T > 0 and assume as a first step that µ0 = µ. By Hölder’s inequality,
it suffices to show the estimate (5.10) for α = 2. By stationarity, Xt, X

λ
t ∼ ν and pλλt ∼ κ

for all 0 ⩽ t ⩽ T under Pµ. Note also that, since ∇pΦλ is in L2(µ) component-wise from the
second item in Lemma 5.7, the local martingale on the right-hand side of (5.16) is an L2(Pµ)
W -martingale.

We denote the difference process by

Eλt := Xλ
t −Xt,

which has finite second-moments by the first item in Assumption 5.4 under Pµ, and write,
for 0 ⩽ t ⩽ T ,

|Eλt |2 ⩽ 3
[∣∣∣∣∫ t

0

[
b(Xλ

s )− b(Xs)
]

ds
∣∣∣∣2 +

∣∣∣∣∫ t

0

[
σ(Xλ

s )− σ(Xs)
]

dWs

∣∣∣∣2 + |R(t, λ)|2
]
, (5.17)

where b(x) = −D(x)∇V (x) + 1
βdivD(x) and σ(x) =

√
2
βD(x)1/2. We estimate each of these

terms separately. Let Lb, Lσ > 0 be Lipschitz constants for b and σ (in the norm ∥·∥HS for σ),
which exist by Assumptions 5.1 and 5.3. Then the first two terms inside the bracket on the
right side of (5.17) are bounded in expectation by

(L2
b + L2

σ)
∫ t

0
Eµ
[
|Eλs |2

]
ds, (5.18)

using Itô’s isometry to bound the second term. To control the remainder, we write, using (5.15)
and (5.16)

Eµ
[
|R(t, λ)|2

]
⩽ 5

(
2
λ2

[
∥Dp∥2L2(µ) + ∥Φλ∥2L2(µ)

]
+ 2
β
Eµ

[∣∣∣∣∫ t

0
∇pΦλ(Xλ

s , p
λ
λs)⊤D(Xλ

s )−1/2 dWs

∣∣∣∣2
])

⩽ 5
( 2
λ2

[
∥Dp∥2L2(µ) + ∥Φλ∥2L2(µ)

]
+ 2T

β
∥D∥L∞(Q;S++

d
)∥∇pΦ∥

2
L2(µ),HS

)
,
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using once again Itô’s isometry in the second line. We may now use the two estimates of
Lemma 5.7 to obtain

Eµ
[
|R(λ, t)|2

]
⩽
CT
λ

(5.19)

for some constant CT > 0 independent of λ. Collecting the estimates (5.17), (5.18) and (5.19),
we get, taking expectations,

Eµ
[
|Eλt |2

]
⩽ 3

(
L2
b + L2

σ

) ∫ t

0
Eµ
[
|Eλs |2

]
ds+ 3CT

λ
,

from which Grönwall’s lemma gives

sup
0⩽t⩽T

Eµ
[
|Eλt |2

]
⩽

3CT
λ

e3T (L2
b+L2

σ),

which concludes the proof of (5.10) for µ0 = µ and α = 2.

To extend the argument to µ0, we simply reweight the initial condition. Let 0 < α ⩽ 2/q.
We write, by Hölder’s inequality,

Eµ0

[
|Eλt |α

]
= Eµ

[
|Eλt |α

dµ0
dµ (X0, p0)

]
⩽ Eµ

[
|Eλt |qα

]1/q ∥∥∥∥dµ0
dµ

∥∥∥∥
Lp(µ)

⩽ Eµ
[
|Eλt |2

]α/2
∥∥∥∥dµ0

dµ

∥∥∥∥
Lp(µ)

,

(5.20)
from which the proof of (5.10) follows from the case (µ0, α) = (µ, 2).

Tightness. We now prove (5.11). Since all finite-dimensional marginals of Xλ converge to
those of X by (5.10), it is sufficient, in order to conclude to the result of Proposition 5.6, to
prove tightness for the family of pushforward measures (Xλ

∗ Pµ0)λ⩾1 on C([0, T ];Q). We use
the following criterion, which is an immediate corollary of [41, Theorem 12.3]. If the family
of initial laws

([
Xλ

0

]
∗
Pµ0

)
λ⩾1

is tight in P(Q), and there exist real numbers a, b, C > 0 such
that

∀λ > 0, 0 ⩽ s < t ⩽ T, Eµ0

[∣∣∣Xλ
s −Xλ

t

∣∣∣a] ⩽ C(t− s)1+b, (5.21)

then (Xλ
∗ Pµ0)λ⩾1 is tight in P(C([0, T ];Q)). Since

[
Xλ

0

]
∗
Pµ0 = µ0 for all λ, it is sufficient to

control moments of the form (5.21).

Fix 0 ⩽ s < t ⩽ T . The first step is to write the velocity M−1pλt in a more explicit form.
We recall that under Assumption 5.5, U(p) = 1

2p
⊤M−1p for some constant M ∈ S++

d . We view
the equation

d(M−1/2pλ)t =−M−1/2∇V (qλt ) dt− λ
(
M−1/2D(qλt )−1M−1/2

)
M−1/2pλt dt

+
√

2λ
β
M−1/2D(qλt )−1/2 dWt

as a time-dependent linear ODE with a source term. To solve this equation, we introduce the
matrix of fundamental solutions to the associated homogeneous problem, namely the S++

d -valued
process defined pathwise by the ODE:

dRλt = −λM−1/2D(qλt )−1M−1/2Rλt dt, Rλ0 = Id. (5.22)
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We will use the shorthand DM for the matrix field appearing in (5.22), i.e.

DM (q) = M−1/2D(q)−1M−1/2.

Note that DM also satisfies Assumption (5.3), so that the existence, uniqueness and W -
adaptiveness of Rλ on [0, λT ] all follow from the general theory of linear ODEs with continuous
coefficients, see for instance [317, Section 3.4].

Using Duhamel’s principle, we can write

M−1/2pλt =RλtM−1/2pλ0 −Rλt
∫ t

0
(Rλs )−1M−1/2∇V (qλs ) ds

+
√

2λ
β
Rλt

∫ t

0
(Rλs )−1M−1/2D(qλs )−1/2 dW λ

s .

The validity of this expression may be checked a posteriori by applying Itô’s product rule
to (Rλt )−1M−1/2pλt , and using the expression

d
(
Rλt
)−1

= λ
(
Rλt
)−1

DM (qλt ) dt,

which itself is a consequence the well-known matrix identity ∂t(A(t)−1) = −A(t)−1∂tA(t)A(t)−1.

Left-multiplying M−1/2pt by M−1/2 and integrating over [λs, λt], it follows, according to
the SDE (5.1), that the time-rescaled position increments can be written as

Xλ
t −Xλ

s =
∫ λt

λs
M−1pλr dr = M−1/2

[∫ λt

λs

(
RλrM−1/2p0 −Rr

∫ r

0
(Rλu)−1M−1/2∇V (qλu) du

+
√

2λ
β
Rλr

∫ r

0

(
Rλu
)−1

M−1/2D(qλu)−1/2 dW λ
u

)
dr
]
,

which we split into three summands as M−1/2 [I1(s, t) + I2(s, t) + I3(s, t)].

Take γ > 1. Using the bound |Xλ
t −Xλ

s |γ ⩽ ∥M−1/2∥γop3γ−1(|I1(s, t)|γ+|I2(s, t)|γ+|I3(s, t)|γ),
it remains to control the three integral terms separately, seeking uniform-in-λ estimates for
their Pµ0-expectation. We use the inequality:

∀ 0 ⩽ s ⩽ t ⩽ T,

∥∥∥∥Rλt (Rλs)−1
∥∥∥∥ ⩽ e−λεD,M (t−s) Pµ0-almost surely, (5.23)

where ∥ · ∥ is the standard Euclidean operator norm on Rd, for some εD,M > 0 independent
of λ. This identity follows from the uniform bound (5.3), upon applying Grönwall’s inequality
pathwise, to |v(t)|2 =

∣∣∣Rλt (Rλs )−1v0
∣∣∣2, where v solves the ODE:

d
dtv(t) = −λDM (qλt )−1v(t), v(s) = v0,

for any v0 ∈ Rd (see also [317, Problem 3.31]).
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Applying (5.23) to I1, we get the following almost-sure inequality:

|I1(s, t)|γ ⩽ |M−1/2p0|γ
(∫ λt

λs
e−λεD,Mr dr

)γ
,

which gives, upon taking the expectation with respect to µ0,

Eµ0 [|I1(s, t)|γ ] ⩽ µ0(|M−1/2p0|γ)
λγεγD,M

[e−λ2εD,Ms − e−λ2εD,M t]γ ⩽
µ(|M−1/2p0|γq)1/q

λγεγD,M
Cp(µ0).

(5.24)
using the reweighting argument of (5.20) in the last inequality. Since p0 is Gaussian under µ,
the γq-th moment µ(|M−1/2p0|γq) is finite, and the estimate (5.24) controls the contribution
of I1(s, t) to Eµ0 [|Xλ

s −Xλ
t |γ ] uniformly with respect to λ.

Next, we treat the second term, writing:

|I2(s, t)|γ ⩽

(∫ λt

λs

∫ r

0

∣∣∣Rλr (Rλu)−1M−1/2∇V (qλu)
∣∣∣ dudr

)γ

⩽ (λ(t− s))γ−1
∫ λt

λs

(∫ r

0
e−λεD,M (r−u)|M−1/2∇V (qλu)| du

)γ
dr

⩽ (λ(t− s))γ−1
∫ λt

λs

(∫ r

0
e−λεD,M (r−u) du

)γ−1 (∫ r

0
e−λε(r−u)|M−1/2∇V (qλu)|γ du

)
dr

⩽
(t− s)γ−1

εγ−1
D,M

∫ λt

λs

∫ r

0
e−λεD,M (r−u)|M−1/2∇V (qλu)|γ dudr,

where we used Hölder’s inequality twice: once in r in the second line for the Lebesgue measure,
and once in u in the third line for the exponentially-weighted measure e−λεD,M (r−u) du. Taking
the expectation with respect to Pµ0 , we get, with the same reweighting argument as in previous
estimates:

Eµ0 [|I2(s, t)|γ ] ⩽ sup
0⩽u⩽t

Eµ0 [|M−1/2∇V (qλu)|γ ] (t− s)
γ−1

εγ−1
D,M

∫ λt

λs

∫ r

0
e−λεD,M (r−u) dudr

⩽ Cp(µ0)∥M−1/2∥γopµ (|∇V |γq)1/q (t− s)γ−1

εγ−1
D,M

λt− λs
λεD,M

= Cp(µ0)∥M−1/2∥γopµ (|∇V |γq)1/q (t− s)γ

εγD,M
.

(5.25)

We finally treat the last term I3(s, t), which requires some care. In the proof of [339,
Lemma 3.1], the authors suggest controlling similar double integrals by a (stochastic) Fubini
theorem followed by Doob’s maximal inequality. This argument, while giving sufficient control
formally, seems incorrect, as the resulting time-swapped integrands are not W -adapted, nor in
general (sub)martingales. A similar mistake can be found in the proof of [176, Section 3.4.2,
Lemma 10]. To avoid this difficulty, we write instead

I3(s, t) =
∫ λt

λs
Zλr dr, Zλt :=

√
2λ
β
Rλt

∫ t

0

(
Rλs
)−1

M−1/2D(qλs )−1/2 dW λ
s ,
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from which we get, using (5.22),

dZλt = −λDM (qλt )Zλt dt+
√

2λ
β
M−1/2D(qλt )−1/2 dW λ

t , (5.26)

which we integrate against −λ−1DM (qλ)−1 over [λs, λt] to obtain

I3(s, t) =
√

2
λβ

∫ λt

λs

[
D−1
M M−1/2D−1/2

]
(qλr ) dW λ

r − λ−1
∫ λt

λs
DM (qλr )−1dZλr . (5.27)

To treat the first term, we use the Burkholder–Davis–Gundy inequality to obtain the existence
of Cγ,β > 0 such that

Eµ0

[∣∣∣∣∣
√

2
λβ

∫ λt

λs

[
D−1
M D−1/2

]
(qλr ) dW λ

r

∣∣∣∣∣
γ]

⩽ Cγ,βλ
−γ/2Eµ0

(∫ λt

λs

∥∥∥[D−1
M M−1/2D−1/2

]
(qλr )

∥∥∥2

HS
dr
)γ/2


⩽ Cγ,β∥D−1

M M−1/2D−1/2∥γL∞
HS

(t− s)γ/2.

(5.28)
We rewrite the second term in (5.27), using Itô’s product rule, which gives
∫ λt

λs
DM (qλr )−1 dZλr = DM (qλλt)−1Zλλt −DM (qλλs)−1Zλλs −

∫ λt

λs

(
D−1
M

)′
(qλr )[M−1pλr ]Zλr dr.

Controlling these three terms requires some moment bounds on Zλ. The idea is to apply Itô’s
formula to Zλ with f(z) = |z|γ . In view of the SDE (5.26) satisfied by Zλ, it holds for γ > 2:

d
drEµ0

[
|Zλr |γ

]
= −λγEµ0

[
|Zλr |γ−2

(
Zλr

)⊤
DM (qλr )Zλr

]
+ λ

γ(γ − 2)
β

Eµ0

[
|Zλr |γ−4M−1/2D(qλr )−1M−1/2 : Zλr ⊗ Zλr

]
+ λ

γ

β
Eµ0

[
|Zλr |γ−2Tr

(
M−1/2D(qλr )−1M−1/2

)]
⩽ −λC(1)

γ Eµ0

[
|Zλr |γ

]
+ λC(2)

γ Eµ0

[
|Zλr |γ−2

]
⩽ −λC(3)

γ Eµ0

[
|Zλr |γ

]
+ λC(4)

γ ,

(5.29)

where the constants C(i)
γ > 0, 1 ⩽ i ⩽ 4 depend on D,β and M , but may be chosen uniformly

in λ. Indeed, by optimizing θγ−2 − αtγ with respect to θ, we get the inequality

∀ θ ⩾ 0, α > 0, γ > 2 θγ−2 ⩽ αθγ + α− γ−2
2

2
γ

(
γ − 2
γ

) γ−2
2
,

which we use in the last line of (5.29) with α < C
(1)
γ /C

(2)
γ to absorb Eµ0

[
|Zλr |γ−2

]
into the

dissipative term.

