
Sorbonne Université
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This document is the report for an internship which took place from February 1st to July 31st 2022,
at the CERMICS laboratory in the École des Ponts. This is a research unit in applied mathematics,
comprising of teams working on problems arising from probability theory and optimization, as well as,
more directly relevant to us, material science and molecular simulations. It was conducted under the
advisement of Gabriel Stoltz, and had two explicitly stated aims.

One was to engage with Julia and its molecular simulation ecosystem by implementing various
methods from equilibrium and non-equilibrium molecular dynamics inside the Molly package. Eventually,
this approach resulted in a one-week stay with Molly’s main author, to integrate some of the implementations
developed during the course of the internship inside Molly.

A second aim, more prospective from the scientific point of view, was to advance the understanding of
the Norton method, which is a novel method for the computation of transport coefficients from molecular
simulations, based on a dual approach from the standard non-equilibrium method, whereby the response
is fixed and the average forcing needed to induce it is measured, instead of the usual reverse situation.
As of the end of this internship, we have proposed a numerical integration strategy for a class of Norton
dynamics, and applied it to the cases of mobility and shear viscosity computations. Our numerical results
suggest several avenues for future theoretical work, which will be continued in the PhD work of Shiva
Darshan, starting from the fall of 2022.

The report is divided into five chapters and one appendix. The first chapter is dedicated to a basic
introduction to some concepts in statistical mechanics which are relevant to molecular simulation. The
second and third chapter are dedicated to equilibrium averages, with the second’s focus on a presentation
of the different numerical methods involved, and the third’s on answering a question that arose when
examining Molly’s native Langevin integrator, which coincidentally was connected to parallel work by
a team of theoretical chemists, Bettina Keller and Stefanie Kieninger. It is essentially compiled from
the written communication we sent to them, presenting our understanding of the BAOA scheme. The
fourth and fifth chapters are dedicated to the non-equilibrium setting, with the fourth centered on a
discussion of the standard methods (Thévenin and Green-Kubo), and the fifth on the presentation of a
novel Norton method. All chapters are supplemented with numerical examples, which are destined to
illustrate some theoretical properties, or the viability of a given numerical method. We conclude the
report by a short appendix which highlight some of the thinking that went into the choice of Molly as a
molecular simulation package, as well as pointing the reader to relevant source code.

Every example on a realistic system was implemented within Molly, and thus we wish to thank Joe
Greener for creating this very flexible and pleasant to work with package, as well as for inviting us to stay
for a fascinating week in Cambridge. We also take advantage of this short introduction to thank Gabriel
Stoltz for trusting us with this subject, for his precious advice, and more generally for introducing us to
the fun and mathematically rich subject that is molecular simulation.
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Notational conventions

We convene that the gradient of a differentiable function ϕ : Rn 7→ R is a column vector-valued function

∇ϕ : Rn → Rn := Rn×1.

Notationally,

∇ =

∂x1

...
∂xn

 .

So that the Hessian operator writes

∇2 := ∇∇ᵀ =

 ∂2
x1,x1

· · · ∂2x1, xn
...

. . .
...

∂2xn, x1 · · · ∂2xn, xn


The gradient (also known as the Jacobian matrix) of a vector field f = (f1, · · · , fn)ᵀ : Rn → Rn is

∇f =

∇
ᵀf1

...
∇ᵀfn

 = (∇⊗ f)ᵀ, (1)

while its divergence is
div f = ∂x1

f1 + · · ·+ ∂xnfn = ∇ᵀf.
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Chapter 1

Introduction to molecular dynamics

The purpose of this chapter is to introduce a few of the basic ideas from classical and statistical
mechanics which enter into the conceptual framework of molecular simulation. We start by describing
the classical account of the microscopic state of a system, before motivating and presenting the notion of
statistical ensembles, which captures the idea of the macroscopic state of a system with many unknowable
microscopic degrees of freedom. Having presented some examples, we finally describe how dynamics on
the microscopic level can in principle be thought of as a means to sample from these ensembles, thus
allowing the measurement of macroscopic properties from the numerical simulation of the microscopic
dynamics.

1.1 The microscopic description of atomic systems

Molecular dynamics, and computational statistical physics at large, aim at simulating on the computer
the behavior of physical systems. The hope is that one can infer quantities and properties of real-life
interest from observing the results of numerical simulations, which may be relevant to understanding
material properties of many-particle systems, or the nature of interactions in complex systems such
as those found in biology. Computational simulations can thus act as surrogate experiments in cases
where experimental setups are hard to achieve, or measurements are impossible. They can also be
seen as surrogate tests of theoretical models, as they allow to test the validity of a mathematical
description by comparing numerical predictions to experimental data. Molecular dynamics, in particular,
is concerned with simulating atomic systems, most often (and as we shall systematically do) using a
classical description.

1.1.1 Classical phase space

We consider a system of N particles evolving in d-dimensional space. The classical description contends
that the state of a system is the datum of the positions and momenta of every particle in the system.
We can interpret this as the statement that, given full knowledge of the positions and momenta at some
initial time, and of the forces at play, one can deduce exactly the positions and momenta at any future
time. It is often the case in computer simulations that we consider positions which are restricted to a
bounded domain by the use of periodic boundary conditions. To that effect, let

D = (LT)dNor RdN ,

where T is the one-dimensional torus. We call D the configuration space.

Definition 1 (Phase space). We describe the positions and momenta of the atoms as vectors

q = (q1,1, . . . , q1,d, . . . , qN,1, . . . , qN,d)
ᵀ ∈ D,

p = (p1,1, . . . , p1,d, . . . , pN,1, . . . , pN,d)
ᵀ ∈ RdN ,

where qi := (qi,1, . . . , qi,d)
ᵀ is the position vector of the i-th particle, and similarly for p. Let

E := D × RdN .
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In this framework, the time evolution of a system can be captured by trajectories

(qt, pt)t>0 ⊂ E

through phase space. It is not clear a priori why we should choose momenta to describe the kinetic
quality of the system, rather than velocities, although this is fully justified after the fact because it
makes many mathematical properties simpler to state (see for example Proposition 1). However, it is of
no importance since we can change from one description to the other via the relation

v = M−1p,

where M ∈ RdN×dN is a diagonal matrix recording the masses of each particle (d times per particle), and
v is the velocity vector. Equipped with this microscopic description, we can now describe the macroscopic
state of a system, which we understand as the magnitude of certain observed quantities, in terms of its
underlying microscopic configuration.

1.1.2 From microscopic states to macroscopic quantities

The way to relate a macroscopic quantity to a microscopic state is through the general notion of an
observable, which is simply a function

ϕ : E → R

mapping a microscopic state to a quantity. Of course, the challenge is to define observables which are
relevant in explaining pertinent macroscopic behavior. We will not be going into the details of how
formulas for these observables can be obtained, since this is a substantial part of classical mechanics. We
refer the interested reader to [30, Section 5.7] for an example of such a derivation in the case of pressure,
while we simply state some of the observables we will be interested in. Of utmost importance, we define
the Hamiltonian, which corresponds to the total energy of the system:

H(q, p) =
1

2
pᵀM−1p+ V (q). (1.1)

It is the sum of two terms, the kinetic energy on the left, and the potential energy on the right, which also
define respective observables of interest in their own right. As we shall see, the Hamiltonian encodes the
microscopic dynamics of the system. Let us note that although we restrict our discussion to real-valued
observables, we can of course consider vector-valued observables, such as the force ∇V . The kinetic
temperature is defined by the following expression:

Tκ(q, p) =
2

kBdN
Eκ(q, p).

It is, up to a conversion factor of Boltzmann’s constant, twice the kinetic energy per degree of freedom.
The instantaneous isotropic pressure is defined by

P (q, p) =
1

|D|

(
NkBTκ −

1

d

N∑
i=1

qᵀi ∇qiV (q)

)
.

Neglecting the right-hand side gives the famous ideal gas law, PV = NkBT , which is a good approximation
at low densities. The right hand side, otherwise known as the virial, appears to be problematic since the
qi are not periodic functions of q, which would suggest P is not a well-defined observable on D. However,
in the case of a periodic pair interaction of the form (1.12), we can use symmetry arising from Newton’s
third law to arrive at the following expression:

P (q, p) =
1

d|D|

 N∑
i=1

|pi|2

mi
−

∑
16i<j6N

|qi − qj |v′(|qi − qj |)

 , (1.2)

At this point, we are faced with an apparent paradox: for a system that does not display macroscopic
evolution, quantities such as the energy and pressure appear constant, while the microscopic description
suggest they should evolve as a function of the underlying microscopic dynamics. A possible solution to
this paradox is to move to a probabilistic description. This is the path chosen by statistical mechanics,
which we now turn to by introducing the notion of a thermodynamic ensemble.
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1.2 Thermodynamic ensembles

The microscopic description is interesting from a theoretical standpoint, but it fails to be relevant when
attempting to describe the behavior of atomic systems with a macroscopic number of particles, of the
order of Avogadro’s number (6.02 × 1023). Besides the technical impossibility of measuring to a high
accuracy the configuration of such systems, and that of recording the information required to track
it (coincidentally, the total amount of digitally stored information on Earth is estimated to be 1023

bytes as of 2022), it is also the case that knowledge of a system at this level of detail is unnecessary
to describe the quantities which are relevant to our macroscopic experience. In the instance of a gas
at thermal equilibrium, examples of relevant quantities are total energy, pressure, temperature, density,
which, while of course resulting from the internal state of the system, are independent of the minutiae
of individual atomic motions: loosely speaking, one may describe the macroscopic state of a system by
only a handful of macroscopic variables, loosing track of the myriad of microscopic degrees of freedom.
In fact, since real-valued observables map a high dimensional space to a one dimensional space, we can
expect that for a given set of macroscopic conditions, there will in general be many microscopic states
compatible with these conditions. This motivates, from a purely rational point of view, passing to a
statistical description: we define the macroscopic state of the system as an ensemble of microscopic
conditions compatible with the observed macroscopic constraints. In full generality, we may further
distinguish microscopic states by the likelihood they underlie the macroscopic state: this amounts to
defining a probability distribution over the ensemble, or in more mathematical terms, to the data of a
probability measure µ on phase space. The macroscopic value of an observable ϕ can now be interpreted
as an average over the ensemble,

Eµ[ϕ] =

∫
E
ϕ(q, p)µ(dq,dp). (1.3)

This, of course, does not tell us how we should choose such a probability measure. However, it
seems reasonable to choose, out of all probability measures which are compatible with the macroscopic
constraints, that which contains the least information about the microscopic state, or in other words that
which makes the least assumptions about it. The mathematical translation of this idea is given by the
principle of maximal entropy. Out of all probability distributions ρ, which for convenience we identify
with smooth densities on E , and which are consistent with the macroscopic constraints, we may define
the statistical ensemble as the one which maximizes the statistical entropy

S(ρ) = −
∫
E
ρ(x) ln(ρ(x))dx. (1.4)

For a mathematically rigorous introduction to these ideas, we refer the reader to [5, Chapter 3]. We will
be considering two examples of thermodynamic ensembles.

1.2.1 Microcanonical ensemble

The microcanonical ensemble is the suitable model for an isolated system in thermodynamic equilibrium,
evolving according to Hamiltonian dynamics. The number of particles N , the volume V = L3, and the
energy E are fixed. We will alternatively refer to the microcanonical ensemble as the NVE ensemble.
Because the constant energy condition constrains the compatible microstates to level sets of H, which in
general will be Lebesgue-negligible subsets of E , some care must be taken in defining the microcanonical
measure, since one cannot express the macroscopic constraints by a family of probability densities.
However, under suitable assumptions on V , one can define the microcanonical measure as a weak limit
of uniform distributions over level “shells” of H:∫

E
ϕdµmc,E := lim

ε→0

1

|S(E, ε)|

∫
S(E,ε)

ϕ(q, p)dqdp,

where
S(E, ε) = {(q, p) ∈ E| H(q, p) ∈ [E − ε, E + ε]}.

This is consistent with the fact that, for a set A with finite Lebesgue measure, the probability distribution
on A which maximizes the entropy is the uniform distribution on A. Alternatively, µmc,E is uniquely
defined by the relation

1

ZE

∫
E
g(H(q, p))f(q, p) dqdp =

∫
R
g(E)

∫
E
f(q, p)µmc,E(dq,dp) dE,
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for all test functions g : R→ R and f : E → R, and where ZE is a normalization constant ensuring that
µmc,E(E) = 1. It is possible, using the coarea formula, to derive an explicit formula for µmc,E, namely,

µmc,E(dq,dp) =
1

ZE

σE(dq,dp)

|∇H(q, p)|
, (1.5)

where σE is the surface measure induced by the Lebesgue measure on the constant energy manifold

S(E) = {(q, p) ∈ E| H(q, p) = E}. (1.6)

1.2.2 Canonical ensemble

Isolated systems in thermal equilibrium are not typically those that we encounter in experiments. Instead,
it is more common to observe systems which are in thermal equilibrium with respect to their environment,
an ambient heat bath at a fixed temperature. The total energy of such systems is not fixed: small
fluctuations can occur as energy is exchanged back and forth between the heat bath and the system.
However, the average energy Ē is fixed. This is the macroscopic constraint that defines the canonical
ensemble. For fixed values N,V, Ē, define the density of the the canonical measure as the maximizer:

argmax
ρ∈A

S(ρ)

where A is the set of admissible densities

A =

{
ρ : E → R+

∣∣∣∣ ∫
E
ρ = 1,

∫
E
H(q, p)ρ(q, p) dq dp = E

}
.

Solving the Euler-Lagrange equation associated with this constrained optimization problem yields
that the only admissible solution can be written under the form:

µ(q, p) :=
1

Z
e−βH(q,p). (1.7)

Furthermore, one can show that µ is indeed the unique maximizer. Here, −β and 1+lnZ are the Lagrange
multipliers associated respectively with the energy constraint and the normalization constraint. Thus

Z =

∫
E

e−βH(q,p) dq dp

is a normalization constant called the partition function, and β is a tuning parameter related to the value
of Ē. The physical interpretation of β is that of an inverse temperature,

β =
1

kBT
,

where kB = 1.38× 10−23J ·K−1 is Boltzmann’s constant. For obvious reasons, we prefer to refer to the
canonical ensemble as the NVT ensemble, rather than the NVĒ. Besides, it can easily be shown that
the canonical average of the kinetic temperature is equal to T , which justifies the terminology.

Remark 1 (Other ensembles). One could of course go further and remark that when observing a fixed
volume of unconfined gas in thermal equilibrium, the total number of particles N is not fixed. Rather, this
fluctuates as particles are constantly exchanged with an ambient particle reservoir. Instead, the average
number of particles N̄ is fixed. The resulting ensemble is called the grand canonical or µVT ensemble.
This, and many other constructions are possible, but we will restrict our attention to the NVE and NVT
cases.

Remark 2 (Independence of canonical momenta and configurations). We can make an observation on
µ using the fact that the Hamiltonian 1.1 is separable: it is the sum of a kinetic term involving p and a
configurational term involving q. Thus we can write

e−βH(q,p) = e−
β
2 p

ᵀM−1pe−βV (q),

which implies that the canonical measure µ is of tensor form:

µ = κ⊗ ν, (1.8)
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where κ is a probability measure on RdN has a density proportional to e−
β
2 p

ᵀM−1p and ν has a density
proportional to e−βV (q) on D. Recognizing a multivariate Gaussian density, we can further write, abusing
the notations κ and ν to denote both the laws and their densities,

κ(p) = det

(
M

2πβ

) 1
2

e−
β
2 p

ᵀM−1p, (1.9)

ν(q) =
1

Zν
e−βV (q), (1.10)

with

Zν = Z det

(
M

2πβ

) 1
2

.