Solving the differential inequality with Zλ0 = 0, we get:

Eµ0

[
|Zλr |γ

]
⩽ λC(4)

γ

1− e−rλC(3)
γ

λC
(3)
γ

⩽
C

(4)
γ

C
(3)
γ

(5.30)
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for all r ⩾ 0. To make this argument rigorous, one should really apply Itô’s formula to the
stopped process Zλ

t∧τλ
K

with τλK = inf{t ⩾ 0 : |Zλt | ⩾ K} and fK a bounded C2 function satisfy-

ing fK(z)1{|z|⩽K} = |z|γ . One can then obtain Eµ0

[
|Zλ
r∧τλ

K
|γ
]
⩽ C by the computation (5.29)

(for some C not depending on K or λ), and pass to the limit K → +∞.

From the bound (5.30), it follows that

Eµ0

[∣∣∣λ−1D−1
M (qλλs)Zλλs

∣∣∣γ] ,Eµ0

[∣∣∣λ−1D−1
M (qλλt)Zλλt

∣∣∣γ] ⩽ λ−γ
∥∥∥D−1

M

∥∥∥γ
L∞

op

C
(4)
γ

C
(3)
γ

, (5.31)

and by Hölder’s inequality we finally get

Eµ0

[∣∣∣∣∣λ−1
∫ λt

λs

(
D−1
M

)′
(qλr )

[
M−1pλt

]
Zλr dr

∣∣∣∣∣
γ]

⩽ CM,D,γλ
−1(t− s)γ−1

∫ λt

λs
Eµ0

[∣∣∣M−1pλr

∣∣∣γ ∣∣∣Zλr ∣∣∣γ] dr

⩽ CM,D,γ(t− s)γ
C(4)

2γ

C
(3)
2γ

1/2

µ

(∣∣∣M−1p
∣∣∣2γq)1/q

Cp(µ0)

(5.32)
where CM,D,γ =

∥∥∥∥(D−1
M

)′
∥∥∥∥γ
L∞(Q;L(Rd;Rd×d))

is finite by Assumptions 5.1 and 5.3, where we used

Hölder’s inequality in the first line and a Cauchy–Schwarz inequality with the same reweighting
argument as before in the last line.

Collecting the estimates (5.24) (5.25), (5.28), (5.31) and (5.32), we find that there exists γ > 2
and C > 0 such that, for all λ ⩾ 1 and all 0 ⩽ s < t ⩽ T , it holds

Eµ0

[∣∣∣Xλ
t −Xλ

s

∣∣∣γ] ⩽ C(t− s)γ/2.

By the criterion (5.21), the family of path laws
(
Xλ

∗ Pµ0

)
λ⩾1

is tight, which concludes the
proof of (5.11).

5.4 Overdamped limit for a class of variable-mass matrices

In this section, we derive the overdamped limit for the underdamped Langevin dynamics, in a
simple setting where the mass matrix itself depends on the position variable. In contrast to
the dynamics (5.1) in Section 5.1, the Hamiltonian is no longer separable into a sum of kinetic
and potential terms. More precisely, we consider dynamics of the form

dqλt = ∇pHM (qλt , pλt ) dt,

dpλt = −∇qHM (qλt , pλt ) dt− λΣ(qλt )∇pHM (qλt , pλt ) dt+
√

2λ
β

Σ(qλt )1/2 dW λ
t ,

(5.33)

on Q× Rd, where HM is given by the Hamiltonian

HM (q, p) := 1
2p

⊤M−1(q)p+ E(q), E(q) = V (q) + 1
2β log detM(q), (5.34)
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with M,Σ : Q → S++
d are smooth, symmetric positive-definite matrix fields. Physically, the

variables (q, p) correspond respectively to the positions and momenta, and the matrix M to a
position-dependent “mass” parameter. Note that the corresponding Boltzmann–Gibbs measure

µM (q, p) dq dp = 1
Z

e−βHM (q,p) dq dp, Z = (2π/β)d/2
∫

Q
e−βV (q) dq (5.35)

is such that, conditionally on q, the momentum p is again Gaussian, with a covariance
matrix 1

βM(q). The normalization constant in (5.35) is independent of M , thanks to the
term 1

2β log detM(q) appearing in the potential E. Since HM is non-separable, the Boltzmann–
Gibbs measure can no longer be written as a product measure. However, the marginal in q is
again the Gibbs measure (5.5), i.e.∫

Rd
µM (q, p) dp = ν(q).

For this reason, the dynamics (5.33) can be used to sample canonical configurations. It is a
natural alternative to (5.1) if one views M as a preconditionner, adapting the covariance in the
momentum variable to anisotropic features of the target distribution. In the case of a scalar
friction Σ = γ > 0, these dynamics have been linked to the generalized Hamiltonian Monte
Carlo family of sampling algorithm, see [231, Section 3.2]. Position-dependent mass matrices
also appear naturally when considering internal-coordinate molecular dynamics, see [326], in
which the state of the system is parametrized by “internal” degrees of freedom, such as nuclear
bond lengths and torsion angles. In this setting, the dynamics (5.33) is the natural counterpart
to the Cartesian equation (5.1).

A canonical transformation. We consider the class of dynamics which can be transformed
into one of the form (5.1) via a smooth diffeomorphism

Γ(q, p) = (x, v) = (x(q, p), v(q, p)) (5.36)

satisfying the following three conditions.

◦ To come back to the original coordinates from the limiting equation in x, the coordi-
nate x ∈ Q from (5.36) should depend solely on q, i.e.

∇px = 0. (5.37)

◦ In order to preserve the Hamiltonian nature of the dynamics in the case λ = 0, the
change of variables should be a canonical transformation, meaning that it should satisfy
locally the symplecticity condition

∇Γ⊤J∇Γ = J, J =
(

0 IdRd

−IdRd 0

)
. (5.38)

◦ Finally, to apply the pathwise convergence result of Proposition 5.6, the Hamiltonian
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should become separable, with the kinetic energy given by a quadratic form

HM (q, p) = 1
2v

⊤GMv + VM ◦ x (5.39)

for some constant matrix GM ∈ S++
d and VM : Q → R.

Writing the symplecticity condition, we find

(
∇qx 0
∇qv ∇pv

)⊤

J

(
∇qx 0
∇qv ∇pv

)
=
(
∇qx⊤∇qv −∇qv⊤∇qx ∇qx⊤∇pv

−∇pv⊤∇qx 0

)
,

which imposes (since∇qx must be invertible for Γ to be a diffeomorphism) that∇qx = (∇pv)−⊤,
and that the matrix

[
∇qx⊤∇qv

]
(q, p) is symmetric. The first condition and (5.37) im-

pose ∇2
pv = 0, so that v(q, p) = A(q)p+ b(q) is affine in p. Substituting this ansatz into (5.39),

equating linear and quadratic parts in p, we find

v(q, p) = A(q)p, ∀ q ∈ Q, A(q)−⊤M−1(q)A(q)−1 = GM , b(q) = 0. (5.40)

Then, ∇qx = A(q)−⊤, so that the rows of A(q)−⊤ must be gradients of smooth functions on Q.
Therefore, x can be defined by

x(q) = q0 +
∫ 1

0
A−⊤(γ(t))γ′(t) dt, ∀ γ ∈ {f ∈ C∞([0, 1];Q) : f(0) = q0, f(1) = q} , (5.41)

for any choice of base point q0 = x(q0) and path γ. One can check with some index computation
(see Lemma 5.10) that this condition in turn implies the local symmetry property

∇qx⊤∇qv = A−1(q)∇qv = ∇qv⊤∇qx = ∇qv⊤A−⊤, (5.42)

so that the symplecticity condition (5.38) is indeed verified for this choice of (x, v).

Various classes of mass matrices ensure that the factorization (5.40) holds, with A−⊤

having gradient rows. When Q = Rd, one can simply choose M = (∇2Φ)2 for some smooth
potential Φ : Rd → R with non-degenerate Hessian, in which case A = (∇2Φ)−1 and GM = Id,
or M = (Id + ∇θ)(Id + ∇θ)⊤ for some sufficiently small vector field θ, in which case A =
(Id +∇θ)−1 and again GM = Id. More generally, this construction is valid when M factors
as M = ∇Ψ∇Ψ⊤ for some smooth diffeomorphism Ψ : Q → Q.

An Itô computation. We assume in this paragraph that the transformation Γ defined
in (5.36) by (5.40) by (5.41) is valid and smooth.

Denote by (xλt , vλt ) := Γ(qλt , pλt ). We apply Itô’s lemma to (5.33) in order to derive an SDE
in these new variables. The first simplification follows from noting that, since Γ(q, p) is linear
with respect to p, the partial Hessian of each component of Γ with respect to p vanishes – this
will simplify the computation by dropping the quadratic covariation terms.

We first write, using ∇qx = A−⊤(q),

dxλt = ∇qx(qλt )∇pHM (qλt , pλt ) dt = A−⊤(qλt )M−1(qλt )pλt dt = GMv
λ
t dt,



288 5.4. Overdamped limit for a class of variable-mass matrices

using (5.40) and the form (5.34) of the Hamiltonian in the third equality. Next,

dvλt = ∇qv(qλt , pλt ) dqλt +∇pv(qλt , pλt ) dpλt
= ∇qv(qλt , pλt )M−1(qλt )pλt dt

+A(qλt )
(
−∇qHM (qλt , pλt ) dt− λΣ(qλt )∇pHM (qλt , pλt ) dt+

√
2λ
β

Σ(qλt )1/2 dW λ
t

)

The fluctuation-dissipation term writes

−λA(qλt )Σ(qλt )M−1(qλt )pλt dt+
√

2λ
β
A(qλt )Σ(qλt )1/2 dW λ

t = −λΣ̃(qλt )GMvλt dt+
√

2λ
β

Σ̃(qλt )1/2 dW λ
t ,

where Σ̃(q) = A(q)Σ(q)A(q)⊤, and Σ̃(q)1/2 := A(q)Σ(q)1/2 is clearly a square root for Σ̃(q).

For the contribution of the force term, we write ∇qHM (q, p) = 1
2∇q

(
p⊤M−1(q)p

)
+∇E(q).

Note that

−A(qλt )∇E(qλt ) dt = − [∇qx]−⊤∇qE(qλt ) dt = −∇x (E ◦ q) (xλt ) dt,

using A(q)⊤ = [∇qx]−1 (q), leaving a final term

∇qv(qλt , pλt )M−1(qλt )pλt dt− 1
2A(qλt )∇q

(
pλ⊤
t M−1(qλt )pλt

)
dt.

We write
1
2A(q)∇q

(
p⊤M−1(q)p

)
= 1

2A(q)∇q
(
v⊤GMv

)
= A(q)∇qv⊤GMv,

as well as
∇qvM−1(q)p = ∇qvA(q)⊤A(q)−⊤M−1(q)A−1(q)A(q)p

= ∇qvA(q)⊤GMv.

Multiplying the symmetry condition (5.42) on the left by A(q) and on the right by A(q)⊤, we
see that ∇qvA(q)⊤ = A(q)∇qv⊤, which shows the remaining term is zero.

Collecting terms, (xλt , vλt ) satisfies the following Langevin equation
dxλt = GMv

λ
t dt,

dvλt = −∇VM (qλt ) dt− λΣM (qλt )GMvλt dt+
√

2λ
β

ΣM (qλt )1/2 dW λ
t ,

(5.43)

which is Equation (5.1) for the modified potential V = VM , kinetic energy U(v) = 1
2v

⊤GMv,
and friction matrix D = ΣM defined by

VM (x) = [E ◦ q] (x), ΣM (x) =
[
AΣA⊤ ◦ q

]
(x), ΣM (x)1/2 =

[
AΣ1/2 ◦ q

]
(x). (5.44)

Overdamped limit and application to the case Q = R. We apply Proposition 5.6 to
the transformed equation (5.43).
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Corollary 5.8. Assume that V : Q → R satisfies Assumptions 5.1 and 5.4, and that the
transformation Γ defined in (5.36) is a smooth symplectic transformation, where M satisfies a
factorization of the form (5.40). Assume moreover that M , A, Σ are smooth and W2,∞, and
that Assumption 5.3 is satisfied for D = M (and therefore also for D = AA⊤) and D = Σ−1.
Suppose that, for each λ > 0, (qλ0 , pλ0) = (q0, p0), with (q0, p0) ∼ µ0 ∈ P(Q × Rd), such
that µ0 ≪ µM , and dµ0

dµM
∈ Lp(µM ) for some p > 1. For any λ > 0, let (qλt , pλt )t⩾0 be a solution

to (5.33).

Then, denoting (Qλt )t⩾0 = (qλλt)t⩾0, it holds

Qλ∗Pµ0
weakly−−−−→
λ→+∞

QM∗ Pµ0 in P(C([0, T ],Q)),

where QMt = q(ZMt ) and ZM solves the SDE

dZMt = −Σ−1
M (ZMt )∇VM (ZMt ) dt+ 1

β
div Σ−1

M (ZMt ) dt+
√

2
β

Σ−1/2
M (ZMt ) dWt, (5.45)

and ZM0 ∼ ν is independent from W .

Proof. Denote ZM,λ
t = xλλt, where (xλ, vλ) solves the SDE (5.43). By the previous computa-

tion, q ◦ ZM,λ = Qλ.