This implies in particular that the marginal distribution in p of the canonical measure can be sampled
easily, using standard algorithms for generating i.i.d. Gaussian variables, such as the Box-Muller method.

The difficult part is thus to sample from ν, as it is generally a complex and high-dimensional
probability measure. The strategy we will use, whatever the ensemble µ̃, is to define a (possibly
stochastic) dynamical system whose evolution leaves µ̃ invariant.

1.3 Microscopic dynamics

In our sense, the most important dynamics is the reference dynamics prescribed by the laws of Newtonian
mechanics. Recalling the potential V in (1.1), its gradient with respect to qi

∇qiV := (∂qi,d , . . . , ∂qi,d)ᵀ

gives minus the force vector acting on the i-th particle. In our case we will always take the potential to
be independent of the momentum, so that we can think of V as having domain D. In the case where
D = (LT)dN , it will be convenient to think of V as a function from RdN to R which is C1 and L-periodic
in each direction. As it encodes the dynamics of the system, the potential V is of paramount importance.
Indeed, the time evolution of the system is then described by Newton’s second law:

Mq̈ = −∇V (q).

It will be convenient for our analysis to use of reformulation of Newton’s equations, based on the
Hamiltonian of a system. Using the Hamiltonian (1.1), we can rewrite the classical equations of motion
as {

dqt = M−1ptdt = ∇pH(qt, pt)dt

dpt = −∇V (qt)dt = −∇qH(qt, pt)dt
, (1.11)

The potential energy is the most important part of the microscopic description, and accordingly,
the first and foremost problem in establishing a physical model of this kind is to determine find a
potential whose corresponding dynamics faithfully reproduce a given desirable macroscopic behavior.
The choice of a classical description automatically implies a degree of approximation, since behavior
arising from the laws of quantum mechanics, which may be relevant at a microscopic level, have to be
reproduced in a Newtonian framework. Furthermore, if the aim is to simulate such systems numerically,
computational constraints imply that some compromise has to be reached between theoretical accuracy
and computational cost. If, for small systems, it may be possible to simulate all atomic interactions, for
larger or more complex systems, it is often only feasible to use potential functions which are both cheap
from a computational point of view and empirically shown to be accurate enough for the purpose of a
simulation.

Our main numerical example will be the system given by the following empirical potential, and which
is often used to describe the microscopic behavior of chemically inert fluids, such as Argon.

Example 1 (The Lennard–Jones fluid). We fix L > 0 and d = 3. The Lennard-Jones fluid is the
classical system given by the pair-interaction potential

VLJ(q) =
∑

16i<j6N

v(|qi − qj |), (1.12)
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where v is the radial function

v(r) = 4ε

((σ
r

)12

−
(σ
r

)6
)
.

The reference energy ε and length σ are shape parameters which respectively control the depth of the
potential well and the equilibrium distance 21/6σ. As seen on Figure 1.1, the potential combines two
effects. At small interparticular distances, the dominant term is in r−12, which translates into a strongly
repulsive force between close pairs of particles, and makes individual particles essentially impenetrable. At
long range, the dominant term is in −r6, which translates into a weakly attractive force between distant
particles. Contrary to the repulsive term, which is empirical, this scaling has a theoretical origin in the
Van der Waals forces. From a computational standpoint, the fact that v is an even function of r allows
one to compute the normalized force while sparing the expense of computing a square root, while the
identity r12 = (r6)2 allows further economy. The shape parameters σ and ε must be chosen empirically
to describe the behavior of a particular atomic species.

Figure 1.1: The pair potential v, with distances and energy given in reduced units. The equilibrium
interparticular distance is indicated by the vertical dotted line.

1.3.1 Reduced units

It is convenient, given an atomic system, to describe quantities therein within a system of units in which
they are of order one. This has several advantages. Firstly, like any reasonable system of units, reduced
units make quantities easier and more intuitive to reason about. Secondly, from the computational point
of view, numerical artifacts due to loss of precision at very large or very small scales and overflow errors
can be avoided more often. Thirdly, they may help transfer knowledge about one system to another.
For instance, in the Lennard-Jones system, expressing a quantity in reduced units, and knowing the
dependency of these units on the parameters (ε, σ,M) of the system, one can infer properties about
a system with parameters (ε̃, σ̃, M̃) by applying the inverse transformation, thus effectively yielding
equivalence of different systems under different conditions, and sparing the cost of running redundant
simulations.

We describe a general procedure to construct a set of reduced units. Our choice, although not
necessarily unique, is quite natural, especially when dealing with the Lennard–Jones system. Let us fix
a reference mass m∗, a reference energy ε∗ and a reference length σ∗. Then various reference quantities
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can be derived by natural conversions and dimensional analysis:

t∗ =

√
σ2
∗m∗ε

−1
∗ , (time)

T∗ = ε∗k
−1
B , (temperature)

v∗ = σ∗t
−1
∗ , (velocity)

V∗ = σ3
∗, (volume)

A∗ = σ2
∗, (area)

ρ∗ = V −1
∗ , (density)

F∗ = m∗σ∗t
−2
∗ , (force)

P∗ = F∗A
−1
∗ , (pressure)

and one can of course go on. The point is that if X is a quantity, one can obtain its reduced value Xred

by dividing X by the reference quantity X∗ which is dimensionally compatible with X, and which can
be derived as above. For instance, given a pressure P , we obtain

Pred = Pσ3
∗ε
−1
∗ .

Note this is an adimensional quantity. Note, also that, due to the definition of the reference temperature
T∗ relative to the reference energy ε∗, energies are now commensurate to temperatures. The Boltzmann
factor, which is the conversion factor between units of temperature and units of energy simplifies when
expressed in reduced units, a fact we can capture with the maxim kB∗ = 1. This simplifies many
formulae.

For a monatomic Lennard–Jones system, a natural choice for m∗ is the atomic mass of the considered
species. We also take ε∗ = ε and σ∗ = σ (although the equilibrium length σ = 21/6σ is another possible
choice). In the case of Argon, we use the following values:

m∗ = 6.634× 10−26 kg, σ∗ = 3.405× 10−10 m, ε∗ = 1.66× 10−21 J.

Unless explicitly specified, all numerical results will be in this system of reduced units.
Once a dynamic has been prescribed, and an observable of interest as been fixed, we can describe our

strategy to sample from a thermodynamic ensemble.

1.3.2 Ergodic averages

We define a process (qt, pt)t>0 on E , either deterministic or stochastic, which is invariant for the target
measure µ̃, in the following sense: for all t > 0 and all bounded measurable observable ϕ, we require∫

E
E(q,p) [ϕ(qt, pt)] µ̃(dq,dp) =

∫
E
ϕ(q, p) µ̃(dq,dp), (1.13)

where the superscript in the expectation denotes that the process has value (q, p) at t = 0, and the
expectation is over realizations of (qt, pt). In other words, this is a process which, given that its initial
condition is distributed according to µ̃, remains distributed according to µ̃ at any later time. It is then
natural to consider average values of ϕ over the trajectories:

ϕ̂T :=
1

T

∫ T

0

ϕ(qt, pt) dt, (1.14)

which we may hope will converge to the target ensemble average (1.3). The convergence of ergodic
averages to the ensemble average can be shown not to hold in generality, and is something which must
be proven on a case by case basis, though general criteria can be derived, see for instance [22]. If
the underlying dynamic is stochastic, then the variance of the random variables (1.14) becomes an
issue, which one must control by ensuring that time averages are taken over long enough trajectories.
Furthermore, since the true invariant dynamics is in general in continuous time, one must generally devise
discrete-in-time approximations to the true trajectories. However, empirical practice shows that ergodic
averages obtained from computer simulations, even for a modest number of atoms, agrees very well with
experimental data for certain types of systems, and even in the absence of theoretical guarantees.
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Chapter 2

Sampling equilibrium properties

In this chapter, we discuss techniques to sample static properties of systems in thermodynamic equilibrium.
Our focus will be on the microcanonical and canonical ensembles, for which the corresponding sampling
dynamics are described by the Hamiltonian and Langevin equations. Consequently, the bulk of this
chapter is dedicated to theoretical discussions of their properties, as well as the description of numerical
integration strategies.

2.1 Microcanonical averages

We start by describing methods to sample microcanonical averages, first describing a few qualitative
properties of Hamiltonian dynamics. These will serve as criteria to determine viable candidate numerical
schemes, which will be required to preserve, either exactly or asymptotically, those qualitative properties.
We then turn to the description of such structure-preserving schemes, and their energy conservation
properties, concluding by a numerical illustration.

2.1.1 Elementary properties of Hamiltonian dynamics

The Hamiltonian dynamics (1.11) rewrites in matrix form, with Xt = (qt, pt):

dXt = J∇H(Xt) dt, (2.1)

where J is the symplectic matrix

J =

(
0dN IddN
−IddN 0dN .

)
Applying the chain rule to any smooth function ϕ : E → R, we obtain

dϕ(Xt) = dXᵀ
t ∇ϕ(Xt) = (J∇H(Xt))

ᵀ∇ϕ(Xt)dt = (∇pH · ∇q −∇qH · ∇p)ϕ(Xt)dt

This motivates the following.

Definition 2 (Generator of the Hamiltonian dynamics). We define the generator associated with the
Hamiltonian dynamics to be the operator LH acting on smooth functions as

Lhamϕ = (∇pH · ∇q −∇qH · ∇p)ϕ = (J∇H)
ᵀ∇ϕ. (2.2)

We can split the generator as the sum of two elementary operators,

Lham = A+B,

with
A =

(
M−1p

)
· ∇q B = −∇V (q) · ∇p. (2.3)

The generator allows us to quantify the rate of change of an observable ϕ under the evolution of the
system. If we define, for t > 0, the evolution operators

Ptϕ(q0, p0) = ϕ(Φt(q0, p0)),
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where Φ is the flow associated with the Hamiltonian dynamics, that is the collection of maps (Φt)t>0,
defined by Φt(q0, p0) = (qt, pt), the unique solution to (1.11) with initial conditions (q0, p0), then we
formally have:

∂

∂t
Ptϕ(q, p) = ∂tϕ(qt, pt) = Lhamϕ(qt, pt) = LhamPtϕ(q, p) = PtLhamϕ(q, p).

In the following result, we collect certain qualitative properties of Hamiltonian dynamics.

Proposition 1 (Properties of Hamiltonian dynamics). Assume that the Hamiltonian H (1.1) is C2 on E
and that the flow Φt is globally defined for t ∈ R. Then the following properties hold.

i) Group structure:

∀ t, s ∈ R, Φt ◦ Φs = Φt+s, Φ0 = Id.

ii) Energy preservation:

dH(qt, pt)

dt
= 0.

iii) Conservation of the Lebesgue measure:

∀D ∈ B(E), ∀t > 0, |Φt(D)| = |D|.

iv) Symplecticity:

∀t > 0, ∇Φᵀ
t J∇Φt = J.

v) Time reversibility:

Φt ◦ R ◦ Φt = R.

The notation ∇ corresponds to (1), and the map R is the momentum-reversing involution

R(q, p) = (q,−p).

Hints of proof. i) This property expresses the fact that the Hamiltonian evolution is autonomous, and
follows from uniqueness in the Cauchy–Lipschitz theorem. This allows one to formally interpret the
flow as a group action of R on E .

ii) The energy conservation property simply follows from applying Lham to H.

iii) This property, known as Liouville’s theorem, holds generally for any divergent-free flow. Its proof is
based on a time differentiation of the determinant det (∇Φt), and observing that the Hamiltonian
vector field is divergence free:

div (J∇H) = divq (∇pH)− divp (∇qH) = 0.

iv) The property is trivially satisfied at time t = 0. A straightforward calculation shows that the time
derivative of the symplecticity condition for Φt is 0, which proves the claim. Let us remark that this
property also implies property iii), since it shows det(∇Φt)

2
det(J) = det(J) =⇒ |det(∇Φt)| = 1.

v) This again follows by uniqueness of trajectories: by observing that, for a fixed initial condition
(q0, p0), a time differentiation of the trajectory (q−t,−p−t) = R◦Φ−t(q0, p0) shows it is Hamiltonian.
Thus it must coincide with Φt(q0,−p0) = Φt ◦ R(q0, p0). This can be restated as an equality of
mappings, R ◦ Φ−t = Φt ◦ R. Precomposing by Φt on each side yields the result using property i).

Remark 3. Properties i) to iv) above are still valid for any dynamics of the form (2.1), thus it is possible
to consider dynamics with more general Hamiltonians, which still obey them, disregarding issues of well-
posedness. Property v), however uses the additional property that the classical Hamiltonian is separable
into a kinetic and potential part, and that the kinetic part is an even function of p.
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Property ii) in the proposition above asserts that Hamiltonian trajectories remain on the constant
energy manifold S(H(q0, p0)) defined in (1.6). Since this is the support of the microcanonical measure
µmc,E, it is natural to ask whether the Hamiltonian dynamics can be used to sample the microcanonical
measure, by means of ergodic averages. A minimum requirement for this to hold is that the measure is
left invariant under Hamiltonian evolution. This is indeed the case. Consider a Hamiltonian trajectory
(qt, pt) such that H(q0, p0) = E. For g and f test functions,

∫
R
g(E)

∫
E
f(qt, pt) dµmc,E(q, p) dE =

1

ZE

∫
E
g(H(q, p)) (f ◦ Φt) (q, p) dq dp

=
1

ZE

∫
E
g(H ◦ Φ−t(q̃, p̃))f(q̃, p̃) dq̃ dp̃

=
1

ZE

∫
E
g(H(q̃, p̃))f(q̃, p̃) dq̃ dp̃

=

∫
R
g(E)

∫
E
f(q̃, p̃) dµmc,E(q, p) dE.

the absence of a Jacobian determinant term in the change of variables from the second to the third line
follows from property iii) in Proposition 1, while the passage from the second to the third line is justified
by the energy conservation property. This shows that the microcanonical measure is invariant under the
Hamiltonian dynamics, but it is easy to construct examples where ergodic averages fail to converge to
the correct value, as the following simple example shows.

Example 2 (A non-ergodic system). We consider the following one-dimensional system with E = T×R,
and the potential given by

V (q) = cos

(
4π

[
q − 1

2

])
.

The constant-energy manifold S(0) consists of two disjoint compact connected components (see Figure
2.1). The observable

ϕ(q, p) = 1q> 1
2
− 1q< 1

2

is constant on each component of S(0), and has zero average with respect to µmc,0 by symmetry, but
ergodic averages do not converge, since

1

T

∫ T

0

ϕ(qt, pt)dt =
1

T

∫ T

0

ϕ(q0, p0)dt = ϕ(q0, p0) ∈ {±1}.

Figure 2.1: The Hamiltonian landscape for the potential V of Example 2 , with S(0) plotted in red.
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The issue of ergodicity is in general very hard to tackle for realistic systems, and in practice is often
taken as a working hypothesis. Besides, it may happen that for observables satisfying some symmetries
in the constant energy manifold converge to the correct microcanonical average even in the absence of
ergodicity. This is, for example, the case for the kinetic energy observable in our Example 2.

2.1.2 Numerical schemes for Hamiltonian dynamics

It not impossible, except for a restricted class of systems, which do not typically arise in practice, to
analytically integrate Hamilton’s equation (1.11). For this reason, one must resort to numerical schemes,
which provide approximations of the flow map over one timestep. More precisely, for a fixed timestep
∆t, if one has an approximation of the flow

Φ̃∆t ≈ Φ∆t,

one can deduce discrete approximations of the evolution by iteration:

(qn, pn) := Φ̃n∆t(q0, p0) ≈ (qn∆t, pn∆t), (2.4)

which can then be used as sample points for the computation of empirical averages, discrete counterparts
to the ergodic averages (1.14),

1

N iter

Niter∑
k=0

ϕ(qk, pk). (2.5)

In most common applications involving ordinary differential equations, the aim is to approximate the
exact solution as precisely as possible over a given domain. In the case of sampling trajectory averages in
molecular dynamics, however, the time domain is usually very large, because simulating long trajectories
is a requirement to ensure that a representative portion of phase space is explored. As a consequence,
it is in practice impossible to obtain precise solutions over a long time at the level of trajectories,
because the evolution’s sensitivity to initial conditions will cause small initial errors to rapidly blowup.
Furthermore, one does not really care about the exact evolution, since the dynamics are merely used as
a sampling device. Instead, one key requirement is that the dynamics stay on or close to the constant
energy manifold associated with a given initial condition. It can be shown through eigenanalysis that
for simple linear systems, this requirement is not satisfied by standard ODE numerical methods such as
the explicit and implicit Euler schemes, or the RK4 method, for which the energy may exponentially
increase or decrease. This has the practical effect that for reasonably sized atomic systems, numerical
instabilities render the simulations nonsensical after only a few time steps, which is far from what is
needed to obtain good estimates. One must then devise dedicated numerical methods, guided by the
aim to preserve qualitative properties of the Hamiltonian evolution. It turns out that splitting schemes,
based on operator splitting approximations of the Hamiltonian evolution operator over one timestep,
preserve crucial qualitative properties of the Hamiltonian evolution.

An important observation is that if one considers each part of (2.3) as a generator in its own right,
the corresponding elmentary dynamics are analytically integrable.

Remark 4. Consider the two dynamics defined by{
dqAt = M−1pAt dt,

dpAt = 0,
(2.6)

and {
dqBt = 0,

dpBt = −∇V (qBt )dt.
(2.7)

These can be analytically solved as{(
qAt , p

A
t

)
=
(
qA0 + tpA0 , p

A
0

)
,(

qBt , p
B
t

)
=
(
qB0 , p

B
0 − t∇V

(
qB0
))
.

(2.8)

Moreover, these evolutions are of Hamiltonian form, with Hamiltonians corresponding respectively to the
kinetic part and the configurational part only, and have corresponding generators A and B. We denote
by
(
ΦAt
)
t∈R and

(
ΦBt
)
t∈R their respective flow maps.

16



This observation suggests the following general recipes to construct a class of numerical schemes for
the Hamiltonian dynamics, named splitting schemes. We consider approximations of the form

Φ∆t ≈ ΦGk∆tk
◦ · · · ◦ ΦG1

∆t1
, (2.9)

where Gi ∈ {A,B} for all i and
∑
Gi=A

∆ti =
∑
Gi=B

∆ti = 1. We will be considering three schemes,
the simplest of which are the symplectic Euler schemes. The symplectic Euler schemes are defined by
the following update equations: {

pn+1 = pn −∇V (qn)∆t,

qn+1 = qn +M−1pn+1∆t,
(2.10)

and {
qn+1 = qn +M−1pn∆t,

pn+1 = pn −∇V (qn+1)∆t.
(2.11)

These correspond respectively to the splittings ΦA∆t ◦ ΦB∆t := ΦBA∆t and ΦB∆t ◦ ΦA∆t := ΦAB∆t . The
velocity Verlet scheme is based on the symmetric splitting ΦB∆t/2 ◦ ΦA∆t ◦ ΦB∆t/2 := ΦBAB∆t , Its update
equation is given by 

pn+ 1
2 = pn − ∆t

2
∇V (qn)

qn+1 = qn + ∆tM−1pn+ 1
2

pn+1 = pn+ 1
2 − ∆t

2
∇V (qn+1).

(2.12)

We have announced above that these numerical schemes preserve some qualitative properties of the
Hamiltonian dynamics. We now turn to making this statement precise. Let us fix an evolution operator
Φ̃∆t corresponding to a splitting of the form (2.9) with a timestep ∆t > 0. Recall the properties in
1. Then analogous properties can be stated for each of the schemes. We will refer to these analogous
using the same names and indexing, but where Φt is replaced by Φ̃∆t regardless of t. We further say
a splitting is symmetric if the corresponding order of operators A and B is a palindrome. The velocity
Verlet splitting is symmetric, while the symplectic Euler splittings are not. We may then go through the
properties in Proposition 1, listing those which apply, and those which have to be modified.

i) Group structure: the analogous statement is a group action of Z on E . This holds if the splitting is
symmetric: then, Φ̃−1

∆t = Φ̃−∆t.

ii) Energy preservation: this does not hold as is, but does in a weakened sense that we discuss below.

iii) Conservation of the Lebesgue measure: this holds for all splittings.

iv) Symplecticity: similarly, this holds for all splittings.

v) Time-reversibility: this holds for all symmetric splittings.

Hints of proofs. For every one of these properties, the strategy is the same. From Proposition 1, each
one of them holds for ΦA∆t and for ΦB∆t. The aim is then to show that these properties are stable, at best
under composition, and at worst under symmetric composition.

i) This simply follows from writing

(g1 ◦ g2 ◦ · · · ◦ g2 ◦ g1)
−1

= g−1
1 ◦ g−1

2 ◦ · · · ◦ g−1
2 ◦ g−1

1 ,

and using property i) applied to ΦA∆t and ΦB∆t.

ii) This is a crucial and slightly subtle point, to which we return in more detail below.

iii) This follows trivially by composition (or alternatively by symplecticity). For any measure preserving
measurable maps f and g,

|f ◦ g(D)| = |g(D)| = |D|.

iv) This follows from the fact that any composition of symplectic maps is symplectic. This, in turn,
follows from the multivariate chain rule below, and applying the symplectic property twice:

∇(g ◦ f) = ((∇g) ◦ f)∇f =⇒ [((∇g) ◦ f)∇f ]
ᵀ
J [((∇g) ◦ f)∇f ] = ∇fᵀJ∇f = J.
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v) Fixing f ◦ R ◦ f = g ◦ R ◦ g = R, we write

f ◦ g ◦ R ◦ g ◦ f = f ◦ R ◦ f = R,

and conclude by induction that the property holds for any symmetric splitting.

We have shown that splitting schemes inherit some nice geometrical properties from the underlying
Hamiltonian flow, and all the more for symmetric splittings. However our final aim is to sample from
the microcanonical measure, hence we should aim to sample points which remain close to the constant
energy manifold S(E). Ideally, we would want to guarantee that the Hamiltonian is perfectly preserved
under the discrete evolution induced by these schemes. This, it turns out, is too high a hope. It happens,
however, that, for each of these schemes, a perturbed Hamiltonian is (almost) exactly conserved, which
we can interpret as the discrete dynamics (2.4) regularly and (almost) exactly sampling points from
a perturbed dynamics corresponding to the new Hamiltonian. The order of this perturbation in the
timestep ∆t then allows one to quantify the error over finite time intervals. The statements and proofs
of this kind of results fall under the broad scope of backward numerical analysis. For a clear and more
detailed introduction, one can consult [16, Section 4]. The general idea of backward numerical analysis,
given an evolution equation and an associated numerical method:

ẏ = F0(y), yn+1 = Φ̃∆t(y),

is to reinterpret the numerical solution y1 not as an approximation of the exact solution y∆t, but as the
exact solution ỹ∆t of an approximate evolution ỹ, given by the ODE

˙̃y = F̃ (y),

where F̃ is given by a perturbative expansion

F̃ = F0 + ∆tF1 + ∆t2F2 + . . .

To avoid any convergence issue related to infinite expansions, precise statements usually truncate the
expansion at some finite order α > 0, and require the exactness of the numerical trajectory up to order
α+ 1, say

F̃ = F0 + ∆tF1 + · · ·+ ∆tαFα, |Φ̃∆t(y0)− ỹ∆t| = O(∆tα+2).

Comparing Taylor expansions in powers ∆t of Φ̃∆t and ỹ∆t then allows us to explicitly compute the
terms in the expansion of F̃ . As an example we compute the first correction term for the symplectic
Euler scheme ΦAB∆t .

Example 3 (Leading-order correction for ΦAB∆t ). Following our strategy, we Taylor-expand our scheme
as

ΦAB∆t (q, p) =

(
q + ∆tM−1p

p−∆t∇V (q)−∆t2∇2V (q)M−1p

)
+ O(∆t3).

Similarly, expanding the exact solution with initial condition (q, p) = y0 to the second order yields

Φ∆t(q, p) = y0 + ∆tJ∇H(y0) +
∆t2

2
∇ [J∇H(y0)] J∇H(y0) + O(∆t3)

= y0 + ∆tJ∇H(y0) +
∆t2

2
J∇2H(y0)J∇H(y0) + O(∆t3)

=

 q + ∆tM−1p− ∆t2

2
M−1∇V (q)

p−∆t∇V (q)− ∆t2

2
∇2V (q)M−1p

+ O(∆t3).

This shows the scheme is of order one, hence

|Φ∆t(q, p)− ΦAB∆t (q, p)| = O(∆t2).
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Comparing the two expansions allows us to recover the discrepancy term, showing that the solution of
the modified equation at time ∆t

d

dt
q = M−1p+

∆t

2
M−1∇V (q)

d

dt
p = −∇V (q) +

∆t

2
∇2V (q)M−1p

agrees with ΦAB∆t (q, p) up to order 2 in ∆t. Crucially, this equation is still of Hamiltonian form, for the
modified Hamiltonian

H̃(q, p) = H(q, p)− ∆t

2
∇V (q)ᵀM−1p. (2.13)

In fact, it is a general fact that all truncations of the modified dynamics for a symplectic method are of
Hamiltonian form. For a more thorough discussion of this fact, we refer to [17, Section IX.4], but for now
we simply make note of the fact that given a numerical method, we can construct a modified Hamiltonian
equation for which this numerical order is of arbitrarily high order of local consistency. This is important,
because, as the following result [17, Theorem IX.8.1] shows, the order of the numerical method is directly
related to the long-time energy conservation properties along numerical trajectories.

Theorem 1. Let H be an analytic Hamiltonian, and Φ̃∆t a symplectic numerical method of order α. If
there is a compact set K ⊂ E such that (qn, pn) ∈ K for all n > 0, then there exists τ > 0 such that for
∆t small enough,

H(qn, pn) = H(q0, p0) + O(∆tα) (2.14)

for times n∆t 6 eτ/∆t.

The fact that that the order of the scheme is linked to the local conservation in time of the Hamiltonian
is unsurprising. The main content of the above result is that this conservation is valid over very long
times, provided the numerical trajectory does not explode and that the timestep is chosen to be small
enough.

We have already seen that symplectic Euler methods are of order one, and it can straightforwardly
be shown that the Verlet scheme is of order 2 by a Taylor expansion. Hence we expect the fluctuation
of the Hamiltonian to be of order ∆t for the symplectic Euler methods and of order ∆t2 for the Verlet
scheme. Moreover, by construction, symplectic Euler methods are of order 2 for the first-order modified
Hamiltonian dynamics, so we expect the fluctuation of the first-order modified Hamiltonian computed in
Example 3 to be of order 2 for the symplectic Euler methods. The leading-order correction term for the
other Euler symplectic scheme can be computed using the same method, and is given by the opposite of
(2.13).

In Figure 2.2, we verify this result numerically. A Lennard–Jones system of 1000 particles was
simulated with a temperature T = 1.5, for a time τ = 1.0, and at density ρ = 0.7. The Lennard–Jones
potential was cut off using a cubic spline interpolation between ra = 2.0 and rc = 2.5. We plot the
maximal fluctuation of the Hamiltonian

∆H := max
06n6dτ/∆te

H(qn, pn)− min
06n6dτ/∆te

H(qn, pn)

as a function of the timestep ∆t for each of the symplectic splitting schemes. We also plot the maximum
fluctuation of the modified Hamiltonian (2.13) for the symplectic Euler schemes, which we denote in
the legend by a lowercase m. The legend gives the order of the operators in the splitting, along with
the slope of the least squares regression line in log-log space, which we superimpose in dotted line. In
order for the trajectories to be comparable, every simulation was started from the same precomputed
equilibrium starting configuration. The results concur with theoretical prediction.

From a practical point of view, we will always use the Verlet scheme, since it offers the better energy
conservation property without any computational overhead compared to the symplectic Euler schemes.
Indeed, the force calculation in the last step of (2.12) can be used again in the first step of the next
iteration, so that there is only one force calculation per iteration, as in the symplectic Euler method.
Finally let us mention that the splitting based on the ordering ABA of the elementary generators
yields another symplectic method called the position Verlet scheme, which enjoys the same conservation
properties as standard (velocity) Verlet. It is, however, rarely used in practice.
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Figure 2.2: Maximal fluctuation of the Hamiltonians and leading-order modified Hamiltonians for the
Symplectic Euler and Verlet schemes.

2.2 Canonical averages

We now turn our attention to methods to compute canonical averages, which are expectations of
observables with respect to the canonical measure (1.7). As we already alluded to, the sampling strategy
will be based on the definition of a stochastic process under whose evolution the canonical measure is
invariant. This is the Langevin dynamics. We define it, and discuss some of its theoretical properties
which are relevant to the sampling of canonical averages. We then turn to describing a splitting strategy
for the discretization of the continuous dynamics, which will serve as our effective sampling tools for
canonical averages. We finally give some numerical illustrations of the strategy.

2.2.1 Langevin dynamics

We first consider the inertial Langevin dynamics, defined by the following stochastic differential equation
(SDE), where γ, β are fixed positive constants:

dqt = M−1pt dt,

dpt = −∇V (qt) dt− γM−1pt dt+

√
2γ

β
dWt,

(2.15)

where (Wt)t>0 is a standard dN -dimensional Brownian motion. This process is a combination of a
Hamiltonian evolution with an additional action on the momenta which, if isolated, defines a dN -
dimensional Ornstein-Uhlenbeck process.

This additional term be interpreted physically as the combination of two effects: a dissipation term

−γM−1ptdt,

which can be understood as the effect of a viscous friction force on the particles, and a fluctuation term,√
2γ

β
dWt,

which corresponds to the input of kinetic energy into the system as thermal agitation induced by a
surrounding heat bath at temperature 1/(kBβ).
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However, the physical meaning can be forgotten thanks to the fact that, in fine, we only require that
the canonical measure be invariant under this dynamic: as we shall shortly see, this is indeed the case.