Since M and log detM are uniformly bounded on Q, is straightforward to check that the
coefficients VM and ΣM in Equation (5.43) and the kinetic energy UM (v) = 1

2v
⊤GMv satisfy

Assumptions 5.1, 5.3 and 5.4 of Theorem 5.6. Furthermore, Assumption (5.5) is obviously
satisfied, as well as Assumption 5.2 using Lemma 5.9.

The fact that the distribution of (xλ0 , vλ0 ), given by Γ∗µ0 ≪ µ, satisfies d(Γ∗µ0)
dµ ∈ Lp(µ)

follows from a change of variables, since Γ∗µM = µ and Γ is a symplectic transformation, with
Jacobian determinant | det ∇Γ|2 = |det J | = 1.

Moreover (q ◦ ZM,λ)∗Pµ0 = Qλ∗Pµ0 for all λ ⩾ 0, from the previous computation. Since
the mapping f 7→ q ◦ f is continuous on C([0, T ];Q), taking the weak limit of this identity
as λ → +∞ using the second item in Proposition 5.6 shows that Qλ∗Pµ0 → (q ◦ ZM )∗Pµ0

weakly in P(C([0, T ];Q)), where ZM satisfies the SDE (5.45).

The limiting dynamics from Corollary 5.8 is not fully explicit, but in view of the specific form
of the coefficients (5.44), it is in fact closed with respect to QMt . We make this observation
precise in the one-dimensional case Q = R, keeping in mind that similar computations can be
performed in the higher-dimensional case.

The dynamics (5.33) writes
dqλt = pλt

m(qλt )
dt,

dpλt = −e′(qλt ) dt− 1
2β

m′(qλt )
m(qλt )

dt− λ σ(qλt )
m(qλt )

pλt dt+

√
2λσ(qλt )

β
dBt,
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where m,σ, e′ are smooth and globally Lipschitz, ε ⩽ m,σ ⩽ ε−1 for some ε > 0, and B is a
Wiener process. The condition (5.40) is verified vacuously for a(q) = m(q)−1/2, with

Γ(q, p) = (x, v) =
(∫ q

0

√
m(t) dt, p/

√
m(q)

)
.

From Corollary 5.8, the overdamped limit of x(qλλt) in the limit λ → +∞ satisfies the
one-dimensional SDE

dZt = −q′(Zt)
v′

a2σ
(q(Zt)) dt− q′(Zt)

m′

2βma2σ
(q(Zt)) dt+ 1

β

( 1
a2σ
◦ q
)′

(Zt) dt+
√

2
β

1
a
√
σ

(q(Zt)) dBt

= −e
′√m
σ

(q(Zt)) dt− m′

2βσ
√
m

(q(Zt)) dt+ 1
β

(
m

σ
◦ q
)′

(Zt) dt+
√

2m
βσ

(q(Zt)) dBt

= −e
′√m
σ

(q(Zt)) dt− m′

2βσ
√
m

(q(Zt)) dt+ 1
β

[
m′
√
mσ
− σ′√m

σ2

]
(q(Zt)) dt+

√
2m
βσ

(q(Zt)) dBt,

(5.46)
using q′ = 1√

m
◦ q in the last two lines. We now apply Itô’s formula with f(z) = q(z).

Denoting Qt = q(zt), dQt = q′(zt)dzt + m
σβ (q(zt))q′′(zt) dt, substituting (5.46), and us-

ing q′′ = − m′

2m2 ◦ q, we find, after a simple computation, that

dQt = −e
′

σ
(Qt) dt− 1

β

σ′

σ2 (Qt) dt+
√

2
βσ

(Qt) dBt,

which corresponds to the dynamics (5.4) with the choice D = σ−1, and is interestingly
independent from the choice of m.

Appendix 5.A: Proofs of technical results

In this appendix, we gather the proofs of some useful technical lemmas.

Lemma 5.9 (Sufficient condition for hypoellipticity). Suppose Assumptions 5.1 and 5.3 are
satisfied, and furthermore that ∇2U is everywhere non-degenerate. Then Assumption 5.2 is
satisfied.

Proof. We write

Lλ = A0,λ +
d∑
j=1
A†
j,λAj,λ, ∀ 1 ⩽ j ⩽ d, Aj,λ =

√
λ

β

(
D−1/2(q)∇p

)
j
,

where “†” denotes the L2(Q× Rd) formal adjoint, and

A0,λ = A− λ∇U⊤D−1(q)∇p.

We check that the vector fields (Aj,λ)0⩽j⩽d satisfy Hörmander’s bracket condition (see [174]),
namely that their Lie algebra has full rank 2d everywhere.
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Computing, for 1 ⩽ α ⩽ d, the commutator

[A0,λ,Aα,λ] =
√
λ

β

∑
i,j,k

[
(∂iU)∂qi − (∂iV ) ∂pi − λ (∂iU)D−1

ij ∂pj , D
−1/2
αk ∂pk

]

=
√
λ

β

∑
i,j,k

[
(∂iU)∂qi − λ (∂iU)D−1

ij ∂pj , D
−1/2
αk ∂pk

]

= −
∑
i,k

√
λ

β
(∂2
kiU)D−1/2

αk ∂qi + Xα,λ

= −
√
λ

β

(
D−1/2∇2U∇q

)
α

+ Xα,λ

for some Xα,λ ∈ Span(∂pi , 1 ⩽ i ⩽ d). Since D−1/2 has full rank everywhere by Assumption 5.3,
it follows that Span(∂qi , ∂pi , 1 ⩽ i ⩽ d) = Span(Ai,λ, [A0,λ,Ai,λ], 1 ⩽ i ⩽ d) whenever ∇2U has
full rank.

Even if ∇2U is degenerate at some points, one may still be able to show the hypoellipticity
of the generator by considering higher-order brackets, which leads to sufficient conditions
involving higher derivatives of U , see the discussion in [62, Appendix A].

Proof of Lemma 5.7. We prove the uniform-in-λ L2
0(µ)-hypocoercivity estimates used in

the proof of Proposition 5.6.

Proof. We adapt the proof of [37, Theorem 3.3], and refer to it for more details. It suffices
to replace LFD = − 1

β∇
∗
p∇p by S = − 1

β∇
∗
pD

−1∇p whenever this operator appears, and use
the uniform bound (5.7) to carry through the estimates. Note that since A∗

1 = S∗
1 = 0,

both A and S preserve L2
0(µ). As in [37], we write Π+ = Id−Π0, and Aαα′ = ΠαAΠα′ for any

operator A on L2
0(µ) and α, α′ ∈ {0, +}.

To check that [37, Assumption 2.2] holds, we make the choice

s = λ
K2
κ

MDβ
, (5.47)

whose validity follows from Assumptions 5.3 and the Poincaré inequality (5.9) for κ. The
verification of [37, Assumption 2.3] is unchanged, since the antisymmetric part A does not
involve D. We now check [37, Assumption 2.6]. This involves showing the L2

0(µ)-boundedness
of two operators, defined by

Aλ = λΠ1SΠ1, Bλ = λΠ2SAΠ0 (A∗
+0A+0)−1 + Π2A2Π0 (A∗

+0A+0)−1 ,

where Π1 is the orthogonal projector onto RanA+0 ⊂ Π+L
2
0(µ) and Π2 is the projector onto its

orthogonal complement in Π+L
2
0(µ).

To show that Aλ is bounded, we compute (as in [37])

−A∗
+0SA+0 = 1

β
∇∗
qN∇qΠ0, N (q) =

∫
Rd
∇2UD−1(q)∇2U dκ,
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and the entries of this matrix N are bounded as multiplication operators on L2(ν) from
Assumption 5.3. Therefore, the same factorization argument as in [37, Theorem 3.3] shows
that Aλ is bounded, with a bound

∥Aλ∥ = λ ∥A1∥ < +∞, (5.48)

where ∥ · ∥ denotes the L2
0(µ)-operator norm.

To show the boundeness of Bλ, we only need to check that

G = Π2SAΠ0 (A∗
+0A+0)−1

is a bounded operator, since
H = Π2A2Π0 (A∗

+0A+0)−1

is a bounded operator which does not involve D, following the same arguments as in the proof
of [37, Theorem 3.3].

To show that G is a bounded operator, we compute

λSAΠ0 = λT ∇q, T (q) = − 1
β2∇

∗
pD

−1(q)∇p∇∗
pΠ0,

and the entries of the row-vector T are bounded operators on L2
0(µ), since D−1(q) is a matrix

of bounded operators on L2(ν), whose entries commute with any of the ∂pi , ∂∗
pi

. From here,
the boundedness of G and therefore of Bλ follows using Assumption 5.4, with the same
factorizations and commutation relations as in the proof of [37, Theorem 3.3]. In particular
we get the following bound:

∥Bλ∥ ⩽ λ∥G∥+ ∥H∥ < +∞. (5.49)

We now show the uniform-in-λ estimates (5.12). In [37, Equation 2.3], the authors compute
the block decomposition of L−1

λ on L2
0(µ) = Π0L

2
0(µ)⊕Π+L

2
0(µ), which is given by

L−1
λ =

 S−1
0,λ −S−1

0,λA0+

[
L−1
λ

]
++

−
[
L−1
λ

]
++
A+0S

−1
0,λ

[
L−1
λ

]
++

+
[
L−1
λ

]
++
A+0S

−1
0,λA0+

[
L−1
λ

]
++

, (5.50)

where S0,λ = A∗
+0

[
L−1
λ

]
++
A+0 is the Schur complement associated with this decomposition,

acting on Π0L
2
0(µ). The proof of [37, Theorem 2.7] shows that all these blocks are bounded

operators from L2
0(µ) to L2(µ). The top-left block S−1

0,λ can be shown to be of order λ in
operator norm, while the bottom-right block is of order λ−1, and the off-diagonal blocks are
of order 1. Therefore, general hypocoercive estimates only provide a bound on the operator
norm

∥∥∥L−1
λ

∥∥∥
L2

0(µ)→L2(µ)
= O(max(λ, λ−1)).

However, in the specific case φ ∈ Π+L
2
0(µ), some terms (namely those corresponding to the

left-column of the decomposition (5.50)) will be dropped from the final estimate for ∥L−1
λ φ∥L2(µ),

which leads to an estimate
∥∥∥L−1

λ

∥∥∥
Π+L2

0(µ)→L2(µ)
= O(1) in the limit λ→ +∞. More precisely,
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in this case,

L−1
λ φ =

(
−S−1

0,λA0+

[
L−1
λ

]
++

+
[
L−1
λ

]
++

+
[
L−1
λ

]
++
A+0S

−1
0,λA0+

[
L−1
λ

]
++

)
φ,

where the proof of [37, Theorem 2.7] shows that

∥∥∥[L−1
λ

]
++

+
[
L−1
λ

]
++
A+0S

−1
0,λA0+

[
L−1
λ

]
++

∥∥∥ ⩽ 2
s

(5.51)

in operator norm on L2
0(µ), with s is defined in (5.47). The remaining term is bounded by

∥∥∥S−1
0,λA0+

[
L−1
λ

]
++

∥∥∥ ⩽
√√√√∥∥∥S−1

0,λ

∥∥∥
s

⩽ s−1/2

√
∥Aλ∥
a2 + b

∥Bλ∥
s

, (5.52)

where the constants a, b are independent from λ. From the bounds (5.51) and (5.52), the first
estimate in (5.12) follows from the linear scaling in λ of each of s, ∥Aλ∥ and ∥Bλ∥ as λ→ +∞,
which follows from (5.47), (5.48) and (5.49).

To estimate ∇pL−1
λ φ, we have from an integration by parts that〈
φ,L−1

λ φ
〉
L2(µ)

= λ
〈
SL−1

λ φ,L−1
λ φ

〉
L2(µ)

= −λ
β
µ

([
∇pL−1

λ φ
]⊤
D−1

[
∇pL−1

λ φ
])

⩽ − λ

βMD
∥∇pL−1

λ φ∥2L2(µ),

using Assumption 5.3 in the last line. From this bound, a Cauchy–Schwarz inequality gives

∥∥∥∇pL−1
λ φ

∥∥∥2

L2(µ)
⩽
βMD

λ
∥φ∥L2(µ)∥L−1

λ φ∥L2(µ) ⩽
C1βMD

λ
∥φ∥2L2(µ),

using the previous bound on ∥L−1
λ φ∥L2(µ).

Lemma 5.10 (Index computation). Let A : Q → Rd×d be a smooth matrix field such that A−⊤

has gradient rows, and v(q, p) = A(q)p. Then the relation (5.42) holds.

Proof. SinceA−1 has gradient columns, we may write locally (A−1)ij = ∂iϕj for some (ϕj)1⩽j⩽d ∈ C∞(Q)d.
We compute, with derivatives taken with respect to the q-variable:

(A−1∇qv)ij =
∑
α,β

(A−1)iα∂j(Aαβ)pβ

= −
∑
α,β

(A−1)iα
[
A∂j(A−1)A

]
αβ
pβ

= −
∑
γ,β

∂j(A−1)iγAγβpβ

= −
∑
γ

∂2
jiϕγvγ ,

using the matrix identity ∂jA = −A∂j(A−1)A. This shows that A−1∇qv is symmetric, and
therefore that (5.42) holds.



Bibliography

[1] F. Abraham, R. Walkup, H. Gao, M. Duchaineau, T. Diaz De La Rubia, and
M. Seager, Simulating materials failure by using up to one billion atoms and the world’s
fastest computer: Work-hardening, Proceedings of the National Academy of Sciences, 99
(2002), pp. 5783–5787.

[2] A. Agarwal, S. Gnanakaran, N. Hengartner, A. Voter, and D. Perez,
Arbitrarily accurate representation of atomistic dynamics via Markov renewal processes,
preprint arXiv:2008.11623, (2020).