Remark 5 (Generalized Langevin dynamics). There are several ways to generalize this process: one is
to consider a generic, possibly non-separable, Hamiltonians, as in Remark 3, rather than the classical
Hamiltonian used above. The other is to allow the fluctuation-dissipation term to be parametrized by
coefficients γ and σ depending on the state variable, and which obey a relation ensuring the invariance
of µ. Hence in full generality, we could consider the following system of SDEs:{

dqt = ∇pH(qt, pt)dt,

dpt = −∇qH(qt, pt)dt− γ(qt, pt)∇pH(qt, pt)dt+ σ(qt, pt)dWt,
(2.16)

where γ and σ are dN × dN matrix-valued functions. In fact one can also consider the case where Wt is
a r-dimensional Brownian motion and σ is a dN × r matrix-valued function. The Dissipative Particle
Dynamics (DPD, see [6]) is a generalized Langevin equation of this form, where γ and σ are position-
dependent and the Brownian motion is dN(N − 1)/2-dimensional, which corresponds to the number of
pairs of non-orthogonal momentum degrees of freedom.

The generator of the Langevin dynamics is the operator

Lγ = M−1p · ∇q −∇V (q) · ∇p − γM−1p · ∇p +
γ

β
∆p, (2.17)

and we denote the evolution operator using exponential notation:(
etLγϕ

)
(q, p) := E(q,p) [ϕ(qt, pt)] , (2.18)

where the expectation is over all trajectories of the dynamics (2.15), starting from (q0, p0) = (q, p).

2.2.2 Invariance of the canonical measure

Using the generator, one can easily express the evolution of a probability distribution under the Langevin
dynamics. We assume for simplicity that the solution (qt, pt)t>0 to (2.15) has a distribution with a smooth
density ρt at time t over E . For any C∞ compactly supported observable ϕ, we have∫

E
ϕ(q, p)ρt(q, p) dq dp =

∫
E
E(q,p) [ϕ(qt, pt)] ρ0(q, p)dqdp =

∫
E

etLγϕ(q, p)ρ0(q, p)dqdp,

where the superscript is as in (1.13). Thus,

∂

∂t

(∫
E
ϕ(q, p)ρt(q, p) dq dp

)
=

∫
E

etLγLϕ(q, p)ρ0(q, p) dq dp =

∫
E
Lγϕ(q, p)ρt(q, p) dq dp

If we define L†γ as the adjoint of Lγ on the flat space L2(E), that is,∫
E

(Lγϕ)ψ =

∫
E
ϕ
(
L†γψ

)
for all φ, ψ (2.19)

compactly supported C∞ test functions, we have the Fokker–Planck equation,

∂

∂t

∫
E
ϕ(q, p)ρt(q, p)dqdp =

∫
E
ϕ(q, p)L†γρt(q, p)dqdp, (2.20)

which rewrites formally as
∂

∂t
ρt = L†γρt. (2.21)

Using this equation, we can easily show that the canonical distribution is invariant under this dynamics,
which is equivalent to the condition

L†γµ = 0.

In fact, it is useful to reformulate this condition in the weighted space L2(µ). Indeed, the stationary
Fokker–Planck equation rewrites ∫

E
Lγϕdµ = 0 ∀ϕ,
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or equivalently,

L∗γ1E = 0,

where L∗γ is the adjoint of Lγ in L2(µ) for the scalar product

(ϕ,ψ) 7→
∫
E
ϕψ dµ.

This, in turn, follows easily from the following lemma.

Lemma 1. The L2(µ) adjoints of the elementary differential operators are given by the formulae{
∂∗qi = −∂qi + β∂qiV,

∂∗pi = −∂pi + β
(
M−1p

)
i
.

(2.22)

These are easily found by integration by parts. In particular, we find that

∂qi∂
∗
pi − ∂pi∂

∗
qi = β

(
(M−1p)i∂qi − ∂qiV ∂pi

)
,

hence, by summing over i,

Lham =
1

β

(
∇q · ∇∗p −∇p · ∇∗q

)
, (2.23)

which is an antisymmetric operator. Similarly,

∂pi∂
∗
pi = β(M−1p)i∂pi − ∂2

pi ,

hence

C = − 1

β
∇p · ∇∗p, (2.24)

which is a symmetric operator. In summary, we have that

L∗γ = −Lham + γC = −(A+B) + γC. (2.25)

It follows immediately that L∗γ1E = 0. Notice that since L∗ham1E = 0, the canonical measure is also
invariant under the Hamiltonian dynamics. However, because the latter is restricted to a manifold with
zero measure with respect to µ, Hamiltonian ergodic averages cannot in general converge to the correct
value.

Remark 6 (Fluctuation-dissipation relation for generalized Langevin dynamics). We come back to the
general Langevin dynamics (2.16). In this case the generator is given by

Lγ,σ = Lham − (γ∇pH) · ∇p +
1

2
(σσᵀ) : ∇2

p.

The canonical measure is invariant under the action of the Hamiltonian part, so having

L̃FD := −(γ∇pH) · ∇p +
1

2
(σσᵀ) : ∇2

p

such that L̃∗FD1E = 0 is enough to guarantee the invariance of the canonical measure. If γ and σ
are momentum-dependent, then this condition is a complicated differential-in-p relation between the
coefficients of γ and σ, which can be explicitly computed by integration by parts in the expression∫

E
(LFDϕ)ψe−βH ,

with ϕ,ψ ∈ C∞c (E) test functions. In the case where γ and σ are only position-dependent however,
as is often the case in practice, then the expression simplifies greatly, and becomes simply an algebraic
relationship between γ and σ, namely

σσᵀ =
2γ

β
. (2.26)
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2.2.3 Overdamped limit of Langevin dynamics

As already pointed out, the fact that the kinetic marginal of µ is a Gaussian distribution makes sampling
canonical momenta trivial. Instead, the main problem is sampling from ν. It follows directly from the
invariance of µ under trajectories of the Langevin dynamics that ν is invariant under the configurational
trajectories of the Langevin dynamics. It would be convenient, however, to have at our disposal a
dynamics on D which has ν as an invariant measure. It turns out this is possible, by observing that the
invariance of µ is independent of the parameter γ, and taking the limit γ → ∞. This requires a bit of
care. Notice the SDE on the momenta in (2.15) rewrites

dpt = −∇V (qt)dt− γdqt +

√
2γ

β
dWt,

thus a time integration gives

qt − q0 =
p0 − pt
γ

− 1

γ

∫ t

0

∇V (qs)ds+

√
2

γβ
Wt.

The scaling invariance of the Brownian motion (
√
αWt/α2)t>0 ∼ (Wt)t>0 suggests considering the

timescale γβt, thus

qγβt − q0 =
p0 − pγβt

γ
− 1

γ

∫ γβt

0

∇V (qs)ds+
√

2W̃t,

where W̃ is again a Brownian motion. Using the change of variables s = γβu in the integral term yields

qγβt − q0 =
p0 − pγβt

γ
− β

∫ t

0

∇V (qγβu)du+
√

2W̃t, (2.27)

At this point, we formally take γ →∞, which suggests the following SDE for the rescaled in time process,

dqt = −β∇V (qt) dt+
√

2 dWt. (2.28)

This equation defines the overdamped Langevin, or Brownian, dynamics. To justify the limit in a
rigorous manner, one would hope to show that the rescaled process (2.27) converges in law to a weak
solution of the SDE (2.28), in some functional space. However, this is technical overkill, since, we only
need to consider dynamics as sampling devices. In fact, the physical interpretation of this equation is
not entirely clear in terms of the dimensions of the quantities involved. We can just as well take equation
(2.28) as given, and be satisfied by the following fact.

Proposition 2. The configurational Gibbs measure ν is invariant under the dynamics (2.28).

This follows along the same lines as for the Langevin dynamics. The generator (now acting on
observables defined on D) is the operator

Lϕ = −β∇V · ∇ϕ+ ∆ϕ. (2.29)

Again, we consider the weighted space L2(ν). Adjoints of elementary differential operators are still given
by the first line of (2.22), and it is then easily seen that

L = −∇∗ · ∇ (2.30)

is a symmetric operator. Again we have L∗1D = 0, so ν satisfies the stationary Fokker–Planck equation
under this dynamics.

Remark 7. Instead of rescaling time by βγ, we could have rescaled by γ, which would yield the dynamics

dqt = −∇V (qt)dt+

√
2

β
dWt. (2.31)

Which formulation to choose is a matter of preference, since both yield a dynamics invariant under ν,
as seen from the identity (where we still write L for the generator)

L = − 1

β
∇∗ · ∇.

We end this chapter by stating some key properties of the continuous dynamics, regarding ergodicity
and and statistical error, before moving to the description of splitting schemes.
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2.2.4 Convergence to equilibrium

Once we have shown that the Langevin dynamics and its overdamped limit are reasonable candidates to
sample from the canonical measure and its configurational marginal, we should ensure that the target
measure is actually sampled, and not simply invariant for the dynamics, as the cautionary example of
the Hamiltonian dynamics shows. This is the question of ergodicity, and resuts of this nature mainly
come in two flavors.

(i) Probabilistic ergodic theorems that ask about the convergence of random variables like (1.14), that
give analogs of the Law of Large Numbers for the correlated process ϕ(qt, pt).

(ii) More analytic results which express the convergence of the law of the process at time t towards
a stationary solution to the Fokker–Planck equation. These can usually be expressed as decay
estimates on the evolution Semigroup (2.18), in a judiciously chosen functional setting.

We will not get into details as these questions can quickly get quite technical, but rather give intuitive
ideas of the setting, and point the reader to more thorough sources. Results such as (i) typically leverage
the strong Law of Large Numbers by dissecting the trajectory into a discrete number of (loosely) i.i.d.
excursions through phase space, guaranteeing the almost sure convergence of trajectory averages. As
such, proving the positive recurrence of the dynamics is crucial to showing that these excursions are
well-behaved, while also implying that the invariant measure is unique. One idea, exploited by Kliemann
in [22], is to recast the Langevin dynamics as a control equation (where Wt acts as the control). He is
thus able to leverage criteria on Lγ from geometric control theory to ensure the almost sure convergence
of trajectory averages. Results such as (ii) depend on the functional setting. Let us simply state the
following result, based on hypocoercive estimates. For an introduction to these ideas, and references, we
point to Section 2.1.1 in [24], and [18]. For any measure ρ denote by L2

0(ρ) the space of square-integrable
observables with respect to ρ and zero mean.

Proposition 3 (Exponential decay rate of the Semigroup). Assume that the potential V is smooth and
that the configurational marginal ν of µ satisfies a Poincaré inequality: there exists a constant R > 0
such that for all ϕ ∈ L2

0(ν) such that ∇ϕ ∈ L2(ν)dN ,

‖ϕ‖2L2(ν) 6
1

R
‖∇ϕ‖2L2(ν). (2.32)

Then there exist constants Cγ , λγ > 0 such that

‖etLγ‖B(L2
0(µ)) 6 Cγe−tλγ . (2.33)

For the overdamped case, exponential decay rates can also be obtained (much more directly) under
the same conditions. Moreover the Poincaré inequality (2.32) is automatically satisfied in the case of a
compact configurational space D.

2.2.5 Asymptotic variance for ergodic averages

Since ergodic averages are computed over a finite time-interval, the corresponding random variable will
have some variance. Let us show how to relate this variance to the dynamics, provided a Central Limit
Theorem holds. For simplicity, we assume that (q0, p0) ∼ µ, and let ϕ ∈ H1(µ) be an observable of
interest. We also denote by

Πϕ = ϕ−
∫
E
ϕdµ (2.34)

the centering projector associated with µ. The Central Limit Theorem asserts that the following
convergence in law holds:

1√
T

∫ T

0

Πϕ(qt, pt) dt
law
=⇒ N (0, σ2

ϕ), (2.35)

where σ2
ϕ is the asymptotic variance associated to ϕ under the dynamics, which is thus given by the limit

of the variance on the left-hand side. Let us compute:

σ2
ϕ,T := Eµ

( 1√
T

∫ T

0

Πϕ(qt, pt) dt

)2
 =

1

T

∫ T

0

∫ T

0

Eµ [Πϕ(qt, pt)Πϕ(qs, ps)] dsdt.
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By stationarity, for t > s, Πϕ(qt, pt)Πϕ(qs, ps) ∼ Πϕ(qt−s, pt−s)Πϕ(q0, p0), hence we may write, by
Fubini’s theorem,

σT =
2

T

∫ T

0

∫ t

0

Eµ [Πϕ(qt−s, pt−s)Πϕ(q0, p0)] dsdt

=
2

T

∫ T

0

∫ T

s

Eµ [Πϕ(qs, ps)Πϕ(q0, p0)] dtds

= 2

∫ T

0

Eµ [Πϕ(qs, ps)Πϕ(q0, p0)]
(

1− s

T

)
ds

= 2

∫ T

0

Eµ
[(
esLγΠϕ

)
(Πϕ)

] (
1− s

T

)
ds

Using a Cauchy–Schwarz inequality in L2(µ) and an exponential decay estimate on the evolution semigroup
like (2.33), we obtain a bound of the form∫ T

0

∣∣∣Eµ [(esLγΠϕ
)

(Πϕ)
] s
T

∣∣∣ ds 6
∫ ∞

0

Cγe−λγs ‖Πϕ‖2L2(µ)

s

T
ds

for some positive constants C and α, which converges uniformly to 0 as T →∞. It follows that

σ2
ϕ =

∫ ∞
0

Eµ
[(
esLγΠϕ

)
(Πϕ)

]
ds. (2.36)

We use the following equality of bounded operators on L2
0(µ),

(−Lγ)−1 =

∫ ∞
0

esLγ ds, (2.37)

which again is justified by the exponential decay rate of evolution semigroup, and where the integral
on the right is in the Bochner sense, that is a generalization of the Lebesgue integral to functions
taking values in a general Banach space. Using this identity, we can write the asymptotic variance more
concisely,

σ2
ϕ = Eµ

[
(Πϕ)(−Lγ)−1(Πϕ)

]
. (2.38)

Note that the exact same computations can be performed for the overdamped Langevin dynamics. It
follows from [3, Theorem 2.1], that a sufficient condition for a CLT to hold is that Πϕ ∈ RanLγ , which
is the case provided we can express the inverse of Lγ using (2.37).

2.2.6 Splitting schemes for the Langevin dynamics

Similarly to the Hamiltonian case, the generator (2.17) splits into three elementary generators, namely

Lγ = A+B + γC = Lham + γC,

with

C = −M−1p · ∇p +
1

β
∆p. (2.39)

These generators individually give rise to dynamics which we can analytically integrate, defined by the
following evolution operators:

etAϕ(q, p) = ϕ(q + tM−1p, p),

etBϕ(q, p) = ϕ(q, p− t∇V (q)),

etγCϕ(q, p) = E

[
ϕ

(
q, e−γM

−1tp+

√
M

β
(1− e−2γM−1t)G

)]
,

(2.40)

where G is a standard dN -dimensional Gaussian. The third equality is a reformulation of an equality in
law between an Itô integral and a Gaussian random variable, and follows by applying Itô’s formula to
the rescaled process

eγM
−1tpt,
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where pt is the Ornstein–Uhlenbeck process:

dpt = −γM−1pt dt+

√
2γ

β
dWt, (2.41)

then applying the following matrix form of Itô’s isometric property

∫ t

0

As dWs
law
=

(∫ t

0

AsA
ᵀ
s ds

) 1
2

G (2.42)

to obtain the equality in law. The dynamics associated with the A and B parts are deterministic
Hamiltonian dynamics already identified in (2.8). Just as in the Hamiltonian case, we can define schemes
for the Langevin dynamics based on approximating the evolution operator (2.18) over one timestep by
splitting the generator Lγ , and combining the corresponding evolution operators (2.40) in a sequence. We
refer to such a splitting approximation by the sequence in which the individual propagators are composed.
It is useful at this point to introduce the stochastic flow map associated with the Ornstein–Uhlenbeck
dynamics.

ΦCt (q, p, ξ) =

(
q, e−γM

−1tp+

√
M

β
(1− e−2γM−1t)ξ

)
, (2.43)

where ξ ∈ RdN . The map is defined so that E[ϕ
(
ΦCt (q, p,G)

)
] = etγCϕ(q, p) when G is a standard

Gaussian random variable. Given an ordering of operators,

(R1, . . . , Rk) ∈ {A,B, γC}k, (2.44)

we can consider the mapping obtained by composing the elementary flows, noted as

ΦR1,...Rk := ΦRk∆t/nRk
◦ · · · ◦ ΦR1

∆t/nR1
, (2.45)

where

nR := # {1 6 j 6 n|Rj = R}

for R ∈ {A,B, γC}, and which we may consider by a slight abuse to be the mapping which takes a point
in phase space and nγC vectors in ξ1, . . . , ξnγC ∈ RdN , yielding a point in phase space by successively
applying the flow, and, if need be, stochastic flow, mappings corresponding to the reverse ordering of
(2.44). Applying this mapping with a vector of independent standard Gaussians yields a stochastic
mapping, which defines the update rule for the splitting scheme associated with the ordering (2.44). An
important property which follows from writing the update rule using the mapping (2.45) is that numerical
trajectories formed by iterating this update rule with independent vectors of standard Gaussians form a
Markov chain. The hope is that the invariant measure corresponding to this Markov chain (provided it is
unique) is a close approximation to the canonical measure, as well as being ergodic. It is less cumbersome
to write such schemes at the level of the evolution operator associated with the Markov chain,

P∆tϕ(q, p) = E
[
ϕ(q1, p1)

∣∣q0 = q, p0 = p
]
. (2.46)

The evolution operator associated with the splitting (2.44) is

P∆t = e∆t/nR1
R1 · · · e∆t/nRkRk . (2.47)

Note that the order is reversed compared to the stochastic flow formulation. While the formulation at
the stochastic flow level is slightly complicated to write, it corresponds very closely to how a general
splitting integrator for the Langevin dynamics can be implemented. One simply has to compute the
timestep corresponding to each operator in the ordering, and apply in succesive steps the corresponding
flow maps, sampling independent Gaussian variables for each stochastic step. We will refer to such
schemes by the name obtained by concatenating the names of each operator appearing in the ordering,
using O instead of γC. For instance, the BAOAB scheme corresponds to the case k = 5, nA = nB = 2,
and nγC = 1, and the ordering (B,A, γC,A,B).
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Example 4 (BAOAB scheme). The update rule is given by the following equations, with additional
intermediate coordinate and momentum variables:

pn+ 1
3 = pn − ∆t

2
∇V (qn)

qn+ 1
2 = qn +

∆t

2
M−1pn+ 1

3

pn+ 2
3 = α∆tp

n+ 1
3 + σ∆tG

n

qn+1 = qn+ 1
2 +

∆t

2
M−1pn+ 2

3

pn+1 = pn+ 2
3 − ∆t

2
∇V (qn+1),

(2.48)

where, again, Gn is a standard dN -dimensional Gaussian.

Now we have a recipe to make an infinite number of numerical schemes, which can easily be implemented
in a computer. We could even go further and consider methods with an uneven distribution for the
secondary timesteps, the introduction of negative secondary timesteps for the A and B steps, and so on.
This room for creativity highlights the need for criteria to assess the quality of such schemes. A tradeoff
between various considerations has to be found:

(i) Our aim is to compute long trajectories, which are needed to ensure that the phase space is properly
explored, as well as to obtain better statistical properties for averages (2.5). Thus, for a fixed
computational budget, we desire a scheme which allows us to take as large a timestep ∆t as
possible. This is the issue of numerical stability.

(ii) The use of a positive timestep ∆t implies in general that the invariant measure for the Markov
chain corresponding to a given scheme is not the canonical measure. This issue is called systematic
error, or bias, and one would desire a scheme which minimizes this bias.

(iii) The main computational cost in computing iterates of these numerical schemes is the evaluation of
the gradient of the potential used for the B steps. As such, it is desirable to have a scheme which
requires as few evaluations of this gradient as possible per iteration. Some care must be taken when
implementing these, to ensure that already computed gradients are not re-computed: for instance,
the gradient in the last step of the BOAB scheme, is equal to the one in the first step of the next
iteration.

(iv) Notice that the parameter γ is free for the practitioner to choose. A natural question is to determine
the properties of the marginal dynamics in q in the limit γ → +∞, and in particular if we obtain a
consistent discretization of the overdamped Langevin dynamics. Conversely, one could ask about
properties of the dynamics as we take the Hamiltonian limit γ → 0.

Remark 8 (Overdamped and Hamiltonian limits in splitting schemes). Concern (iv) is simple to address.
Since

lim
γ→0

α∆t = 1 lim
γ→+∞

α∆t = 0,

every O-step can simply be dropped as γ → 0 from the sequence of operators defining the splitting. This
yields a symplectic scheme for the Hamiltonian parts of the dynamics, whose properties can be analyzed
as before. For this reason, the ordering of the Hamiltonian parts of the splitting of most commonly used
schemes corresponds to that of a velocity Verlet method. As γ →∞, every O-step reduces to resampling
the momentum according to the Maxwell–Boltzmann distribution. The properties of the resulting scheme
depend on the particular ordering of the splitting at hand. For instance, if every A step is preceded by
an O step, then the potential is entirely ignored by the evolution, and the trajectories form an isotropic
random walk. This is for instance the case of the BOA scheme. On the other hand, it may happen that
one obtains a discretization of the overdamped Langevin dynamics. For example, the update equation for
the overdamped limit of the BAOA scheme in the case M = Id rewrites

qn+1 = qn − ∆t2

2
∇V (qn) +

1

2

√
∆t2

β

(
Gn +Gn+1

)
,

with (Gn) an i.i.d. standard Gaussian sequence. Because of the two-step correlations in the Gaussian
increments, the numerical trajectories are not Markovian as such. Nevertheless the scheme is reminiscent
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of a discretization of the overdamped equation (2.31), but with an effective timestep ∆t2

2 . This quadratic
rescaling of the timestep is common, and has to be related to the fact that the overdamped equation is
defined through a diffusive rescaling. This discretization also corresponds to the overdamped limit of the
BAOAB scheme, which is unsurprising in view of the results of the next chapter.

2.2.7 Error analysis for splitting schemes

We turn our attention to analyzing the error arising from the estimation of canonical expectations by
discrete ergodic averages. We consider estimations of the form

ϕ̂Niter
:=

1

Niter

Niter−1∑
k=0

ϕ(qk, pk),

where (qn, pn)n>0 is a numerical trajectory of a Markov chain which is ergodic with respect to a unique
stationary distribution µ∆t on E , which approximates µ. To show the existence of such an invariant
distribution, one can rely on general results from the theory of Markov chains, combined with Lyapunov
estimates. For a precise result, we refer the reader to [24, Proposition 2.9], for example. For simplicity,
we will assume that (q0, p0) is distributed according to µ∆t, so that the whole numerical trajectory
is stationary. This requires in practice that the system be equilibriated before starting to sample the
observables of interest. We decompose the error as follows:

ϕ̂Niter
−
∫
E
ϕdµ = ϕ̂Niter

−
∫
E
ϕdµ∆t +

∫
E
ϕdµ∆t −

∫
E
ϕdµ. (2.49)

Two terms contribute to the error.

Statistical Error

The first term

ϕ̂Niter
−
∫
E
ϕdµ∆t

is the statistical error due to the truncation of computed trajectories to a finite time Tsim := Niter∆t.
By the Central Limit Theorem for Markov Chains, asymptotically, the statistical error is of order
σϕ,∆t/

√
Niter, where σϕ,∆t is the asymptotic variance of the Markov chain, which is given by the following

expression, under suitable assumptions, by

σ2
ϕ,∆t = Varµ∆t

(ϕ) + 2

∞∑
k=1

Covµ∆t
(ϕ(q0, p0)ϕ(qk, pk)).

The proof of the above expression is in spirit the same as the one in the continuous case, exploiting the
stationarity in law of the trajectory. Using the evolution and projection operators associated with the
Markov chain, which are respectively defined by

P∆tϕ(q, p) = E[ϕ(q1, p1)|(q0, p0) = (q, p)], Π∆tϕ = ϕ−
∫
E
ϕdµ∆t, (2.50)

we can rewrite the asymptotic variance in a more analytic form, namely

σ2
ϕ,∆t = 2

∫
E
(µ∆tϕ)(Id− P∆t)

−1(Π∆tϕ) dµ∆t −
∫
E
(Π∆tϕ)2 dµ∆t, (2.51)

where we formally used the Neumann series

∞∑
k=0

P∆t = (Id− P∆t)
−1,

which has to justified rigorously, for instance using the geometric decay estimate for Pn∆t from [24,
Proposition 2.9]. This implies that

∆tσ2
ϕ,∆t = 2

∫
E
(Π∆tϕ)

(
Id− P∆t

∆t

)−1

(Π∆tϕ) dµ∆t + O(∆t).
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For reasonable discretizations of the Langevin dynamics, we expect that

Id− P∆t

∆t
= −Lγ + O(∆t),

which suggests that at dominant order in ∆t approaching 0, ∆tσ2
ϕ,∆t behaves like

2

∫
E
(Πϕ) (−Lγ)

−1
(Πϕ) dµ = σ2

ϕ,

where we recall the asymptotic variance for the continuous dynamics (2.38) Hence the statistical error
can be estimated, for ∆t small enough, by

σϕ,∆t√
Niter

=
σϕ,∆t

√
∆t√

Tsim

≈ σϕ√
Tsim

.

Loosely speaking, the statistical error for the discrete ergodic estimator is governed at dominant order
by the corresponding asymptotic variance for the underlying continous dynamics, as well as the physical
time of the simulation. This confirms that to minimize statistical error, and given a fixed budget of
simulation steps, one should maximize Tsim and thus ∆t, as discussed in consideration (i). However,
increasing the timestep comes at the following cost.

Systematic Error

The second term in (2.49), namely ∫
E
ϕdµ∆t −

∫
E
ϕdµ,

is independent of the simulation time, and expresses the fact, highlighted in consideration (ii), that the
invariant measure µ∆t for the discrete evolution will in general be different from µ, in the sense that the
average of an observable ϕ under µ∆t can be expressed by an expansion of the form∫

E
ϕ(q, p)µ∆t(dq,dp) =

∫
E
ϕ(q, p)µ(dq,dp) + ∆tα

∫
E
ϕ(q, p)fα(q, p)µ(dq,dp) + O(∆tα+1), (2.52)

where α > 0 and fα is the dominant correction term, which can be explicitly written down for splitting
schemes, although computing them requires solving a high-dimensional partial differential equation. We
postpone further discussion of these types of weak error estimates to the next chapter, in which we
analyze the systematic error in the BAOA scheme.

2.2.8 Unbiased sampling

It turns out that one can devise schemes which have no systematic error: the Markov chain generating
the trajectories has invariant measure exactly µ. These methods are based on the Metropolis–Hastings
algorithm, which gives a general method to sample a given target distribution.

The Metropolis–Hastings algorithm

We aim to sample from a given target measure π on some measurable space X . We suppose we have
at our disposal a way to generate proposal points from a given point ∈ X . This amounts to defining a
transition kernel, the proposal, which we may take to be a map

T : X × X −→ R+,

such that for any x ∈ Rd, T (x, ·) is a probability density on X , and which is usually inexpensive to
sample from (very often, if X = Rd, these are taken to be some form of Gaussian distribution). We also
assume for simplicity that we always have T (x, y) > 0. (This is always the case if the kernel is Gaussian).
We also fix a function r : R+ → (0, 1], the acceptance rule, which satisfies the property

x · r
(

1

x

)
= r(x) (2.53)

We then define a Markov chain by iterating the following algorithm, starting from an arbitrary point
q0 ∈ X .
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Algorithm 1 (Metropolis–Hastings). Starting from an arbitrary point q0, iterate on n > 0:

(1) Sample a proposal q̃n+1 according to the probability law T (qn, ·).

(2) Compute

R(q̃n+1, qn) = r

(
π(q̃n+1)T (q̃n+1, qn)

π(qn)T (qn, q̃n+1)

)
.

(3) With probability R(q̃n+1, qn), set qn+1 = q̃n+1, otherwise, set qn+1 = qn. Concretely, this is done
by sampling a uniform variable Un ∼ U([0, 1)), and setting qn+1 = q̃n+1 if Un 6 R(q̃n+1, qn), and
qn+1 = qn otherwise.

(4) Go back to step (1) with qn ← qn+1.

Since T defines a Markov chain, we may always write q̃n+1 = Φ(qn, ξn) for some family of i.i.d.
variables (ξn)n>0. We can then write qn+1 in a concise form:

qn+1 = Φ(qn, ξn) + 1Un>R(Φ(qn,ξn),qn) (qn − Φ(qn, ξn)) = Ψ(qn, ξn, Un), (2.54)

where the Un are i.i.d. uniform on [0, 1], such that the (ξn, Un) are an independent family. This
expression is slightly formal since in general addition is not defined on X , nevertheless, it shows that the
algorithm defines a Markov chain. Moreover,

π(x)P
(
q1 = y

∣∣q0 = x
)

= π(x)T (x, y)R(x, y)

= π(x)T (x, y)r

(
π(y)T (y, x)

π(x)T (x, y)

)
= π(y)T (y, x)

π(x)T (x, y)

π(y)T (y, x)
r

(
π(y)T (y, x)

π(x)T (x, y)

)
= π(y)T (y, x)r

(
π(x)T (x, y)

π(y)T (y, x)

)
(Using (2.53))

= π(y)P
(
q1 = x

∣∣q0 = y
)
.

(2.55)

Thus, the chain is reversible with respect to π, so that it is an invariant measure. Note that the algorithm
is applicable even when we do not know how to evaluate π, but only the ratios π(x)/π(y), which is in
particular the case for Gibbs measures, which are known up to a normalization constant.

The historical and most commonly used acceptance rule is the Metropolis rule:

r(x) = min {1, x} . (2.56)

Remark 9 (Alternative acceptance rules for Metropolis–Hastings). Other possible choices for r are:

1. The Barker rule,

r(x) =
x

1 + x
,

2. Any combination of the Barker and Metropolis rules of the form, for γ > 0,

r(x) =
x

1 + x

(
1 + 2

(
1

2
min

(
r,

1

r

))γ)
.