[3] B. Alder, D. Gass, and T. Wainwright, Studies in molecular dynamics. VIII. The
transport coefficients for a hard-sphere fluid, The Journal of Chemical Physics, 53 (1970),
pp. 3813–3826.

[4] B. Alder and T. Wainwright, Phase transition for a hard sphere system, The Journal
of Chemical Physics, 27 (1957), pp. 1208–1209.

[5] A. Aleksian, P. Del Moral, A. Kurtzmann, and J. Tugaut, Self-interacting
diffusions: Long-time behaviour and exit-problem in the uniformly convex case, ESAIM:
Probability and Statistics, 28 (2024), pp. 46–61.

[6] G. Allaire and M. Schoenauer, Conception optimale de structures, vol. 58 of SMAI
Mathématiques et Applications, Springer, 2007.

[7] M. Allen and D. Tildesley, Computer Simulation of Liquids, Oxford University
Press, 2017.

[8] R. Allen, C. Valeriani, and P. Ten Wolde, Forward flux sampling for rare event
simulations, Journal of Physics: Condensed Matter, 21 (2009), pp. 463102:1–21.

[9] H. Ammari, K. Kalimeris, H. Kang, and H. Lee, Layer potential techniques for
the narrow escape problem, Journal de mathématiques pures et appliquées, 97 (2012),
pp. 66–84.

[10] H. Andersen, RATTLE: A “velocity” version of the SHAKE algorithm for molecular
dynamics calculations, Journal of Computational Physics, 52 (1983), pp. 24–34.

294



Bibliography 295

[11] S. Andradóttir, D. Heyman, and T. Ott, Variance reduction through smoothing
and control variates for Markov chain simulations, ACM Transactions on Modeling and
Computer Simulation (TOMACS), 3 (1993), pp. 167–189.

[12] D. Aristoff, Generalizing parallel replica dynamics: trajectory fragments, asynchronous
computing, and PDMPs, SIAM/ASA Journal on Uncertainty Quantification, 7 (2019),
pp. 685–719.

[13] D. Aristoff, M. Johnson, and D. Perez, Arbitrarily accurate, nonparametric
coarse graining with Markov renewal processes and the Mori–Zwanzig formulation, AIP
Advances, 13 (2023), p. 095131.

[14] D. Aristoff and T. Leli‘evre, Mathematical analysis of temperature accelerated
dynamics, Multiscale Modeling & Simulation, 12 (2014), pp. 290–317.

[15] D. Aristoff, T. Lelièvre, and G. Simpson, The parallel replica method for simulating
long trajectories of Markov chains, Applied Mathematics Research eXpress, 2014 (2014),
pp. 332–352.

[16] S. Arrhenius, On the reaction velocity of the inversion of cane sugar by acids, in
Selected Readings in Chemical Kinetics, Elsevier, 1967, pp. 31–35.

[17] G. Arya, E. J. Maginn, and H.-C. Chang, Efficient viscosity estimation from molec-
ular dynamics simulation via momentum impulse relaxation, The Journal of Chemical
Physics, 113 (2000), pp. 2079–2087.

[18] M. Ashbaugh and R. Benguria, A sharp bound for the ratio of the first two eigenvalues
of Dirichlet Laplacians and extensions, Annals of Mathematics, 135 (1992), pp. 601–628.

[19] R. Azencott, Y. Guivarc’h, and R. F. Gundy, Ecole d’Eté de Probabilités de
Saint-Flour VIII-1978, vol. 774 of Lecture Notes in Mathematics, Springer, 1980.

[20] R. Balian, From Microphysics to Macrophysics, vol. 3 of Theoretical and Mathematical
Physics, Springer, 1991.

[21] G. Barrera and M. Jara, Thermalisation for small random perturbations of dynamical
systems, The Annals of Applied Probability, 30 (2020), pp. 1164–1208.

[22] E. Barth, K. Kuczera, B. Leimkuhler, and R. Skeel, Algorithms for constrained
molecular dynamics, Journal of Computational Chemistry, 16 (1995), pp. 1192–1209.

[23] A. Bartók, R. Kondor, and G. Csányi, On representing chemical environments,
Physical Review B—Condensed Matter and Materials Physics, 87 (2013), p. 184115.

[24] A. Bartók, M. Payne, R. Kondor, and G. Csányi, Gaussian approximation
potentials: The accuracy of quantum mechanics, without the electrons, Physical Review
Letters, 104 (2010), p. 136403.

[25] M. Baskes, J. Nelson, and A. Wright, Semiempirical modified embedded-atom
potentials for silicon and germanium, Physical Review B, 40 (1989), p. 6085.



296 Bibliography

[26] G. Battimelli, G. Ciccotti, and P. Greco, Computer Meets Theoretical Physics,
vol. 85 of The Frontiers Collection, Springer, 2020.

[27] A. Baydin, B. Pearlmutter, A. Radul, and J. Siskind, Automatic differentiation
in machine learning: a survey, Journal of Machine Learning Research, 18 (2018), pp. 1–43.

[28] J. Behler, Four generations of high-dimensional neural network potentials, Chemical
Reviews, 121 (2021), pp. 10037–10072.

[29] J. Behler and M. Parrinello, Generalized neural-network representation of high-
dimensional potential-energy surfaces, Physical Review Letters, 98 (2007), p. 146401.

[30] M. Benaïm, N. Champagnat, W. Oçafrain, and D. Villemonais, Degenerate
processes killed at the boundary of a domain, The Annals of Probability, 53 (2025),
pp. 720–752.

[31] M. Benaim, B. Cloez, and F. Panloup, Stochastic approximation of quasi-stationary
distributions on compact spaces and applications, The Annals of Applied Probability, 28
(2018), pp. 2370–2416.

[32] F. Berezin and M. Shubin, The Schrödinger Equation, vol. 66, Springer Science &
Business Media, 2012.

[33] N. Berglund, Kramers’ law: Validity, derivations and generalisations, Markov Processes
And Related Fields, 19 (2013), pp. 459–490.

[34] N. Berglund, G. Di Gesù, and H. Weber, An Eyring–Kramers law for the stochastic
Allen–Cahn equation in dimension two, Electronic Journal of Probability, 22 (2017),
pp. 1–27.

[35] N. Berglund and B. Gentz, The Eyring–Kramers law for potentials with nonquadratic
saddles, Markov Processes And Related Fields, 16 (2010), pp. 549–598.

[36] , The Eyring–Kramers law for potentials with nonquadratic saddles, Markov Pro-
cesses and Related Fields, 16 (2010), pp. 549–598.

[37] E. Bernard, M. Fathi, A. Levitt, and G. Stoltz, Hypocoercivity with Schur
complements, Annales Henri Lebesgue, 5 (2022), pp. 523–557.

[38] R. Bhattacharya, On the functional central limit theorem and the law of the iterated
logarithm for Markov processes, Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte
Gebiete, 60 (1982), pp. 185–201.

[39] A. Bianchi and A. Gaudilliere, Metastable states, quasi-stationary distributions and
soft measures, Stochastic Processes and their Applications, 126 (2016), pp. 1622–1680.

[40] A. Bianchi, A. Gaudillière, and P. Milanesi, On soft capacities, quasi-stationary
distributions and the pathwise approach to metastability, Journal of Statistical Physics,
181 (2020), pp. 1052–1086.

[41] P. Billingsley, Convergence of Probability Measures, Wiley Series in Probability and
Statistics, John Wiley & Sons, 1968.



Bibliography 297

[42] A. Binder, T. Lelièvre, and G. Simpson, A generalized parallel replica dynamics,
Journal of Computational Physics, 284 (2015), pp. 595–616.

[43] J. Birrell, S. Hottovy, G. Volpe, and J. Wehr, Small mass limit of a langevin
equation on a manifold, Annales Henri Poincaré, 18 (2017), pp. 707–755.

[44] N. Biswas, P. Jacob, and P. Vanetti, Estimating convergence of Markov chains
with L-lag couplings, Advances in neural information processing systems, 32 (2019).

[45] N. Blassel, Code and data repository for chapter 4: https: // github. com/
noeblassel/ NortonMethod , 2023.

[46] , Code repository for chapter 3: https: // github. com/ noeblassel/ sosad , 2025.

[47] , Data repository for chapter 3: https: // zenodo. org/ records/ 15727493 , 2025.

[48] , A hypocoercive approach of the overdamped limit for the kinetic Langevin equation
with multiplicative noise, In preparation, (2025).

[49] N. Blassel, L. Carillo, S. Darshan, R. Gastaldello, A. Iacobucci, E. Marini,
R. Santet, X. Shang, G. Stoltz, and U. Vaes, Mathematical analysis and nu-
merical methods for the computation of transport coefficients in molecular dynamics, In
preparation, (2025).

[50] N. Blassel, T. Lelièvre, and G. Stoltz, Quantitative low-temperature asymptotics
for reversible diffusions in temperature-dependent domains, preprint arXiv:2501.16082,
(2025).

[51] , Shape optimization of metastable states, preprint arXiv:2507.12575, (2025).

[52] N. Blassel and G. Stoltz, Fixing the flux: A dual approach to computing transport
coefficients, Journal of Statistical Physics, 191 (2024).

[53] M. Blazhynska, J. Gumbart, H. Chen, E. Tajkhorshid, B. Roux, and
C. Chipot, A rigorous framework for calculating protein–protein binding affinities
in membranes, Journal of Chemical Theory and Computation, 19 (2023), pp. 9077–9092.

[54] P. Bolhuis, C. Dellago, and D. Chandler, Reaction coordinates of biomolecular
isomerization, Proceedings of the National Academy of Sciences, 97 (2000), pp. 5877–
5882.

[55] J. Bony, D. Le Peutrec, and L. Michel, Eyring–Kramers law for Fokker–Planck
type differential operators, Journal of the European Mathematical Society, Online First
(2024).

[56] M. Born and R. Oppenheimer, Zur Quantentheorie der Molekeln, Annalen der Physik,
84 (1927), pp. 457–484.

[57] F. Bouchet and J. Reygner, Generalisation of the Eyring–Kramers transition rate
formula to irreversible diffusion processes, Annales Henri Poincaré, 17 (2016), pp. 3499–
3532.

https://github.com/noeblassel/NortonMethod
https://github.com/noeblassel/NortonMethod
https://github.com/noeblassel/sosad
https://zenodo.org/records/15727493


298 Bibliography

[58] A. Bovier and F. Den Hollander, Metastability: A Potential-Theoretic Approach,
vol. 351 of A Series of Comprehensive Studies in Mathematics, Springer, 2016.

[59] A. Bovier, M. Eckhoff, V. Gayrard, and M. Klein, Metastability and low lying
spectra in reversible Markov chains, Communications in Mathematical Physics, 228
(2002), pp. 219–255.

[60] , Metastability in reversible diffusion processes. I: Sharp asymptotics for capacities
and exit times, Journal of the European Mathematical Society, 6 (2004), pp. 399–424.

[61] A. Bovier, V. Gayrard, and M. Klein, Metastability in reversible diffusion processes.
II: Precise asymptotics for small eigenvalues, Journal of the European Mathematical
Society, 7 (2005), pp. 69–99.

[62] G. Brigati and G. Stoltz, How to construct explicit decay rates for kinetic Fokker–
Planck equations?, SIAM Journal on Mathematical Analysis, 57 (2025), pp. 3587–3622.

[63] B. Brooks, R. Bruccoleri, B. Olafson, D. States, S. Swaminathan, and
M. Karplus, CHARMM: a program for macromolecular energy, minimization, and
dynamics calculations, Journal of Computational Chemistry, 4 (1983), pp. 187–217.

[64] K. Burdzy, R. Hołyst, and P. March, A Fleming–Viot particle representation of the
Dirichlet Laplacian, Communications in Mathematical Physics, 214 (2000), pp. 679–703.

[65] E. Cancès, C. Le Bris, and Y. Maday, Méthodes Mathématiques en Chimie Quan-
tique, vol. 53 of Mathématiques & Applications, Springer, 2006.

[66] N. Cancrini and S. Olla, Ensemble dependence of fluctuations: Canoni-
cal/microcanonical equivalence of ensembles, Journal of Statistical Physics, 168 (2017),
pp. 707–730.

[67] R. Carmona, Pointwise bounds for Schrödinger eigenstates, Communications in Mathe-
matical Physics, 62 (1978), pp. 97–106.

[68] F. Cérou, A. Guyader, and M. Rousset, Adaptive multilevel splitting: Historical
perspective and recent results, Chaos: An Interdisciplinary Journal of Nonlinear Science,
29 (2019), pp. 043108:1–12.

[69] S. Cerrai and M. Freidlin, Smoluchowski-Kramers approximation for a general class
of SPDEs, Journal of Evolution Equations, 6 (2006), pp. 657–689.

[70] M. Chak, N. Kantas, T. Lelièvre, and G. Pavliotis, Optimal friction matrix
for underdamped Langevin sampling, ESAIM: Mathematical Modelling and Numerical
Analysis, 57 (2023), pp. 3335–3371.

[71] N. Champagnat, K. Coulibaly-Pasquier, and D. Villemonais, Criteria for
exponential convergence to quasi-stationary distributions and applications to multi-
dimensional diffusions, in Séminaire de Probabilités XLIX, vol. 2215 of Lecture Notes in
Mathematics, Springer, 2018, pp. 165–182.



Bibliography 299

[72] N. Champagnat and D. Villemonais, Exponential convergence to quasi-stationary
distribution and Q-process, Probability Theory and Related Fields, 164 (2016), pp. 243–
283.

[73] , General criteria for the study of quasi-stationarity, Electronic Journal of Probabil-
ity, 28 (2023), pp. 1–84.

[74] M. Chen, Collective variable-based enhanced sampling and machine learning, The
European Physical Journal B, 94 (2021), pp. 1–17.

[75] D. Chenais, On the existence of a solution in a domain identification problem, Journal
of Mathematical Analysis and Applications, 52 (1975), pp. 189–219.

[76] R. Chetrite and H. Touchette, Nonequilibrium microcanonical and canonical
ensembles and their equivalence, Physical Review Letters, 111 (2013), pp. 120601:1–5.

[77] M. Christian and N. Karel, Rigorous meaning of McLennan ensembles, Journal of
Mathematical Physics, 51 (2010), p. 015219.

[78] G. Ciccotti and M. Ferrario, Non-equilibrium by molecular dynamics: A dynamical
approach, Molecular Simulation, 42 (2016), pp. 1385–1400.

[79] G. Ciccotti and G. Jacucci, Direct computation of dynamical response by molecular
dynamics: The mobility of a charged Lennard–Jones particle, Physical Review Letters,
35 (1975), pp. 789–792.

[80] G. Ciccotti, G. Jacucci, and I. McDonald, Transport properties of molten alkali
halides, Physical Review A, 13 (1976), pp. 426–436.

[81] G. Ciccotti, G. Jacucci, and I. R. McDonald, "Thought-experiments" by molecular
dynamics, Journal of Statistical Physics, 21 (1979), pp. 1–22.

[82] G. Ciccotti, R. Kapral, and A. Sergi, Non-Equilibrium Molecular Dynamics, in
Handbook of Materials Modeling: Methods, S. Yip, ed., Springer, 2005, pp. 745–761.

[83] G. Ciccotti, T. Lelièvre, and E. Vanden-Eijnden, Projection of diffusions on
submanifolds: Application to mean force computation, Communications on Pure and
Applied Mathematics, 61 (2008), pp. 371–408.

[84] P. Collet, S. Martínez, and J. San Martín, Quasi-Stationary Distributions,
Probability and its Applications, Springer, 2013.

[85] J. Comer, J. Gumbart, J. Hénin, T. Lelièvre, A. Pohorille, and C. Chipot,
The adaptive biasing force method: everything you always wanted to know but were afraid
to ask, The Journal of Physical Chemistry B, 119 (2015), pp. 1129–1151.

[86] T. Cui, X. Tong, and O. Zahm, Optimal Riemannian metric for Poincaré inequalities
and how to ideally precondition Langevin dynamics, preprint arXiv:2404.02554, (2024).

[87] C. Dapogny, P. Frey, F. Omnès, and Y. Privat, Geometrical shape optimization
in fluid mechanics using FreeFem++, Structural and Multidisciplinary Optimization, 58
(2018), pp. 2761–2788.



300 Bibliography

[88] S. Darshan, A. Eberle, and G. Stoltz, Sticky coupling as a control variate for
sensitivity analysis, preprint arXiv:2409.15500, (2024).

[89] S. Darshan and G. Stoltz, Equivalence of Norton and Thévenin ensembles for
mean-field interacting particle systems, In preparation, (2025).

[90] E. Davies, Metastable states of symmetric Markov semigroups I, Proceedings of the
London Mathematical Society, 3 (1982), pp. 133–150.

[91] E. B. Davies, Metastable states of symmetric Markov semigroups II, Journal of the
London Mathematical Society, 2 (1982), pp. 541–556.

[92] M. Daw and M. Baskes, Embedded-atom method: Derivation and application to
impurities, surfaces, and other defects in metals, Physical review B, 29 (1984), pp. 6443–
6453.

[93] M. Day, On the exponential exit law in the small parameter exit problem, Stochastics:
An International Journal of Probability and Stochastic Processes, 8 (1983), pp. 297–323.

[94] F. De Gournay, Velocity extension for the level-set method and multiple eigenvalues in
shape optimization, SIAM Journal on Control and Optimization, 45 (2006), pp. 343–367.

[95] P. Del Moral and L. Miclo, A Moran particle system approximation of Feynman–
Kac formulae, Stochastic processes and their applications, 86 (2000), pp. 193–216.

[96] J. Delhommelle and P. Cummings, Simulation of friction in nanoconfined fluids for
an arbitrarily low shear rate, Physical Review B, 72 (2005), pp. 172201:1–4.

[97] C. Dellago, P. Bolhuis, and P. Geissler, Transition path sampling, Advances in
Chemical Physics, 123 (2002), pp. 1–78.

[98] A. Dembo and O. Zeitouni, Large Deviations Techniques and Applications, vol. 38 of
Applications of Mathematics, Springer, 2009.

[99] G. Di Gesù, T. Lelièvre, D. Le Peutrec, and B. Nectoux, Jump Markov
models and transition state theory: the quasi-stationary distribution approach, Faraday
discussions, 195 (2016), pp. 469–495.

[100] , Sharp asymptotics of the first exit point density, Annals of PDE, 5 (2019).

[101] , The exit from a metastable state: Concentration of the exit point distribution on
the low energy saddle points, part 1, Journal de Mathématiques Pures et Appliquées, 138
(2020), pp. 242–306.

[102] M. Dimassi and J. Sjostrand, Spectral Asymptotics in the Semi-Classical Limit,
no. 268 in London Mathematical Society Lecture Note Series, Cambridge University
Press, 1999.

[103] M. Dobson, Periodic boundary conditions for long-time nonequilibrium molecular
dynamics simulations of incompressible flows, The Journal of Chemical Physics, 141
(2014), p. 184103.



Bibliography 301

[104] M. Dobson, F. Legoll, T. Lelièvre, and G. Stoltz, Derivation of langevin
dynamics in a nonzero background flowfield, ESAIM: Mathematical Modelling and
Numerical Analysis, 47 (2013), pp. 1583–1626.

[105] J. Dolbeault, A. Klar, C. Mouhot, and C. Schmeiser, Exponential rate of
convergence to equilibrium for a model describing fiber lay-down processes, Applied
Mathematics Research eXpress, 2013 (2013), pp. 165–175.

[106] J. Dolbeault, C. Mouhot, and C. Schmeiser, Hypocoercivity for linear kinetic
equations conserving mass, Transactions of the American Mathematical Society, 367
(2015), pp. 3807–3828.

[107] R. Douc, E. Moulines, P. Priouret, and P. Soulier, Markov Chains, vol. 4,
Springer, 2018.

[108] R. Drautz, Atomic cluster expansion for accurate and transferable interatomic potentials,
Physical Review B, 99 (2019), p. 014104.

[109] Y. Duan and P. Kollman, Pathways to a protein folding intermediate observed in a
1-microsecond simulation in aqueous solution, Science, 282 (1998), pp. 740–744.

[110] S. Duane, A. Kennedy, B. Pendleton, and D. Roweth, Hybrid Monte Carlo,
Physics letters B, 195 (1987), pp. 216–222.

[111] D. Dürr, S. Goldstein, and J. Lebowitz, A mechanical model of brownian motion,
Communications in Mathematical Physics, 78 (1981), pp. 507–530.

[112] J. Eckmann and M. Hairer, Spectral properties of hypoelliptic operators, Communi-
cations in Mathematical Physics, 235 (2003), pp. 233–253.

[113] S. Edwards and P. Anderson, Theory of spin glasses, Journal of Physics F: Metal
Physics, 5 (1975), pp. 965–974.

[114] A. Einstein, Über die von der molekularkinetischen Theorie der Wärme geforderte
Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen, Annalen der Physik, 4
(1905), pp. 549–560.

[115] D. Evans, The equivalence of Norton and Thévenin ensembles, Molecular Physics, 80
(1993), pp. 221–224.

[116] D. Evans and J. Ely, Viscous flow in the stress ensemble, Molecular Physics, 59 (1986),
pp. 1043–1048.

[117] D. Evans, W. Hoover, B. Failor, B. Moran, and A. Ladd, Nonequilibrium
molecular dynamics via Gauss’s principle of least constraint, Physical Review A, 28
(1983), pp. 1016–1021.

[118] D. Evans and G. Morriss, The isothermal/isobaric molecular dynamics ensemble,
Physics Letters A, 98 (1983), pp. 433–436.

[119] D. Evans and G. Morriss, Statistical Mechanics of Nonequilibrium Liquids, Cambridge
University Press, 2008.



302 Bibliography

[120] D. Evans and G. P. Morriss, Equilibrium-fluctuation expression for the resistance of
a Norton circuit, Physical Review A, 31 (1985), pp. 3817–3819.

[121] L. Evans, Partial Differential Equations, vol. 19 of Graduate Studies in Mathematics,
American Mathematical Society, 2022.

[122] H. Eyring, The activated complex in chemical reactions, The Journal of Chemical
Physics, 3 (1935), pp. 107–115.

[123] P. Fearnhead, J. Bierkens, M. Pollock, and G. Roberts, Piecewise deterministic
Markov processes for continuous-time Monte Carlo, Statistical Science, 33 (2018), pp. 386–
412.

[124] V. Felli, B. Noris, and R. Ognibene, Eigenvalues of the Laplacian with moving mixed
boundary conditions: the case of disappearing Dirichlet region, Calculus of Variations
and Partial Differential Equations, 60 (2021).

[125] A. Ferguson, Machine learning and data science in soft materials engineering, Journal
of Physics: Condensed Matter, 30 (2018), p. 043002.

[126] R. Feynman, Statistical Mechanics: A Set of Lectures, W.A. Benjamin, 1972.

[127] G. Fiorin, M. Klein, and J. Hénin, Using collective variables to drive molecular
dynamics simulations, Molecular Physics, 111 (2013), pp. 3345–3362.

[128] H. Flyvbjerg and H. Petersen, Error estimates on averages of correlated data, The
Journal of Chemical Physics, 91 (1989), pp. 461–466.

[129] G. Ford, M. Kac, and P. Mazur, Statistical mechanics of assemblies of coupled
oscillators, Journal of Mathematical Physics, 6 (1965), pp. 504–515.

[130] M. Freidlin, Some remarks on the Smoluchowski–Kramers approximation, Journal of
Statistical Physics, 117 (2004), pp. 617–634.

[131] M. Freidlin and W. Hu, Smoluchowski–Kramers approximation in the case of variable
friction, preprint arXiv:1203.0603, (2012).

[132] M. Freidlin and A. Wentzell, Random Perturbations of Dynamical Systems, vol. 260
of A Series of Comprehensive Studies in Mathematics, Springer, 2012.

[133] D. Frenkel and B. Smit, Understanding Molecular Simulation, vol. 1 of Computational
Science Series, Academic Press, 2001.

[134] M. Gabrié, G. Rotskoff, and E. Vanden-Eijnden, Adaptive Monte Carlo aug-
mented with normalizing flows, Proceedings of the National Academy of Sciences, 119
(2022), pp. e2109420119:1–9.

[135] T. Germann and K. Kadau, Trillion-atom molecular dynamics becomes a reality,
International Journal of Modern Physics C, 19 (2008), pp. 1315–1319.

[136] J. Gibbs, Elementary Principles in Statistical Mechanics, Charles Scribner’s Sons, 1902.



Bibliography 303

[137] D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second
Order, vol. 224, Springer, 2001.

[138] P. Gkeka, G. Stoltz, A. Fariman, Z. Belkacemi, M. Ceriotti, J. Chodera,
A. Dinner, A. Ferguson, J.-B. Maillet, H. Minoux, C. Peter, F. Pietrucci,
A. Silveira, A. Tkatchenko, Z. Trstanova, R. Wiewiora, and T. Lelièvre,
Machine learning force fields and coarse-grained variables in molecular dynamics: appli-
cation to materials and biological systems, Journal of Chemical Theory and Computation,
16 (2020), pp. 4757–4775.

[139] A. Glielmo, B. Husic, A. Rodriguez, C. Clementi, F. Noé, and A. Laio,
Unsupervised learning methods for molecular simulation data, Chemical Reviews, 121
(2021), pp. 9722–9758.

[140] A. González, Measurement of areas on a sphere using Fibonacci and latitude–longitude
lattices, Mathematical Geosciences, 42 (2010), pp. 49–64.

[141] E. Gosling, I. McDonald, and K. Singer, On the calculation by molecular dynamics
of the shear viscosity of a simple fluid, Molecular Physics, 26 (1973), pp. 1475–1484.

[142] M. Green, Markoff random processes and the statistical mechanics of time-dependent
phenomena. II. Irreversible processes in fluids, The Journal of Chemical Physics, 22
(1954), pp. 1281–1295.

[143] J. Greener, Differentiable simulation to develop molecular dynamics force fields for
disordered proteins, Chemical Science, 15 (2024), pp. 4897–4909.

[144] P. Grisvard, Elliptic Problems in Nonsmooth Domains, vol. 69 of Classics in Applied
Mathematics, SIAM, 2011.

[145] A. Guillin, B. Nectoux, and W. L., Quasi-stationary distribution for strongly Feller
Markov processes by Lyapunov functions and applications to hypoelliptic Hamiltonian
systems., Journal of the European Mathematical Society (EMS Publishing), 26 (2024),
pp. 3047–3090.

[146] J. Hadamard, Mémoire sur le problème d’analyse relatif à l’équilibre des plaques
élastiques encastrées, vol. 33 of Mémoires présentés par divers savants à l’Académie des
sciences de l’Institut de France., Imprimerie nationale, 1908.

[147] E. Hairer, C. Lubich, and G. Wanner, Geometric numerical integration illustrated
by the Störmer–Verlet method, Acta numerica, 12 (2003), pp. 399–450.

[148] E. Hairer, G. Wanner, and C. Lubich, Geometric Numerical Integration, vol. 31 of
Springer Series in Computational Mathematics, Springer, 2006.

[149] M. Hairer and A. Majda, A simple framework to justify linear response theory,
Nonlinearity, 23 (2010), pp. 909–922.