Remark 10 (Issues with Metropolized-schemes). The Metropolis-Hastings algorithm provides a general
recipe to define an unbiased Markov chain for the overdamped Langevin dynamics: one only needs to
specify a proposition kernel, an acceptance rule, and a way to compute the ratio of the corresponding
transition probabilities. For example, the so-called MALA scheme from [29] is very common, and
combines a proposal function based on the Euler–Maruyama discretization of the dynamics (2.28) with
a Metropolis acceptance rule. The use of the Metropolis-Hastings algorithm does not come for free.
Because of the rejection rate, the correlations between samples decays at a slower rate, resulting in a
higher asymptotic variance for estimators based on ergodic averages. In fact with regards to asymptotic
variance, the choice of the Metropolis rule is optimal, as was shown in [26]. This implies that the use
of a Metropolized scheme is only beneficial if the simulation time regime in which the systematic error
overcomes the statistical error is computationally attainable. For most systems of interest, this is not the
case. Furthermore, the possibility of rejection effectively slows down the dynamics, which may degrade
the quality of estimates for dynamical quantities. The effect of the Metropolization procedure with the
MALA scheme on the estimation of self-diffusion properties has been analyzed in [10], and improved
rules and proposals for the computation of transport properties are discussed in detail in [11].
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2.2.9 Numerical illustrations

We now turn to a few numerical illustrations of the discussions above. In Figure 2.3, we compute
numerically compute the pressure as a function of the density for the Lennard–Jones fluid, using the
parameters for Argon, at two different temperatures. The resulting profile gives a numerical estimation
of the equation of state of Argon, and comparison with experimental data shows that the agreement
is very good at low densities and room temperature. The size of the systems was N = 2744 atoms,
using a sharp cutoff at rc = 2.5, and a BOAB splitting scheme with ∆t = 0.005, and γ = 1.0 was used
for the friction parameter. We verified by using the block averaging procedure described in [12] for the
trajectories at both ends of the density range that the standard error bars are negligible.

Figure 2.3: Simulated equations of state of Argon at 150 K (liquid phase, top) and 300 K (supercritical
phase, bottom). Experimental reference curves obtained from the NIST website [25] are plotted in red,
simulated data points correspond to blue crosses.

In Figures 2.4 and 2.5, we highlight the systematic error in several observables. Simulations were run
for systems of N = 27 Lennard–Jones particles, at a reduced temperature T = 1.25 and at a reduced
density ρ = 0.25. A cutoff of the potential at a distance rc = 2.0 was imposed, with a linear correction
term ensuring that V be C1. Additionally, regression lines were added by extrapolating the behavior at
small ∆t based on the theoretical expansions (2.52), and constraining the regression lines to converge to
the same value in the limit ∆t → 0. This was achieved by a linear least squares regression procedure.
The result also illustrate that a possibility to reduce the systematic error is to compute a desired average
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for several timesteps, and computing an extrapolated value at ∆t = 0 based on the theoretical knowledge
of the behavior of the systematic error as ∆t → 0. This is known as Richardson extrapolation, see for
instance [27, Section 9.6].

Figure 2.4: Systematic error in configurational quantities for a Lennard–Jones fluid.

Figure 2.5: Systematic error in kinetic energy for a Lennard–Jones fluid.

For the two configurational quantities we investigated, the virial and potential energy, we observe
an overlap in the bias between the BAOAB and BAOA schemes. It so happens that this overlap can
be simply explained by a result relating the invariant measures of certain pairs of numerical schemes,
see Lemma 2 in the next chapter. In fact, a preprint [21] was recently posted, showing that a certain
widely used scheme in the molecular dynamics community was equivalent to the BAOA scheme, and
that the latter sampled the same configurational marginal as the BAOAB scheme. This prompted the
need for a more thorough investigation of the properties of the BAOA scheme, which we discuss in the
next chapter.
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Chapter 3

Study of the BAOA scheme

We consider time discretization schemes of underdamped Langevin dynamics known as the BAOA and
BAOAB schemes, in order to compare the sampling bias induced by the timestep ∆t for these two
methods. Like other symmetric splittings, the BAOAB scheme has been well studied, and an analysis of
the timestep bias for the BAOAB scheme is for instance given in [24]. Furthermore, it has been shown,
see the discussion in [23, Section 7.9.3], that the BAOAB scheme displays a property of superconvergence:
the bias on configurational averages becomes O(∆t4) in the overdamped limit γ → ∞. It also enjoys
good stability properties. On the other hand, it appeared while studying the native Langevin integrator
used by the Molecular Dynamics package Molly [15], itself based on an implementation in OpenMM,
corresponds to a BAOA splitting. A recent preprint, [21], further shows that the BAOA splitting is
used in the GROMACS Stochastic Dynamics integrator. So it appears that practionners of molecular
simulations have somewhat widely adopted the BAOA scheme, while its bias properties are not so well
understood from a theoretical point of view. It has been numerically observed in [21, Section III.B] that
the bias on the kinetic marginal distribution is much lower using the BAOA method, while the bias
on the configurational marginal as the same as for BAOAB. This gives a plausible explanation for why
one might choose BAOA over the more theoretically grounded BAOAB, by comparing errors on kinetic
and configurational observables individually. We attempt in this chapter to explain these observations
mathematically, before illustrating our results in numerical examples. Building on known results for the
BAOAB scheme, we show the following results.

(i) In Section 3.1, we express the invariant measure of the BAOA scheme in terms of the invariant
measure of the BAOAB scheme (Proposition 4), and using this expression, we show, as in [21,
Section II.C], the equality between their respective configurational marginal distributions (Corollary
1).

(ii) In Section 3.2, we show that the dominant error term for BAOA averages is only of order one in
∆t, confirming that the BAOAB method is in general of higher order (Corollary 2).

(iii) We show in Section 3.3 that for kinetic observables, however, the error is of second order in ∆t, so
that both marginal distibutions are second-order accurate (Corollary 3).

(iv) In Section 3.4, we give an expression for the dominant error term in the kinetic marginal distribution
of the BAOA scheme (Proposition 5). In fact, we conjecture that, at least in dimension one, this
term cancels, leading to an order of at least ∆t3 (Conjecture 1).

(v) Lastly, in Section 3.5, we analyze the difference between the kinetic marginal distribution under the
BAOA and BAOAB scheme (Proposition 6), and explain why this difference leads to a systematic
underestimation of the kinetic variance in BAOAB trajectories (Remark 12).

We consider the two splitting schemes for (2.15) defined by the following evolution operators:{
P∆t = e∆tBe

∆t
2 Ae∆tγCe

∆t
2 A,

Q∆t = e
∆t
2 Be

∆t
2 Ae∆tγCe

∆t
2 Ae

∆t
2 B ,

(3.1)

where we recall the notation from (2.40). They correspond respectively to the BAOA and the BAOAB
scheme. We also denote by µ∆t,P , µ∆t,Q the invariant measures for the Markov chains associated with
(3.1). We assume that they have smooth densities which we also denote by µ∆t,P , µ∆t,Q with some
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abuse of notation, and that a certain ergodicity condition holds, see Lemma 2. Additionally we denote
by ν∆t,P , ν∆t,Q, κ∆t,P , κ∆t,Q the associated marginals and densities in the q and p variables respectively,
with obvious notation inspired by (1.8).

3.1 Relating invariant measures of discretization schemes

In this paragraph, we provide a formula for µ∆t,P in terms of µ∆t,Q. This result allows one to very
simply show the equality in the configurational marginals between these two measures, as noted in [21].
The main tool is the following result, which is a reformulation of the TU lemma [24, Lemma 2.12].

Lemma 2. Let P∆t, Q∆t be bounded operators on B∞(E). Assume that, for any n > 1,

R∆tP
n
∆t = Qn∆tS∆t,

where R∆t and S∆t are bounded operators on B∞(E), such that R∆t1 = 1, and that the following ergodic
condition holds: for any ϕ ∈ B∞(E), and almost all (q, p) ∈ E,

lim
n→∞

Pn∆tϕ(q, p) =

∫
E
ϕ(q, p)µ∆t,P (dq,dp),

lim
n→∞

Qn∆tϕ(q, p) =

∫
E
ϕ(q, p)µ∆t,Q(dq,dp).

Then µ∆t,P and µ∆t,Q are related as follows:

∀ϕ ∈ B∞(E),

∫
E
ϕ(q, p)µ∆t,P (dq,dp) =

∫
E

(S∆tϕ) (q, p)µ∆t,Q(dq,dp). (3.2)

Proof. Fix an initial probability measure ρ on E , absolutely continuous with respect to the Lebesgue
measure. Then we may write, using dominated convergence to pass to the limit:

∫
E
R∆tP

n
∆tϕ(q, p)ρ(q, p) dq dp

=

∫
E
Pn∆tϕ(q, p)R†∆tρ(q, p) dq dp

−−−−→
n→∞

∫
E

(∫
E
ϕ(q, p)µ∆t,P (q̃, p̃) dq̃ dp̃

)
R†∆tρ(q, p) dq dp

=

∫
E
ϕ(q, p)µ∆t,P (dq,dp)

∫
E
R∆t1ρ

=

∫
E
ϕ(q, p)µ∆t,P (q, p) dq dp

Furthermore, applying the ergodic condition to the bounded function S∆tϕ gives∫
E
Qn∆t(S∆tϕ)(q, p)ρ(q, p)dqdp −−−−→

n→∞

∫
E

(∫
E
S∆tϕ(q̃, p̃)µ∆t,Q(q̃, p̃) dq̃ dp̃

)
ρ(q, p) dq dp

=

∫
E
S∆tϕ(q, p)µ∆t,Q(dq,dp).

Since R∆tP
n
∆t = Qn∆tS∆t, an identification of the two limits yields (3.2)

Applying Lemma 2 to (3.1) gives the following result.

Proposition 4. The densities µ∆t,P and µ∆t,Q satisfy the following equality:

µ∆t,P (q, p) = µ∆t,Q

(
q, p− ∆t

2
V (q)

)
. (3.3)
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Proof. From the expressions (3.1), we immediately get Pn∆te
∆t
2 B = e

∆t
2 BQn∆t, whereby applying Lemma

2, we get for any test function ϕ, ∫
E

e
∆t
2 BϕdµP,∆t =

∫
E
ϕdµQ,∆t. (3.4)

Using equation (3.4) with ψ = e−
∆t
2 Bϕ yields an exact expression for µ∆t,P in terms of µ∆t,Q:∫
E
ϕdµ∆t,P =

∫
E

e−
∆t
2 Bϕdµ∆t,Q. (3.5)

Since ϕ is arbitrary, we infer that at the level of densities,

µ∆t,P (q, p) =
(

e−
∆t
2 B
)†
µ∆t,Q(q, p), (3.6)

where † denotes the adjoint on the flat space L2(E). A simple computation shows that e−
∆t
2 B
†

= e
∆t
2 B ,

since B† = −B. Hence,

µ∆t,P (q, p) = e
∆tB

2 µ∆t,Q(q, p) = µ∆t,Q

(
q, p− ∆t

2
∇V (q)

)
, (3.7)

which is the desired conclusion.

Relation (3.7) is sufficient to show an equality between the configurational marginal distributions
ν∆t,P and ν∆t,Q, as noted in [21].

Corollary 1. The marginal distributions in the q variable of µ∆t,P and µ∆t,Q coincide:

ν∆t,Q(q) = ν∆t,P (q). (3.8)

Proof. Write, for any q ∈ D,

ν∆t,Q(q) =

∫
RdN

µ∆t,Q(q, p)dp =

∫
RdN

µ∆t,Q

(
q, p− ∆t

2
∇V (q)

)
dp

=

∫
RdN

µ∆t,P (q, p) dp = ν∆t,P (q),

which proves the claim.

3.2 Error estimate on the phase space measure

We now turn to obtaining the dominant order in the sampling bias of µ∆t,P , building on previously
known results for µ∆t,Q, and the relation (3.3). Error estimates on µ∆t,Q have been investigated in [24]
(Section 1.4). In particular, the following expansion of µ∆t,Q is derived, which will be central in our
analysis.

Theorem 2 ([24], Theorem 13). There exists a smooth function f2 such that for any smooth compactly
supported ψ,

∫
E
ψ(q, p)µ∆t,Q(q, p) dqdp =

∫
E
ψ(q, p)µ(q, p) dq dp+ ∆t2

∫
E
ϕ(q, p)f2(q, p)µ(q, p) dq dp+ ∆t4rψ,γ,∆t,

(3.9)
where the remainder rψ,γ,∆t is uniformly bounded for ∆t sufficiently small. Moreover, an expression for
the dominant error term is obtained,

f2 = f̃2 −
1

8
(A+B)g,

L∗γ f̃2 =
1

12
(A+B)

[(
A+

B

2

)
g

]
g := β(M−1p) · ∇V (q),

(3.10)

where L∗γ is the adjoint of Lγ on the weighted space L2(µ).
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Using this expansion, one can derive the dominant order error for the BAOA scheme.

Corollary 2. For any smooth observable ϕ,∫
E
ϕ(q, p)µ∆t,P (q, p) dq dp =

∫
E
ϕ(q, p)

(
1 +

∆t

2
g(q, p)

)
µ(q, p) dq dp+ O(∆t2), (3.11)

where g is given by (3.10).

Proof. Combining (3.9) with (3.3), we get the following estimation for averages with respect to µ∆t,P :∫
E
ϕ(q, p)µ∆t,P (q, p) dq dp =

∫
E
ϕ(q, p)µ

(
q, p− ∆t

2
∇V (q)

)
dq dp+ O(∆t2). (3.12)

Taylor expanding µ gives

µ

(
q, p− ∆t

2
∇V (q)

)
= µ(q, p)

(
1 +

∆t

2
β(M−1p) · ∇V (q) + O(∆t2)

)
= µ(q, p)

(
1 +

∆t

2
g + O(∆t2)

)
,

hence we get∫
E
ϕ(q, p)µ∆t,P (q, p) dq dp =

∫
E
ϕ(q, p)µ(q, p)

(
1 +

∆t

2
g(q, p) + O(∆t2)

)
dq dp, (3.13)

which proves the claim.

3.3 Error estimates on the kinetic marginal distributions

Equation (3.11) expresses the fact that the invariant measure µ∆t,P is only exact at first order in ∆t,
which is one less that µ∆t,Q. So in full generality, one can expect an error of order ∆t on averages obtained
from BAOA trajectories, versus ∆t2 for averages computed from BAOAB trajectories. However, if we
restrict ourselves to marginal observables, that is observables which only depend on the configurational
coordinate or the kinetic coordinate, the first order error term vanishes. Indeed, the following result
holds.

Corollary 3. Let ϕ(q, p) = ϕ(q) or ϕ(q, p) = ϕ(p) be a marginal observable. Then∫
E
ϕdµ∆t,P =

∫
E
ϕdµ+ O(∆t2).

Proof. By (3.11), it is sufficient to show ∫
E
ϕg dµ = 0. (3.14)

This follows from the following cancellations.∫
RdN

g(q, p)µ(q, p) dp =

∫
D
g(q, p)µ(q, p) dq = 0. (3.15)

Indeed, ∫
D
β(M−1p) · ∇V (q)µ(q, p) dq = −

∫
D

(M−1p) · ∇qµ(q, p) dq = 0,∫
RdN

β(M−1p) · ∇V (q)µ(q, p) dp = −
∫
RdN
∇V (q) · ∇pµ(q, p) dp = 0,

using integration by parts. By first integrating (3.14) over the coordinate independent of ϕ, one of the
cancellations (3.15) yields the result.

Corollary 2 gives no new information concerning configurational observables, since we already know
by Corollary 1 that these have the same averages under µ∆t,P and µ∆t,Q, and that by Theorem 2, these
have error of order ∆t2. However, kinetic observables may yield different averages.
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3.4 Analysis of the second order error term for kinetic averages
under µ∆t,P

It was observed numerically in [21] that the averages of the kinetic and configurational temperatures
computed with a BAOA scheme have a bias of order greater than ∆t, as expected from the argument
above. In fact, for the kinetic temperature, the order appears to be greater than ∆t2, in contrast
to averages computed with the BAOAB method. Understanding this behavior theoretically requires
comparing second order error terms.

We show the following result, which identifies the second-order error term for kinetic observables.

Proposition 5. Let ψ(q, p) = ψ(p) be a smooth kinetic observable. Then,∫
E
ψ(p)µ∆t,P (q, p) dq dp =

∫
E
ψ(p)µ(q, p) dpdq + ∆t2

∫
E
ψ(p)f̃2(q, p)µ(q, p) dq dp+ O(∆t3), (3.16)

where f̃2 is given by (3.10).

From Theorem 13 of [24], this error term is identical to the dominant error term for OBABO averages,
and minus the dominant error term for OABAO averages.

Proof. By writing∫
E
ψ(q, p)µ∆t,P (q, p) dq dp−

∫
E
ψ(q, p)µ(q, p) dp dq =

∫
E

(
ψ(q, p)−

∫
E
ψ dµ

)
µ∆t,P (q, p) dq dp,

we may assume without loss of generality that ψ has average 0 with respect to µ.
Using (3.9), we get∫

E
ψ(p)µ∆t,Q(q, p) dq dp = ∆t2

∫
E
ψ(p)f2(q, p)µ(q, p) dq dp+ O(∆t3),

so that using our relation (3.3), we get∫
E
ψ(p)µ∆t,P (q, p) dq dp =

∫
E
ψ(p)e

∆t
2 Bµ(q, p) dq dp+ ∆t2

∫
E
ψ(p)e

∆t
2 B [f2(q, p)µ(q, p)] dq dp+ O(∆t3).

The right hand side of the above inequality rewrites, at dominant order,∫
E
ψ(p)µ

(
q, p− ∆t

2
∇V (q)

)
dq dp+ ∆t2

∫
E
ψ(p)f2(q, p)µ(q, p) dq dp+ O(∆t3).

Expanding H

(
q, p− ∆t

2
∇V (q)

)
to the second order gives

H

(
q, p− ∆t

2
∇V (q)

)
= H(q, p)− ∆t

2
(M−1p) · ∇V (q) +

∆t2

8

(
M−1∇V (q)

)
· ∇V (q) + O(∆t3),

(3.17)
whereupon expanding µ = e−βH to the second order yields

µ

(
q, p− ∆t

2
∇V (q)

)
+ O(∆t3)

= µ(q, p)

[
1 + β

∆t

2
(M−1p) · ∇V (q) +

∆t2

8

[
(βM−1p)⊗ (βM−1p)∇V (q)

]
· ∇V (q)− β∆t2

8

(
M−1∇V (q)

)
· ∇V (q)

]
= µ(q, p)

[
1 + β

∆t

2
g(q, p) +

∆t2

8

(
g2(q, p)− β(M−1∇V (q)) · ∇V (q)

)]
.

Using
∫
ψdµ = 0 and the cancellation (3.15) on q to remove the first order term, we obtain:

∫
E
ψ(p)µ∆t,P (q, p) dq dp = ∆t2

∫
E
ψ(p)

(
1

8

(
g2(q, p)− β

(
M−1∇V (q)

)
· ∇V (q)

)
+ f2(q, p)

)
µ(q, p) dq dp+O(∆t3).

(3.18)
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Simplifications are possible. First, observe that

−β
(
M−1∇V (q)

)
· ∇V (q) = Bg(q, p),

so that, using the expression for f2 given in (3.10), we get∫
E
ψ(p)µ∆t,P (q, p) dq dp = ∆t2

∫
E
ψ(p)

(
1

8

(
g2(q, p)−Ag(q, p)

)
+ f̃2(q, p)

)
µ(q, p) dq dp+ O(∆t3).

(3.19)
Next, we examine the term(

g2(q, p)−Ag(q, p)
)
µ(q, p) =

[
β2
(
(M−1p) · ∇V (q)

)2 − β(M−1p) · (∇2V (q)M−1p)
]
µ(q, p),

by a straightforward calculation, where ∇2 denotes the Hessian matrix. This expression is a finite
sum of diagonal terms coming from both terms inside the brackets, and off-diagonal terms coming only
from the rightmost term inside the bracket. Importantly, these all vanish when integrated against the
configurational marginal of µ. To make this precise, we index p and q as

p = (pi)16i6dN , q = (qi)16i6dN .

Fixing indices i 6= j, the diagonal term corresponding to i is[
β2
(
M−1p

)2
i

(
∂

∂qi
V (q)

)2

− β
(
M−1p

)2
i

∂2

∂q2
i

V (q)

]
µ(q, p) =

(
M−1p

)2
i

∂2

∂q2
i

µ(q, p), (3.20)

and the off-diagonal term corresponding to (i, j) is

− β
(
M−1p

)
i

(
M−1p

)
j

∂

∂qi
V (q)

∂

∂qj
V (q)µ(q, p) = − 1

β

(
M−1p

)
i

(
M−1p

)
j

∂2

∂qi∂qj
µ(q, p). (3.21)

Factoring out the q-independent terms, and using the cancellations∫
D

∂2

∂q2
i

µ(q, p) dq =

∫
D

∂2

∂qi∂qj
µ(q, p) dq = 0, (3.22)

which follow by integration by parts, we infer∫
E
ψ(p)µ∆t,P (q, p) dq dp = ∆t2

∫
E
ψ(p)f̃2(q, p)µ(q, p) dq dp+ O(∆t3), (3.23)

which concludes the proof.

Remark 11. Using exponential decay estimates on the evolution semigroup (etLγ )t>0 like (2.33), one
can show that the inverse operator L−1

γ is well-defined for smooth centered observables. Thus Ψ = L−1
γ ψ

is well defined. By construction, LγΨ(q, p) = ψ(p). Hence, (3.16) rewrites∫
E
ψ(p)µ∆t,P (q, p) dq dp = ∆t2

∫
E
LγΨ(q, p)f̃2(q, p)µ(q, p) dq dp+ O(∆t3)

= ∆t2
∫
E

Ψ(q, p)L∗γ f̃2(q, p)µ(q, p) dq dp+ O(∆t3)

=
∆t2

12

∫
E

Ψ(q, p)

[
(A+B)

(
A+

B

2

)
g

]
(q, p)µ(q, p) dq dp+ O(∆t3),

using (3.10), which provides an alternative expression for the dominant error term. Numerical evidence
(see Figure 3.11) suggests that the error on BAOA and BAOAB averages is at dominant order independent
of γ. Since the error term on BAOA given in (3.16) a priori depends on γ, although not in an explicit
manner, this suggests that this term is zero, motivating the following conjecture.

Conjecture 1. For any smooth centered kinetic observable ψ(p), we have∫
E

(
L−1
γ ψ

)
(q, p)

[
(A+B)

(
A+

B

2

)
g

]
(q, p)µ(q, p) dq dp = 0. (3.24)

This would in particular imply that the kinetic marginal κ∆t,P is correct at order at least three in ∆t,
in accordance with numerical results presentend in Section 3.6.6, and should be the subject of further
investigation.
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3.5 Analysis of the discrepancy between the dominant error
terms on the kinetic marginals

Numerical evidence presented in [21] shows a significant discrepancy between κ∆t,P and κ∆t,Q. Specifically,
κ∆t,Q in the case d = N = 1 tends to present a sharper peak than κ∆t,P , thus underestimating the
variance in the kinetic marginal. We show here that this behavior is generic, in the sense that it does
not, up to a shape parameter, depend on V . The arguments above show that∫
E
ψ(p)µ∆t,P (q, p) dq dp =

∫
RdN

ψ(p)κ∆t,P (p) dp

=

∫
RdN

ψ(p)κ(p) dp+ ∆t2
∫
RdN

ψ(p)

(∫
D
f̃2(q, p)ν(q) dq

)
κ(p) dp+ O(∆t3),

(3.25)
where we used the product form (1.8) for µ. Similarly,∫
E
ψ(p)κ∆t,Q(p) dp =

∫
RdN

ψ(p)κ(p) dp+ ∆t2
∫
RdN

ψ(p)

(∫
D
f2(q, p)ν(q) dq

)
κ(p) dp+ O(∆t3), (3.26)

so that

∫
E
ψ(p) (κ∆t,P (p)− κ∆t,Q(p)) dp = ∆t2

∫
RdN

ψ(p)

(∫
D

(
f̃2(q, p)− f2(q, p)

)
ν(q) dq

)
κ(p) dp+ O(∆t3)

=
∆t2

8

∫
RdN

ψ(p)

(∫
D

(A+B) g(q, p)ν(q) dq

)
κ(p) dp+ O(∆t3).

Hence, using the expressions for f2 and f̃2 given in (3.10), at the level of densities it holds at dominant
order in ∆t that

κ∆t,P (p)− κ∆t,Q(p) =
∆t2κ(p)

8

∫
D

(A+B) g(q, p)ν(q) dq + O(∆t3).

The following proposition gives an alternative expression for this discrepancy term.

Proposition 6. We have the following expression for the discrepancy term.

κ∆t,P (p)− κ∆t,Q(p) =
∆t2

8
Tr
(((

βM−1p
)⊗2 − βM−1

)
Covν(∇V )

)
κ(p) + O(∆t3). (3.27)

Proof. We write:

(A+B)g(q, p)ν(q) = β
[(
M−1p

)
·
(
∇2V (q)M−1p

)
−
(
M−1∇V (q)

)
· ∇V (q)

]
e−βV (q). (3.28)

Setting p̃ = M−1p, we get

(A+B)g(q,Mp̃)ν(q) = β
[
p̃ ·
(
∇2V (q)p̃

)
−
(
M−1∇V (q)

)
· ∇V (q)

]
e−βV (q). (3.29)

This is a sum of terms of the form

Tij(q, p) =

[
βp̃ip̃j

∂2

∂qi∂qj
V (q)− βM−1

i,j

∂

∂qi
V (q)

∂

∂qj
V (q)

]
e−βV (q).

Upon integrating this term over D, we can integrate the left-most term by parts (boundary terms
cancel out by periodicity or by growth conditions on V ), to obtain∫

D
Tij(q, p) dq =

∫
D

[
β2p̃ip̃j

∂

∂qi
V (q)

∂

∂qj
V (q)− βM−1

i,j

∂

∂qi
V (q)

∂

∂qj
V (q)

]
e−βV (q) dq.

Hence, ∫
D
Tij(q, p) dq =

(
β2p̃ip̃j − βM−1

i,j

) ∫
D

∂

∂qi
V (q)

∂

∂qj
V (q)e−βV (q) dq,
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so that ∫
D

(A+B)g(q, p)ν(q) dq =
∑
i,j

(
β2p̃ip̃j − βM−1

i,j

) ∫
D

∂

∂qi
V (q)

∂

∂qj
V (q)e−βV (q) dq,

which we rewrite

((
βM−1p

)⊗2 − βM−1
)

:

∫
D

(∇V ⊗∇V ) (q)ν(q) dq = Tr
(((

βM−1p
)⊗2 − βM−1

)ᵀ
Covν(∇V )

)
,

(3.30)
using the fact that ∇V is a centered observable with respect to ν, and concluding the proof.

Remark 12. This expression for the discrepancy term is not particularly useful, however it does explain
the behavior observed in [21]. In the case d = N = β = M = 1, it becomes,

κ∆t,P (p)− κ∆t,Q(p) =
∆t2

8
(p2 − 1)Varν(V ′)κ(p) +O(∆t3),

which is, up to a constant, the same correction term for any potential V . We plot this correction profile
in figure 3.1. The shape of this profile explains the higher peak observed in κ∆t,Q.

Figure 3.1: Profile of the discrepancy term in one and two dimension, in the case of identity covariances
for ∇V .

3.6 Numerical results

We illustrate the results of the previous sections with numerical examples, on toy one dimensional
systems.

(i) In section 3.6.1, we define the potentials used for all the following experiments, and describe the
sampling method used.

(ii) In section 3.6.2, we verify numerically the relation (3.8).

(iii) In section 3.6.3, we show that there is a significant discrepancy between the two kinetic marginal
distributions. We also pinpoint the main, and possibly only source of this error, namely the γ-
independent term (3.27).

(iv) In section 3.6.4, we numerically verify that the first order behavior (3.13) is correct.

(v) In section 3.6.5, we give an explicit example of an observable for which the BAOA scheme yields a
bias of order ∆t.

(vi) Finally, in section 3.6.6, we show that the effect of the parameter γ is undetectable at the level of
the kinetic marginals, motivating Conjecture 1.
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3.6.1 Models

We take β = 1, M = Id, and consider four potentials:

� Periodic potential:

D = (R/Z), V (q) = sin(2πq),

� Quadratic potential:

D = R, V (q) = α
q2

2
, α = 1,

� Double well potential:

D = R, V (q) = α
q2

2
+ βe−

q2

2σ2 , α = 1, β = 4, σ = 0.5,

� Tilted double well potential:

D = R, V (q) = α
q2

2
+ γq + βe−

q2

2σ2 , α = 1, β = 4, γ = 1, σ = 0.5.

Analytically unknown normalizing constants and reference quantities were obtained through numerical
integration of µ, using trapezoid rules with a mesh size of 10−6. For unbounded coordinates, we truncated
the domain to the interval [−5, 5]. Approximations of µ∆t,P , µ∆t,Q were computed by recording the states
of 10,000 independently evolving trajectories over 2 × 106 timesteps in a 1000 × 1000 two-dimensional
histogram on the truncated domain. The rare sample points outside of the truncated domain were
discarded.

3.6.2 Equality of marginal configurational distributions

On Figures 3.2 and 3.3, we numerically verify the equality (3.8) between the configurational marginal
distributions ν∆t,Q and ν∆t,P , which holds for any ∆t. This point was demonstrated in [21].

Figure 3.2: Marginal configurational distributions for the periodic potential. Left: ∆t = 0.1. Right:
∆t = 0.2. Even for large timesteps, the distributions perfectly coincide.

3.6.3 Comparison of marginal kinetic distributions

We observe, as in [21], that the kinetic marginal distribution κ∆t,Q departs from the reference at a
faster rate than κ∆t,P , and more precisely appears to underestimate the variance, leading to a sharper
distribution. Additionally we observe that removing the part of the bias on BAOAB due to the
discrepancy term (3.27) leads to a significant improvement. These corrected marginals are plotted under
the label ”correction”. See Figures 3.4 and 3.5.
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Figure 3.3: Marginal configurational distributions for ∆t = 0.4. Left: double well potential. Right:
tilted double well potential.

Figure 3.4: Marginal kinetic distributions for the periodic potential. Left: ∆t = 0.1. Right: ∆t = 0.2.

Figure 3.5: Marginal kinetic distributions for the double well potential. Left: ∆t = 0.3. Right: ∆t = 0.4.