[150] M. Hairer and J. Mattingly, Yet another look at Harris’ ergodic theorem for Markov
chains, in Seminar on Stochastic Analysis, Random Fields and Applications VI, vol. 63
of Progress in Probability, Springer, 2011, pp. 109–117.



304 Bibliography

[151] W. K. Hastings, Monte Carlo sampling methods using Markov chains and their
applications, Biometrika, 57 (1970), pp. 97–109.

[152] E. Haug and B. Rousselet, Design sensitivity analysis in structural mechanics. I.
Static response variations, Journal of Structural Mechanics, 8 (1980), pp. 17–41.

[153] , Design sensitivity analysis in structural mechanics. II. Eigenvalue variations,
Journal of Structural Mechanics, 8 (1980), pp. 161–186.

[154] , Design sensitivity analysis in structural mechanics. III. Effects of shape variation,
Journal of Structural Mechanics, 10 (1982), pp. 273–310.

[155] F. Hecht, O. Pironneau, A. Le Hyaric, and K. Ohtsuka, FreeFem++ Manual,
Laboratoire Jacques Louis Lions, (2005), pp. 1–188.

[156] F. Hédin and T. Lelièvre, Gen. parRep: A first implementation of the generalized
parallel replica dynamics for the long time simulation of metastable biochemical systems,
Computer Physics Communications, 239 (2019), pp. 311–324.

[157] B. Helffer, M. Klein, and F. M.Nier, Quantitative analysis of metastability in
reversible diffusion processes via a Witten complex approach., Matemática contemporânea,
26 (2004), pp. 41–85.

[158] B. Helffer and F. Nier, Quantitative analysis of metastability in reversible diffu-
sion processes via a Witten complex approach: The case with boundary, Matemática
contemporânea, 26 (2004), pp. 41–85.

[159] , Quantitative analysis of metastability in reversible diffusion processes via a Witten
complex approach: the case with boundary, no. 105 in Mémoires de la Société Mathéma-
tique de France, Mémoires de la Société Mathématique de France and Centre Nationale
de la Recherche Scientifique, 2006.

[160] B. Helffer and J. Sjöstrand, Puits multiples en mécanique semi-classique. IV:
Étude du complexe de Witten, Communications in Partial Differential Equations, 10
(1985), pp. 245–340.

[161] S. Henderson and P. Glynn, Approximating martingales for variance reduction in
Markov process simulation, Mathematics of Operations Research, 27 (2002), pp. 253–271.

[162] J. Hénin, T. Lelièvre, M. Shirts, O. Valsson, and L. Delemotte, Enhanced
sampling methods for molecular dynamics simulations, Living Journal of Computational
Molecular Science, 4 (2022), pp. 1583:1–60.

[163] A. Henrot, Extremum Problems for Eigenvalues of Elliptic Operators, Frontiers in
Mathematics, Birkhäuser Basel, 2006.

[164] A. Henrot and M. Pierre, Variation et optimisation de formes : une analyse
géométrique, vol. 48 of Mathématiques et applications, Springer, 2005.

[165] D. Henry, Perturbation of the Boundary in Boundary-Value Problems of Partial Differ-
ential Equations, no. 318 in London Mathematical Society Lecture Note Series, Cambridge
University Press, 2005.



Bibliography 305

[166] F. Hérau, M. Hitrik, and J. Sjöstrand, Tunnel effect for Kramers–Fokker–Planck
type operators, Annales Henri Poincaré, 9 (2008), pp. 209–274.

[167] , Tunnel effect for Kramers–Fokker–Planck type operators: return to equilibrium and
applications, International Mathematics Research Notices, 2008 (2008), pp. rnn057:1–48.

[168] F. Hérau, M. Hitrik, and J. Sjöstrand, Tunnel effect and symmetries for Kramers–
Fokker–Planck type operators, Journal of the Institute of Mathematics of Jussieu, 10
(2011), pp. 567–634.

[169] F. Hérau and F. Nier, Isotropic hypoellipticity and trend to equilibrium for the
Fokker–Planck equation with a high-degree potential, Archive for Rational Mechanics and
Analysis, 171 (2004), pp. 151–218.

[170] S. Hollingsworth and R. Dror, Molecular dynamics simulation for all, Neuron, 99
(2018), pp. 1129–1143.

[171] W. Hoover, Molecular Dynamics, vol. 258 of Lecture Notes in Physics, Springer, 1986.

[172] , Nonequilibrium molecular dynamics: The first 25 years, Physica A: Statistical
Mechanics and its Applications, 194 (1993), pp. 450–461.

[173] W. Hoover, H. Posch, and L. Campbell, Thermal heat reservoirs via Gauss’
principle of least constraint: Dissipation, chaos, and phase-space dimensionality loss in
one-dimensional chains, Chaos, 3 (1993), pp. 325–332.

[174] L. Hörmander, Hypoelliptic second order differential equations, Acta Mathematica,
119 (1967), pp. 147–171.

[175] A. Horowitz, A generalized guided Monte Carlo algorithm, Physics Letters B, 268
(1991), pp. 247–252.

[176] S. Hottovy, The Smoluchowski–Kramers approximation for stochastic differential
equations with arbitrary state dependent friction, Ph.D. thesis, The University of Arizona,
2013.

[177] S. Hottovy, A. McDaniel, G. Volpe, and J. Wehr, The Smoluchowski-Kramers
limit of stochastic differential equations with arbitrary state-dependent friction, Commu-
nications in Mathematical Physics, 336 (2015), pp. 1259–1283.

[178] W. Huisinga and B. Schmidt, Metastability and dominant eigenvalues of transfer
operators, in New Algorithms for Macromolecular Simulation, vol. 49 of Lecture Notes
in Computational Science and Engineering, Springer, 2006, pp. 167–182.

[179] N. Hunt-Smith, W. Melnitchouk, F. Ringer, N. Sato, A. Thomas, and
M. White, Accelerating Markov chain Monte Carlo sampling with diffusion models,
Computer Physics Communications, 296 (2024), pp. 109059:1–9.

[180] W. Hurewicz and H. Wallman, Dimension Theory, vol. 4 of Princeton Legacy
Library, Princeton University Press, 2015.



306 Bibliography

[181] B. Husic and V. Pande, Markov state models: From an art to a science, Journal of
the American Chemical Society, 140 (2018), pp. 2386–2396.

[182] A. Iacobucci, S. Olla, and G. Stoltz, Convergence rates for nonequilibrium
Langevin dynamics, Annales mathématiques du Québec, 43 (2019), pp. 73–98.

[183] J. H. Irving and J. G. Kirkwood, The statistical mechanical theory of transport
processes. IV. The equations of hydrodynamics, The Journal of Chemical Physics, 18
(1950), pp. 817–829.

[184] R. Jacobs, D. Morgan, S. Attarian, J. Meng, C. Shen, Z. Wu, C. Y. Xie,
J. H. Yang, N. Artrith, B. Blaiszik, G. Ceder, K. Choudhary, G. Csanyi,
E. D. Cubuk, B. Deng, R. Drautz, X. Fu, J. Godwin, V. Honavar, O. Isayev,
A. Johansson, B. Kozinsky, S. Martiniani, S. P. Ong, I. Poltavsky, K. J.
Schmidt, S. Takamoto, A. P. Thompson, J. Westermayr, and B. M. Wood, A
practical guide to machine learning interatomic potentials–Status and future, Current
Opinion in Solid State and Materials Science, 35 (2025), pp. 101214:1–28.

[185] E. Jaynes, Information theory and statistical mechanics, Physical Review, 106 (1957),
pp. 620–630.

[186] , Information theory and statistical mechanics. II, Physical Review, 108 (1957),
pp. 171–190.

[187] , The minimum entropy production principle, Annual Review of Physical Chemistry,
31 (1980), pp. 579–601.

[188] F. Jensen, Introduction to Computational Chemistry, John Wiley & sons, 1999.

[189] H. Jónsson, G. Mills, and K. Jacobsen, Nudged elastic band method for finding
minimum energy paths of transitions, in Classical and quantum dynamics in condensed
phase simulations, World Scientific, 1998, pp. 385–404.

[190] R. Joubaud and G. Stoltz, Nonequilibrium shear viscosity computations with Langevin
dynamics, Multiscale Modeling & Simulation, 10 (2012), pp. 191–216.

[191] L. Journel and P. Monmarché, Uniform convergence of the Fleming–Viot process in
a hard killing metastable case, The Annals of Applied Probability, 35 (2025), pp. 1019–
1048.

[192] T. Kato, Perturbation Theory for Linear Operators, vol. 132 of Classics in Mathematics,
Springer, 1995.

[193] R. Khasminskii, Stochastic Stability of Differential Equations, vol. 66 of Stochastic
Modelling and Applied Probability, Springer, 2012.

[194] S. Kim, D. Perez, and A. Voter, Local hyperdynamics, The Journal of Chemical
Physics, 139 (2013).

[195] W. Kirsch, H. Cycon, R. Froese, and B. Simon, Schrödinger Operators, Theoretical
and Mathematical Physics, Springer, 1987.



Bibliography 307

[196] W. Kliemann, Recurrence and invariant measures for degenerate diffusions, The Annals
of Probability, 15 (1987), pp. 690–107.

[197] T. Komorowski, J. Lebowitz, S. Olla, and M. Simon, On the conversion of work
into heat: microscopic models and macroscopic equations, Ensaios Matemaáticos, 38
(2023), pp. 325–341.

[198] H. Kramers, Brownian motion in a field of force and the diffusion model of chemical
reactions, Physica, 7 (1940), pp. 284–304.

[199] S. Krantz and H. Parks, Geometric Integration Theory, Cornerstones, Birkhäuser
Boston, 2008.

[200] S. Krumscheid, M. Pradas, G. Pavliotis, and S. Kalliadasis, Data-driven coarse
graining in action: Modeling and prediction of complex systems, Physical Review E, 92
(2015), p. 042139.

[201] R. Kubo, Statistical-mechanical theory of irreversible processes. I. General theory and
simple applications to magnetic and conduction problems, Journal of the Physical Society
of Japan, 12 (1957), pp. 570–586.

[202] R. Kubo, M. Yokota, and S. Nakajima, Statistical-mechanical theory of irreversible
processes. II. Response to thermal disturbance, Journal of the Physical Society of Japan,
12 (1957), pp. 1203–1211.

[203] L. Lagardère, L. Jolly, F. Lipparini, F. Aviat, B. Stamm, Z. Jing, M. Harger,
H. Torabifard, G. Cisneros, and M. Schnieders, Tinker-HP: A massively parallel
molecular dynamics package for multiscale simulations of large complex systems with
advanced point dipole polarizable force fields, Chemical Science, 9 (2018), pp. 956–972.

[204] E. Lampin, P. Palla, P.-A. Francioso, and F. Cleri, Thermal conductivity from
approach-to-equilibrium molecular dynamics, Journal of Applied Physics, 114 (2013),
pp. 033525:1–6.

[205] C. Landim, M. Mariani, and I. Seo, Dirichlet’s and Thomson’s principles for
non-selfadjoint elliptic operators with application to non-reversible metastable diffusion
processes, Archive for Rational Mechanics and Analysis, 231 (2019), pp. 887–938.

[206] C. Le Bris, T. Lelièvre, M. Luskin, and D. Perez, A mathematical formalization
of the parallel replica dynamics, Monte–Carlo Methods and Applications, 18 (2012),
pp. 119–146.

[207] D. Le Peutrec, Small eigenvalues of the Neumann realization of the semiclassical
Witten Laplacian, Annales de la Faculté des sciences de Toulouse: Mathématiques, Series
6, 9 (2010), pp. 735–809.

[208] D. Le Peutrec and L. Michel, Sharp spectral asymptotics for nonreversible metastable
diffusion processes, Probability and Mathematical Physics, 1 (2020), pp. 3–53.

[209] D. Le Peutrec and B. Nectoux, Small eigenvalues of the Witten Laplacian with
Dirichlet boundary conditions: the case with critical points on the boundary, Analysis &
PDE, 14 (2021), pp. 2595–2651.



308 Bibliography

[210] D. L. Le Peutrec, L. Michel, and B. Nectoux, Eyring–Kramers formula for the
mean exit time of non-Gibbsian elliptic processes: the non characteristic boundary case,
preprint: arXiv 2509.17678, (2025).

[211] J. L. Lebowitz, J. K. Percus, and L. Verlet, Ensemble dependence of fluctuations
with application to machine computations, Physical Review, 153 (1967), pp. 250–254.

[212] J. Lee and I. Seo, Non-reversible metastable diffusions with Gibbs invariant measure I:
Eyring–Kramers formula, Probability Theory And Related Fields, 182 (2022), pp. 849–
903.

[213] S. Lee, M. Ramil, and I. Seo, Asymptotic stability and cut-off phenomenon for the
underdamped Langevin dynamics, preprint arXiv:2311.18263, (2023).

[214] , Eyring–Kramers law for the underdamped Langevin process, preprint
arXiv:2503.12610, (2025).

[215] A. W. Lees and S. F. Edwards, The computer study of transport processes under
extreme conditions, Journal of Physics C: Solid State Physics, 5 (1972), pp. 1921–1929.

[216] R. Lefevere, On the local space–time structure of non-equilibrium steady states, Journal
of Statistical Mechanics: Theory and Experiment, (2007), p. P01004.

[217] F. Legoll and T. Lelièvre, Effective dynamics using conditional expectations, Non-
linearity, 23 (2010), pp. 21–31.

[218] R. Lehoucq, D. Sorensen, and C. Yang, ARPACK users’ guide: Solution of
large-scale eigenvalue problems with implicitly restarted Arnoldi methods, Software,
Environments, and Tools, SIAM, 1998.

[219] B. Leimkuhler and C. Matthews, Rational construction of stochastic numerical
methods for molecular sampling, Applied Mathematics Research eXpress, 2013 (2013),
pp. 34–56.

[220] , Molecular Dynamics, vol. 39 of Interdisciplinary Applied Mathematics, Springer,
2015.

[221] B. Leimkuhler, C. Matthews, and G. Stoltz, The computation of averages from
equilibrium and nonequilibrium Langevin molecular dynamics, IMA Journal of Numerical
Analysis, 36 (2016), pp. 13–79.

[222] B. Leimkuhler and S. Reich, Simulating Hamiltonian Dynamics, vol. 14 of Cambridge
Monographs on Applied and Computational Mathematics, Cambridge University Press,
2004.

[223] T. Lelièvre, D. Le Peutrec, and B. Nectoux, Exit event from a metastable state
and Eyring-Kramers law for the overdamped Langevin dynamics, in Stochastic Dynamics
Out of Equilibrium, Springer Proceedings in Mathematics & Statistics, Springer, 2019,
pp. 331–363.



Bibliography 309

[224] , Eyring-Kramers exit rates for the overdamped Langevin dynamics: the case with
saddle points on the boundary, Journal de l’École Polytechnique – Mathématiques, 12
(2025), pp. 881–982.

[225] T. Lelièvre and F. Nier, Low temperature asymptotics for quasistationary distributions
in a bounded domain, Analysis & PDE, 8 (2015), pp. 561–628.

[226] T. Lelièvre, G. Pavliotis, G. Robin, R. Santet, and G. Stoltz, Optimizing the
diffusion coefficient of overdamped Langevin dynamics, Mathematics of Computation,
(2025).

[227] T. Lelièvre, M. Rachid, and G. Stoltz, A spectral approach to the narrow escape
problem in the disk, preprint arXiv:2401.06903, (2024).

[228] T. Lelièvre, M. Ramil, and J. Reygner, Quasi-stationary distribution for the
Langevin process in cylindrical domains, part I: existence, uniqueness and long-time
convergence, Stochastic Processes and their Applications, 144 (2022), pp. 173–201.

[229] T. Lelièvre, M. Rousset, and G. Stoltz, Free Energy Computations - A Mathe-
matical Perspective, Imperial College Press, 2010.

[230] , Langevin dynamics with constraints and computation of free energy differences,
Mathematics of Computation, 81 (2012), pp. 2071–2125.

[231] T. Lelièvre, R. Santet, and G. Stoltz, Unbiasing Hamiltonian Monte Carlo algo-
rithms for a general Hamiltonian function, Foundations of Computational Mathematics,
(2024), pp. 1–74.

[232] , Improving sampling by modifying the effective diffusion, Journal of Computational
Physics, (2025), p. 114313.

[233] T. Lelièvre and G. Stoltz, Partial differential equations and stochastic methods in
molecular dynamics, Acta Numerica, 25 (2016), pp. 681–880.

[234] D. Levesque and L. Verlet, Computer “experiments” on classical fluids. III. Time-
dependent self-correlation functions, Physical Review A, 2 (1970), pp. 2514–2528.

[235] D. Levesque, L. Verlet, and J. Kürkijarvi, Computer “experiments” on classical
fluids. IV. Transport properties and time-correlation functions of the Lennard–Jones
liquid near its triple point, Physical Review A, 7 (1973), pp. 1690–1700.

[236] M. Levitt and R. Sharon, Accurate simulation of protein dynamics in solution.,
Proceedings of the National Academy of Sciences, 85 (1988), pp. 7557–7561.

[237] M. Levitt and A. Warshel, Computer simulation of protein folding, Nature, 253
(1975), pp. 694–698.

[238] J. S. Liu and J. S. Liu, Monte Carlo Strategies in Scientific Computing, vol. 10 of
Springer Series in Statistics, Springer, 2001.



310 Bibliography

[239] X. Liu, Q. Jiang, and W. Wang, The Smoluchowski–Kramers approximation for
a system with arbitrary friction depending on both state and distribution, preprint
arXiv:2406.18056, (2024).

[240] L. Lorenzi and M. Bertoldi, Analytical Methods for Markov Semigroups, Pure and
applied mathematics, Chapman and Hall/CRC, 2006.

[241] L. Maffioli, E. Smith, J. Ewen, P. Daivis, D. Dini, and B. Todd, Slip and stress
from low shear rate nonequilibrium molecular dynamics: The transient-time correlation
function technique, The Journal of Chemical Physics, 156 (2022).

[242] A. Martini, Y. Dong, D. Perez, and A. Voter, Low-speed atomistic simulation of
stick–slip friction using parallel replica dynamics, Tribology letters, 36 (2009), pp. 63–68.

[243] J. C. Mattingly, A. M. Stuart, and D. J. Higham, Ergodicity for SDEs and
approximations: locally Lipschitz vector fields and degenerate noise, Stochastic Procosses
and their Applications, 101 (2002), pp. 185–232.

[244] J. Maxwell, On the dynamical evidence of the molecular constitution of bodies, Journal
of the Chemical Society, 28 (1875), pp. 493–508.

[245] S. Méléard and D. Villemonais, Quasi-stationary distributions and population
processes, Probability Surveys, 9 (2012), pp. 340–410.

[246] G. Menz and A. Schlichting, Poincaré and logarithmic Sobolev inequalities by
decomposition of the energy landscape, The Annals of Probability, 42 (2014), pp. 1809 –
1884.

[247] N. Metropolis, A. W. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller,
Equation of state calculations by fast computing machines, The Journal of Chemical
Physics, 21 (1953), pp. 1087–1092.

[248] S. Meyn and R. Tweedie, Markov Chains and Stochastic Stability, Springer, 2012.

[249] R. Miron and K. Fichthorn, Accelerated molecular dynamics with the bond-boost
method, The Journal of Chemical Physics, 119 (2003), pp. 6210–6216.

[250] G. Morriss and D. Evans, Application of transient correlation functions to shear flow
far from equilibrium, Physical Review A, 35 (1987), pp. 792–797.

[251] V. Nateghi and F. Nüske, Kinetically consistent coarse graining using kernel-based
extended dynamic mode decomposition, Journal of Chemical Theory and Computation,
21 (2025), pp. 7236–7248.

[252] B. Nectoux, Sharp estimate of the mean exit time of a bounded domain in the zero
white noise limit, Markov Processes And Related Fields, 26 (2020), pp. 403–422.

[253] F. Nier, Boundary conditions and subelliptic estimates for geometric Kramers-Fokker-
Planck operators on manifolds with boundaries, Memoirs of the American Mathematical
Society, 252 (2018).



Bibliography 311

[254] F. Nier and B. Helffer, Hypoelliptic Estimates and Spectral Theory for Fokker–
Planck Operators and Witten Laplacians, vol. 1862 of Lecture Notes in Mathematics,
Springer, 2005.

[255] J. Nocedal and S. Wright, Numerical Optimization, vol. 2 of Springer Series in
Operations Research and Financial Engineering, Springer, 1999.

[256] F. Noé and F. Nüske, A variational approach to modeling slow processes in stochastic
dynamical systems, Multiscale Modeling & Simulation, 11 (2013), pp. 635–655.

[257] F. Noé, S. Olsson, J. Köhler, and H. Wu, Boltzmann generators: Sampling equilib-
rium states of many-body systems with deep learning, Science, 365 (2019), p. eaaw1147.

[258] F. Nüske, P. Koltai, L. Boninsegna, and C. Clementi, Spectral properties of
effective dynamics from conditional expectations, Entropy, 23 (2021), p. 134.

[259] B. Øksendal, Stochastic Differential Equations, Universitext, Springer, 2013.

[260] E. Olivieri and M. Vares, Large deviations and metastability, Encyclopedia of
Mathematics and its Applications, Cambridge University Press, 2005.

[261] E. Oudet, Numerical minimization of eigenmodes of a membrane with respect to the
domain, ESAIM: Control, Optimisation and Calculus of Variations, 10 (2004), pp. 315–
330.

[262] G. A. Pavliotis, Stochastic Processes and Applications, vol. 60 of Texts in Applied
Mathematics, Springer, 2014.

[263] L. Payne, G. Pólya, and H. Weinberger, On the ratio of consecutive eigenvalues,
Journal of Mathematical Physics, 35 (1956), pp. 289–298.

[264] D. Pearlman, D. Case, J. Caldwell, W. Ross, T. Cheatham, S. DeBolt,
D. Ferguson, G. Seibel, and P. Kollman, AMBER, a package of computer programs
for applying molecular mechanics, normal mode analysis, molecular dynamics and free
energy calculations to simulate the structural and energetic properties of molecules,
Computer Physics Communications, 91 (1995), pp. 1–41.

[265] P. Peretto, Collective properties of neural networks: a statistical physics approach,
Biological Cybernetics, 50 (1984), pp. 51–62.

[266] D. Perez, E. Cubuk, A. Waterland, E. Kaxiras, and A. Voter, Long-time dy-
namics through parallel trajectory splicing, Journal of Chemical Theory and Computation,
12 (2016), pp. 18–28.

[267] D. Perez, B. Uberuaga, Y. Shim, J. Amar, and A. Voter, Accelerated molecular
dynamics methods: introduction and recent developments, Annual Reports in Computa-
tional Chemistry, 5 (2009), pp. 79–98.

[268] D. Perez, B. Uberuaga, and A. Voter, The parallel replica dynamics method –
Coming of age, Computational Materials Science, 100 (2015), pp. 90–103.



312 Bibliography

[269] J. Perilla and K. Schulten, Physical properties of the HIV-1 capsid from all-atom
molecular dynamics simulations, Nature Communications, 8 (2017), pp. 15959:1–10.

[270] R. Pinsky, On the convergence of diffusion processes conditioned to remain in a bounded
region for large time to limiting positive recurrent diffusion processes, The Annals of
Probability, 13 (1985), pp. 363–378.

[271] , Positive Harmonic Functions and Diffusion, vol. 45 of Cambridge Studies in
Advanced Mathematics, Cambridge University Press, 1995.

[272] J. Prinz, H. Wu, M. Sarich, B. Keller, M. Senne, M. Held, J. Chodera,
C. Schütte, and F. Noé, Markov models of molecular kinetics: Generation and
validation, The Journal of Chemical Physics, 134 (2011), pp. 174105:1–24.

[273] A. Rahman, Correlations in the motion of atoms in liquid Argon, Physical Review, 136
(1964), pp. 405–411.

[274] A. Rahman and F. Stillinger, Molecular dynamics study of liquid water, The Journal
of Chemical Physics, 55 (1971), pp. 3336–3359.

[275] M. Ramil, T. Lelièvre, and J. Reygner, Mathematical foundations for the Parallel
Replica algorithm applied to the underdamped Langevin dynamics, MRS Communications,
12 (2022), pp. 454–459.

[276] M. Reed and B. Simon, II: Self-adjointness, vol. 2 of Methods of Modern Mathematical
Physics, Elsevier Science, 1975.

[277] , IV: Analysis of Operators, vol. 4 of Methods of Modern Mathematical Physics,
Elsevier Science, 1978.

[278] D. Reinsel, J. Gantz, and J. Rydning, Data age 2025: the digitization of the world
from edge to core, IDC white paper, (2018).

[279] D. Revuz and M. Yor, Continuous Martingales and Brownian motion, vol. 293 of A
Series of Comprehensive Studies in Mathematics, Springer, 2013.

[280] L. Rey-Bellet, Ergodic properties of Markov processes, in Open Quantum Systems II:
The Markovian Approach, vol. 1881 of Lecture Notes in Mathematics, Springer, 2006,
pp. 1–39.

[281] L. Richardson, The approximate arithmetical solution by finite differences of physical
problems involving differential equations, with an application to the stresses in a masonry
dam, Philosophical Transactions of the Royal Society of London. Series A, containing
papers of a mathematical or physical character, 210 (1911), pp. 307–357.

[282] H. Rieger and A. Young, Quantum spin glasses, in Complex Behaviour of Glassy
Systems, Springer, 1996, pp. 256–265.

[283] C. Robert and G. Casella, Monte Carlo Statistical Methods, vol. 2 of Springer Texts
in Statistics, Springer, 1999.



Bibliography 313

[284] G. Roberts and J. Rosenthal, Optimal scaling of discrete approximations to Langevin
diffusions, Journal of the Royal Statistical Society: Series B (Statistical Methodology),
60 (1998), pp. 255–268.

[285] H. Rodenhausen, Einstein’s relation between diffusion constant and mobility for a
diffusion model, Journal of Statistical Physics, 55 (1989), pp. 1065–1088.

[286] P. Rossky, J. Doll, and H. Friedman, Brownian dynamics as smart Monte Carlo
simulation, The Journal of Chemical Physics, 69 (1978), pp. 4628–4633.

[287] P. Rotondo, M. Marcuzzi, J. Garrahan, I. Lesanovsky, and M. Müller, Open
quantum generalisation of Hopfield neural networks, Journal of Physics A: Mathematical
and Theoretical, 51 (2018), p. 115301.

[288] J. Roussel, Theoretical and Numerical Analysis of Non-Reversible Dynamics in Com-
putational Statistical Physics, PhD thesis, Université Paris-Est, 2018.

[289] J. Roussel and G. Stoltz, A perturbative approach to control variates in molecular
dynamics, Multiscale Modeling & Simulation, 17 (2019), pp. 552–591.

[290] B. Rousselet, Shape design sensitivity of a membrane, Journal of Optimization Theory
and Applications, 40 (1983), pp. 595–623.

[291] M. Rousset, On the control of an interacting particle estimation of Schrödinger ground
states, SIAM journal on mathematical analysis, 38 (2006), pp. 824–844.

[292] V. Roy, Convergence diagnostics for Markov chain Monte Carlo, Annual Review of
Statistics and Its Application, 7 (2020), pp. 387–412.

[293] J. Ryckaert, G. Ciccotti, and H. Berendsen, Numerical integration of the Carte-
sian equations of motion of a system with constraints: molecular dynamics of n-alkanes,
Journal of Computational Physics, 23 (1977), pp. 327–341.

[294] L. Sandoval, D. Perez, B. Uberuaga, and A. Voter, Competing kinetics and he
bubble morphology in w, Physical review letters, 114 (2015), pp. 105502:1–5.

[295] A. Sard, The measure of the critical values of differentiable maps, Bulletin of the
American Mathematical Society, 48 (1942), pp. 883–990.

[296] R. Sasaki, Y. Tateyama, and D. Searles, Constant-current nonequilibrium molecular
dynamics approach for accelerated computation of ionic conductivity including ion-ion
correlation, PRX Energy, 4 (2025), pp. 013005:1–16.

[297] D. Schneider, The exascale era is upon us: The Frontier supercomputer may be the first
to reach 1,000,000,000,000,000,000 operations per second, IEEE spectrum, 59 (2022),
pp. 34–35.

[298] C. Schütte, S. Klus, and C. Hartmann, Overcoming the timescale barrier in
molecular dynamics: Transfer operators, variational principles and machine learning,
Acta Numerica, 32 (2023), pp. 517–673.



314 Bibliography

[299] W. Scott, P. Hünenberger, I. Tironi, A. Mark, S. Billeter, J. Fennen,
A. Torda, T. Huber, P. Krüger, and W. Van Gunsteren, The GROMOS
biomolecular simulation program package, The Journal of Physical Chemistry A, 103
(1999), pp. 3596–3607.

[300] D. Shaw, M. Deneroff, R. Dror, J. Kuskin, R. Larson, J. Salmon, C. Young,
B. Batson, K. Bowers, J. Chao, et al., Anton, a special-purpose machine for
molecular dynamics simulation, Communications of the ACM, 51 (2008), pp. 91–97.

[301] D. Shaw, P. Maragakis, K. Lindorff-Larsen, S. Piana, R. Dror, M. Eastwood,
J. Bank, J. Jumper, J. Salmon, Y. Shan, and W. Wriggers, Atomic-level
characterization of the structural dynamics of proteins, Science, 330 (2010), pp. 341–346.

[302] M. Shirts and J. Chodera, Statistically optimal analysis of samples from multiple
equilibrium states, The Journal of Chemical Physics, 129 (2008), pp. 124105:1–11.

[303] B. Simon, Semiclassical analysis of low lying eigenvalues. I. Non-degenerate minima:
asymptotic expansions, Annales de l’Institut Henri Poincaré: Physique Théorique, 38
(1983), pp. 295–308.

[304] B. Simon, Semiclassical analysis of low lying eigenvalues, II. Tunneling, Annals of
Mathematics, (1984), pp. 89–118.

[305] G. Simpson and M. Luskin, Numerical analysis of parallel replica dynamics, ESAIM:
Mathematical Modelling and Numerical Analysis, 47 (2013), pp. 1287–1314.

[306] M. Smoluchowski, Drei Vorträge über Diffusion, Brownsche Molekularbewegung und
Koagulation von Kolloidteilchen, Zeitschrift fur Physik, 17 (1916), pp. 557–571.

[307] R. Spacek and G. Stoltz, Extending the regime of linear response with synthetic
forcings, Multiscale Modeling & Simulation, 21 (2023), pp. 1602–1643.

[308] M. Sprik and G. Ciccotti, Free energy from constrained molecular dynamics, The
Journal of Chemical Physics, 109 (1998), pp. 7737–7744.

[309] G. Stoltz, Error estimates and variance reduction for nonequilibrium stochastic dy-
namics, in Monte Carlo and Quasi-Monte Carlo Methods (MCQMC 2022), A. Hinrichs,
P. Kritzer, and F. Pillichshammer, eds., vol. 460 of Springer Proceedings in Mathematics
& Statistics, 2024, pp. 163–187.

[310] G. Stoltz and Z. Trstanova, Langevin dynamics with general kinetic energies,
Multiscale Modeling & Simulation, 16 (2018), pp. 777–806.

[311] G. Szegö, Orthogonal Polynomials, vol. 23 of Colloqium Publications, American Math-
ematical Society, 1939.

[312] M. Sørensen and A. Voter, Temperature-accelerated dynamics for simulation of
infrequent events, The Journal of Chemical Physics, 112 (2000), pp. 9599–9606.

[313] D. Talay and L. Tubaro, Expansion of the global error for numerical schemes
solving stochastic differential equations, Stochastic Analysis and Applications, 8 (1990),
pp. 483–509.



Bibliography 315

[314] T. Tao, Topics in Random Matrix Theory, vol. 132 of Graduate Studies in Mathematics,
American Mathematical Society, 2012.

[315] S. R. Tee and D. J. Searles, Constant potential and constrained charge ensembles
for simulations of conductive electrodes, Journal of Chemical Theory and Computation,
19 (2023), pp. 2758–2768.

[316] J. Tersoff, Modeling solid-state chemistry: Interatomic potentials for multicomponent
systems, Physical review B, 39 (1989), pp. 5566–5568.

[317] G. Teschl, Ordinary Differential Equations and Dynamical Systems, vol. 140 of Gradu-
ate Studies in Mathematics, American Mathematical Society, 2000.

[318] , Mathematical Methods in Quantum Mechanics, vol. 157 of Graduate Studies in
Mathematics, American Mathematical Society, 2014.

[319] A. Thompson, L. Swiler, C. Trott, S. Foiles, and G. Tucker, Spectral neighbor
analysis method for automated generation of quantum-accurate interatomic potentials,
Journal of Computational Physics, 285 (2015), pp. 316–330.

[320] B. D. Todd and P. J. Daivis, Homogeneous non-equilibrium molecular dynamics
simulations of viscous flow: Techniques and applications, Molecular Simulation, 33
(2007), pp. 189–229.

[321] , Nonequilibrium Molecular Dynamics, Cambridge University Press, 2017.

[322] S. T. Tokdar and R. E. Kass, Importance sampling: A review, WIREs Computational
Statistics, 2 (2010), pp. 54–60.

[323] H. Touchette, Equivalence and nonequivalence of ensembles: thermodynamic,
macrostate, and measure levels, Journal of Statistical Physics, 159 (2015), pp. 987–
1016.

[324] M. Tuckerman, Statistical Mechanics: Theory and Molecular Simulation, Oxford
Graduate Texts, Oxford University Press, 2010.

[325] B. Uberuaga, S. Stuart, and A. Voter, Parallel replica dynamics for driven systems:
derivation and application to strained nanotubes, Physical Review B—Condensed Matter
and Materials Physics, 75 (2007), p. 014301.

[326] N. Vaidehi and A. Jain, Internal coordinate molecular dynamics: A foundation for
multiscale dynamics, The Journal of Physical Chemistry B, 119 (2015), pp. 1233–1242.

[327] A. Van der Vaart, Asymptotic Statistics, vol. 3 of Cambridge Series in Statistical and
Probabilistic Mathematics, Cambridge University Press, 2000.

[328] L. Verlet, Computer “experiments” on classical fluids. I. Thermodynamical properties
of Lennard–Jones molecules, Physical Review, 159 (1967), pp. 98–103.

[329] C. Villani, Hypocoercivity, Memoirs of the American Mathematical Society, 202 (2009).

[330] D. Villemonais, General approximation method for the distribution of Markov processes
conditioned not to be killed, ESAIM: Probability and Statistics, 18 (2014), pp. 441–467.



316 Bibliography

[331] G. Volpe, L. Helden, T. Brettschneider, J. Wehr, and C. Bechinger, Influence
of noise on force measurements, Physical Review Letters, 104 (2010), p. 170602.

[332] A. Voter, Hyperdynamics: accelerated molecular dynamics of infrequent events, Physical
Review Letters, 78 (1997), p. 3908.

[333] , A method for accelerating the molecular dynamics simulation of infrequent events,
The Journal of Chemical Physics, 106 (1997), pp. 4665–4677.

[334] , Parallel replica method for dynamics of infrequent events, Physical Review B, 57
(1998), pp. 9599–9606.

[335] , Introduction to the kinetic Monte Carlo method, in Radiation effects in solids,
Springer, 2007, pp. 1–23.

[336] A. Voter and T. Germann, Accelerating the dynamics of infrequent events: combining
hyperdynamics and parallel replica dynamics to treat epitaxial layer growth, MRS Online
Proceedings Library, 528 (1998), pp. 221–236.

[337] A. Voter, F. Montalenti, and T. Germann, Extending the time scale in atomistic
simulation of materials, Annual review of materials research, 32 (2002), pp. 321–346.

[338] A. Wang, G. Roberts, and D. Steinsaltz, An approximation scheme for quasi-
stationary distributions of killed diffusions, Stochastic Processes and their Applications,
130 (2020), pp. 3193–3219.

[339] M. Wang, D. Su, and W. Wang, Averaging on macroscopic scales with application to
Smoluchowski–Kramers approximation, Journal of Statistical Physics, 191 (2024), p. 22.

[340] E. Witten, Supersymmetry and Morse theory, Journal of Differential Geometry, 17
(1982), pp. 661–692.

[341] H. Wu and F. Noé, Variational approach for learning Markov processes from time
series data, Journal of Nonlinear Science, 30 (2020), pp. 23–66.

[342] X. Wu and X. Shang, Stochastic Norton dynamics: An alternative approach for
the computation of transport coefficients in Dissipative Particle Dynamics, Journal of
Computational Physics, 541 (2025), pp. 114316:1–19.

[343] A. Yaglom, Some limit theorems in the theory of branching random processes, Doklady
Akademii Nauk SSSR (in Russian), 56 (1947), pp. 795–798.

[344] R. Zamora, B. Uberuaga, D. Perez, and A. Voter, The modern temperature-
accelerated dynamics approach, Annual review of chemical and biomolecular engineering,
7 (2016), pp. 87–110.

[345] F. Zhang, D. Isbister, and D. Evans, Nonequilibrium molecular dynamics simulations
of heat flow in one-dimensional lattices, Physical Review E, 61 (2000), pp. 3541–3546.

[346] W. Zhang, C. Hartmann, and C. Schütte, Effective dynamics along given reaction
coordinates, and reaction rate theory, Faraday Discussions, 195 (2016), pp. 365–394.


	Abstract
	Résumé de la thèse
	Remerciements
	Introduction
	An overview of molecular dynamics
	Elements of statistical mechanics
	The configurational sampling problem

	The trajectorial sampling problem
	Accelerated MD algorithms
	Computing response properties

	Mathematical descriptions of metastability
	Review of approaches to metastability
	The quasi-stationary regime

	Contributions of this thesis
	Analysis and optimization of quasistationary timescales
	Nonequilibrium sampling and pathwise properties


	Quantitative spectral asymptotics for reversible diffusions in temperature-dependent domains.
	Introduction
	Setting and notation
	Notation
	Quasi-stationary distributions and the Dirichlet spectrum
	Geometric assumptions
	Genericity of the assumptions and comparison with previous work

	Statement of the main results
	Harmonic approximation of the Dirichlet spectrum
	A modified Eyring–Kramers formula
	Practical implications of the asymptotic analysis.

	Proof of Theorem 2.16
	Local harmonic models
	Dirichlet oscillators
	Global harmonic approximation
	Construction of harmonic quasimodes and associated localization estimates
	Local perturbations of the boundary
	Conclusion of the proof of Theorem 2.16

	Proof of Theorem 2.17
	Local energy estimates
	Construction of the quasimodes on perturbed domains
	Laplace's method on moving domains
	Low-temperature estimates
	Conclusion of the proof of Theorem 2.17

	Appendix 2.A: Proof of Proposition 2.27
	Appendix 2.B: Proof of Proposition 2.36

	Shape optimization of metastable states
	Introduction
	Main results
	Framework and notation
	Shape perturbation formulas
	Revisiting eigenvalue derivatives as boundary integrals

	Numerical optimization
	Finite-element discretization of the eigenproblem
	Local optimization procedure.
	Choice of ascent directions

	Practical methods for high-dimensional systems
	Coarse graining of dynamical rates
	Optimization in the semiclassical limit

	Numerical experiments
	Validation of the coarse-graining approximation
	Validation of the semiclassical asymptotics
	Application to a molecular system

	Conclusions and perspectives
	Appendix 3.A: Proof of Theorem 3.2
	Appendix 3.B: The Parallel Replica algorithm and its efficiency.
	Appendix 3.C: Properties of the coefficients of the effective dynamics

	Fixing the flux: a dual approach to computing transport coefficients
	Introduction
	Non-equilibrium molecular dynamics
	A stochastic Norton method
	Presentation of the dynamics
	A closed form for the forcing process
	Norton analogs of the transport coefficient
	Two straightforward generalizations

	Mobility and shear viscosity computations for Langevin dynamics
	Standard non-equilibrium Langevin dynamics
	Non-equilibrium forcings and fluxes
	The Norton method for Langevin dynamics

	Numerical discretizations of Norton dynamics
	Numerical schemes for general Norton dynamics
	Splitting schemes for (non-)equilibrium Langevin dynamics
	Splitting schemes for Langevin–Norton dynamics
	Estimation of the average forcing

	Numerical results
	Description of the numerical experiments
	Equivalence of (non-)equilibrium responses
	Concentration properties in the thermodynamic limit
	Asymptotic variance

	Perspectives for future work
	Appendix 4.A: Derivation of Norton dynamics in the case of multiple constraints
	Appendix 4.B: Derivation of the Norton dynamics in the case of time-dependent constraints
	Appendix 4.C: Derivation of the relation between color/single drift linear responses

	A hypocoercive approach of the overdamped limit for the kinetic Langevin equation with multiplicative noise
	Introduction
	Notation and main result
	Proof of Proposition 5.6
	Overdamped limit for a class of variable-mass matrices
	Appendix 5.A: Proofs of technical results

	Bibliography