42



3.6.4 Verification of the first-order expansion

We verify the correctness first-order expansion of µ∆,P obtained in (3.13), by comparing the joint
distributions obtained from Monte-Carlo simulations with a reference calculation of the first-order
expansion for µ∆t,P . Additionally, we plot the empirical estimate of µ∆t,Q and µ. The plots show
joint likelihoods as a function of the state, using a color mapping. Empirical joint distributions for
BAOA and BAOAB trajectories are plotted on the top row of each figure. On the bottom row, a
reference computation of µ is plotted on the right, as well as a reference computation of(

1 +
∆t

2
g

)
µ

on the left. The results visually confirm our result, while suggesting that, as a whole, µ∆t,Q is the
superior approximation of µ. See Figures 3.6, 3.7 and 3.8.

Figure 3.6: Joint distributions for the periodic potential, ∆t = 0.1.

3.6.5 Example of first-order bias in a BAOA average

We demonstrate that for certain observables, BAOA is drastically outperformed by BAOAB, by calculating
the average of g for increasing timesteps. Note by (3.15), the true average is 0. Figures 3.9 and 3.10
show the estimated averages as a function of the timestep on the left, and the same data on a log-log
plot on the right. The order of the error on the BAOAB averages suggest that the second order error
term ∫

E
gf2 dµ

given in (3.9) cancels out for this specific observable, yielding a fourth-order bias in ∆t for BAOAB
averages of g.

3.6.6 Effect of the friction parameter

All experiments shown above used a value of γ = 1 for the friction parameter. In this final experiment,
we examine the effect of changing γ. We show the marginal kinetic distributions for three values of
γ ∈ {0.1, 1, 10}. The results show that there is no visually discernable effect of the parameter γ: all
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Figure 3.7: Joint distributions for the quadratic potential, ∆t = 0.4.

Figure 3.8: Joint distributions for the double well potential, ∆t = 0.4.
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Figure 3.9: Averages of g for the double well potential.

Figure 3.10: Averages of g for the tilted double well potential.
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κ∆t,P s are superposed close to the reference curve, and all κ∆t,Qs are superposed above. This suggest
that most of the error on κ∆t,Q arises from the additional term

−∆t2

8

∫
E
ϕ(A+B)g dµ,

which is the dominant discrepancy term in (3.27), and which is independent of γ. This is the fact we
observed numerically on Figures 3.5 and 3.4. See Figure 3.11.

Figure 3.11: Kinetic marginal distributions for ∆t = 0.3 on the double well potential.
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Chapter 4

Non-equilibrium Molecular
Dynamics

So far, we have only considered methods to sample static averages, which concern quantities at thermodynamic
equilibrium. Such techniques yield information about the bulk macroscopic properties of the system, for
which there is no discernable macroscopic evolution. We now turn to the next natural question, which is
to consider systems in which there is such an evolution, which typically arises from a perturbation of the
equilibrium dynamics, either by the introduction of a non-gradient forcing term, or a modification of the
fluctuation-dissipation part for which the fluctuation-dissipation relation (2.26) is not satisfied. We will
not consider the latter case, which is relevant for instance to the modelling of heat transport within an
atomic system, to concentrate on the first case. In general, systems undergoing such a perturbation of the
dynamics will reach a new steady state in which there is a net flux in some observable. Mathematically,
this translate into the existence of a response observable R which has zero average with respect to the
canonical measure µ, but which has a non-zero average with respect to the perturbation steady-state.
A natural question is that of the sensitivity of the system to the perturbation: one way to quantify
this is to modulate the strength of the perturbation by a positive real parameter η > 0, and, assuming
that the average response is asymptotically linear as η → 0, to compute the linear coefficient linking η
and the average response. This quantity is called a transport coefficient, and we will dedicate the next
two chapters to different methods of computing them using molecular simulation. We consider the most
natural method, which is to directly apply a forcing term which does not arise from a potential. The
mathematical translation of this idea is a Langevin dynamics with an additional non-gradient forcing
term. We start by presenting the general framework of non-equilibrium molecular dynamics (NEMD),
the numerical methods we implemented, and the examples of shear viscosity and mobility. We illustrate
these examples with numerical results. We then turn to discussing the Green–Kubo method, which
allows for the computation of transport coefficients from equilibrium simulations, before applying it to
the same examples as in the previous section.

4.1 Non-equilibrium molecular dynamics

4.1.1 General framework

We consider the following modified Langevin dynamics:
dqt = M−1ptdt,

dpt = −∇V (qt)dt− γM−1ptdt+

√
2γ

β
dWt + ηF (qt)dt,

(4.1)

perturbed by the configuration-dependent forcing term F , and where the strength of the perturbation is
modulated by the parameter η > 0. Its generator is given by the operator

Lγ,F = Lγ + ηF · ∇p = Lγ + ηL̃. (4.2)

It is also possible to consider non-equilibrium generalized Langevin equations, which are analogous
perturbations of (2.16). Given a response of interest R, the transport coefficient is given by the following
definition:
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ρR,F = lim
η→0

Eη[R]

η
, (4.3)

where Eη denotes the expectation with respect to the steady-state probability distribution. If the context
makes R clear from the knowledge of F , we will drop it from the notation and simply write ρF for the
transport coefficient. For this definition to make sense, one has to show that the steady-state with respect
to which we take the expectation is well-defined. Since the steady-state is defined by the fact that it
is invariant with respect to the dynamics (4.1), this translate into the fact that it is the solution to a
stationary Fokker-Planck equation, in the sense of distributions:

(Lγ + ηL̃)†ψη = 0, (4.4)

where ψη is the steady state measure. Using analytic properties of Lγ,F (such as hypoellipticity), one
can hope to infer regularity results of its solutions, such as the existence of a smooth density. Existence
of the steady-state can hopefully be obtained using Lyapunov techniques. The steady-state measure Eη
is a high-dimensional measure on phase space for which a closed form is generally unavailable. Thus, as
usual, one has to resort to ergodic averages under the dynamics (4.1) to compute ensemble averages. This
poses another theoretical difficulty, that of showing that the steady-state measure is ergodic, although in
principle, uniqueness and ergodicity in the sense of convergence of averages can in principle be recovered
following Klieman’s method [22].

In fact, for our purposes, F will always be L-periodic, and so we can invoke a special case of
Proposition 1 in [19] with time-constant forcings, provided V and F are smooth.

Theorem 3 (Existence of a unique ergodic measure with smooth density). Let η∗ > 0. For all η ∈
[−η∗, η∗], the Fokker-Planck equation (4.4) admits a unique solution with a C∞ density ψη. Additionally,
the evolution semigroup decays exponentially in a Lyapunov sense: for all n > 1, there exist Cn, λn > 0
such that ∥∥etLγ,Fϕ− Eη[ϕ]

∥∥
B∞(E)

6 Cne−λnt‖ϕ‖B∞Kn , (4.5)

where we define the Lyapunov weight functions

Kn(q, p) = 1 + |p|2n,

and the corresponding B∞ weighted spaces of bounded functions by the norm

‖f‖B∞Kn = sup

∣∣∣∣ fKn
∣∣∣∣ .

Because of the continuous injections B∞ ⊂ B∞Kn , this result implies in particular that the operator
(−Lγ,F )−1 is well-defined on

B∞Kn,0 =
{
f ∈ B∞Kn

∣∣Eη[f ] = 0
}
,

with an inverse given by the formula (2.37). Proposition 2 from the same papers also gives the almost-sure
convergence of ergodic averages.

Remark 13 (Size of the linear regime). As η → 0, it is reasonable to expect that the statistical error in
ergodic averages for Eη[R] arise at dominant order in η from the asymptotic variance at equilibrium σ2

R

in (2.38). In particular the finite difference estimator for ρR,F

Eη[R]

η
(4.6)

has, for a fixed simulation time, a variance which scales like 1
η2 as η → 0. To achieve an acceptable

statistical error at minimal cost, one should thus aim to take η as large as possible. On the other hand,
if the perturbation is too large, then non-linear effects on R will be observed and (4.6) will give a poor
estimation of the transport coefficient. Thus, if one manages to devise another forcing F̃ which does not
change the steady-state, but which extends the range of linearity of the response, it may be very benificial
to do so from a computational standpoint. These kinds of methods, sometimes called synthetic forcings,
are an area of ongoing research. See for example [8, Section 6.1] for an introduction to these ideas.
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4.1.2 Numerical implementation

To integrate the perturbed dynamics, we again rely on a splitting strategy. We split the dynamics into
elementary evolutions, whose respective evolution semigroups are given analogously to (2.40). The only
difference is in the additional ηF term, which we incorporate into the B step, yielding a BηF step, which
corresponds to the evolution semigroup

etBηFϕ(q, p) = ϕ (q, p− t [∇V (q)− ηF (q)]) . (4.7)

Note it would also have been possible to incorporate the forcing term into the Ornstein–Uhlenbeck part of
the dynamics, which then corresponds to an Ornstein–Uhlenbeck process with constant drift. However,
we will always choose the method described above. We will use the same terminology for these methods,
referring to the scheme with evolution operator

e
∆t
2 BηF e

∆t
A e∆tγCe

∆t
2 Ae

∆t
2 BηF (4.8)

as the BAOAB scheme, for example. Numerical estimates for Eη[R] are then obtained through

R̂η,Niter
=

1

Niter

Niter−1∑
n=0

R(qn, pn), (4.9)

where (qn, pn)n>0 denotes the numerical trajectory under the Markov chain obtained for a chosen splitting
of the non-equilibrium dynamics (4.1). To estimate the transport coefficient, we fix different forcing
intensities

0 < η1 < · · · < ηk, η := (ηi)16i6k

all in the linear response regime, and given corresponding estimators

R̂ := (R̂i)16i6k

of the form (4.9), we estimate ρF by a least squares linear fit

ρ̂F = |η|−2η · R̂ = argmin
ρ∈R

∣∣∣ρη − R̂∣∣∣2 . (4.10)

Note the case k = 1 corredponds to the finite difference estimator (4.6). Note that the variance of this
estimator is likely to be much smaller than for the latter estimator. In fact, provided |η|2 > 1, the pitfall

of the NEMD technique mentioned in Remark 13 is completely avoided. Indeed, assume that each R̂i is
an ergodic estimator simulated with Ni,iter timesteps, say

R̂i =
Si

ηiNi,iter
.

We assume that the asymptotic regime is reached, thus we may assume that R̂i is Gaussian with variance

σ2
i

η2
iNi,iter

,

where σ2
i is the asymptotic variance associated with the ergodic mean Si/Ni,iter. Thus,

Var(ρ̂F ) = |η|−4
k∑
i=1

σ2
i

η2
iNi,iter

. (4.11)

If we make the approximation σ2
i ≈ σ2

R, which is good at first order in η, and assume Ni,iter > Niter, we
can estimate an upper bound on the variance,

Var(ρ̂F ) /
σ2
R

|η|2Niter
.
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4.1.3 Mobility

As a first and simplest example, we introduce a method for computing the mobility. In this case the
forcing is simply a constant vector, and the response is velocity in the direction F , which we may think
of as the particle flux through the hyperplane orthogonal to F . The transport coefficient corresponding
to the forcing

F ∈ RdN , R(q, p) = F ·M−1p (4.12)

is called the mobility. Let us assume once and for all that |F |2 = 1. For practical computations, we will
be considering two cases:

(i) Single drift: this corresponds to a perturbation where the force acts on a single component of the
momentum, which we can assume by indistinguishability of the particles to be the x component of
the first particle:

FS = (1, 0, . . . )ᵀ ∈ RdN .

(ii) Color drift [8, Chapter 6]: this corresponds to a perturbation in which we the force acts on half
of the particles in one direction, and on half of the particles in the opposite direction. By isotropy,
we may assume this direction is the x direction:

FC =
1√
N

(1, 0, . . . ,︸ ︷︷ ︸
d components

−1, 0, . . . , 1, 0 . . . )ᵀ ∈ RdN .

The color drift method derive its name from the fact that it divides the particles into two categories:
the particles with a positive color charge (corresponding to those whose x-component of momentum
see a positive force contribution from F ), and those with a negative color charge. The equations of
motion are analogous to a system of charged particles under a constant electric field, but where the
charges do not interact between themselves. Intuitively, we expect the color drift method to be more
computationally effective than the single drift method, since the latter should give essentially equilibrium
dynamics for the majority of particles outside of the first particle’s sphere of influence. On the other
hand, the normalization condition implies that the forcing is more dilute in the color drift case, which
may make the response more difficult to measure. In fact, numerical evidence presented below shows
that the two effects roughly compensate one another.

In order for the two methods to be useful, we need to be able to relate them to a shared dynamical
property of the considered system. This is more conveniently done upon reformulating the linear response
in terms of integrated autocorrelation functions, a point we postpone to the next section. For now, let
us show a few numerical results. In order to compare different methods, we fix a thermodynamical
condition, which we give in reduced units below.

T = 1.25, ρ = 0.6, γ = 1.0, N = 1000. (4.13)

Let us also mention here that all simulations for mobility were performed using a BAOAB splitting, a
timestep ∆t = 10−3 and a linearly corrected potential with cutoff at distance rc = 2.5. In Figure 4.1, we
plot the response profile as a function of the forcing intensity. It appears that the linear response regime
is longer for the color drift method. Estimates of ρF seem to roughly agree, although we expect a small
discrepancy (see Example 5 ). However this effect should not be detectable because of the persistance
of statistical noise.

Estimating the transport coefficients using (4.9) and the variance through (4.11), we obtain

ρFS
= 0.12204± 0.0009, ρFC

= 0.12128± 0.0009, (4.14)

where ± denotes one standard deviation.

4.1.4 Shear viscosity

As a second example, we discuss the transverse force field method to compute the shear viscosity. The
idea was originally introduced in [14], although we base our presentation on the more recent article [20].
We refer to this paper for thorough statements and proofs. Let us assume for notational simplicity that
M = mId. We consider a case of the dynamics (4.1) with a forcing which acts on the longitudinal (x)
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Figure 4.1: Average mobility response against forcing intensity for the Lennard-Jones system (4.13).
Extrapolations of the linear response are plotted in dotted lines.
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momenta, and is dependent on the transverse (y) positions. More precisely, we fix a reference periodic
function Fy : LT −→ R, and index the state as

(qiα) 6i6N
16α6d

, (piα) 6i6N
16α6d

.

The non-equilibrium dynamics is defined by the following expression for F :

∀ 1 6 i 6 N, ∀ 2 6 α 6 d, F (q)i1 = fy(qi2), F (q)iα = 0. (4.15)

The idea is that by imposing a forcing profile in the x-direction, we observe a velocity profile in response,
which depends on the y-coordinate.

Remark 14 (Anisotropic friction). In fact the precise model considered in [20] also imposes a separate
friction coefficient γx for the longitudinal fluctuation-dissipation part of the dynamics. This can be
interpreted as a simple case of a generalized Langevin dynamics where the friction coefficient γ is an
anisotropic diagonal matrix, which does not pose any difficulties from the theoretical point of view. We
therefore restrict our attention to the case where γ is scalar.

In order to make precise the response of the system, we define

ux(Y ) := lim
ε→0

lim
η→0

LyEη
[∑N

i=1 pi1χε(qi2 − Y )
]

ηmN
(4.16)

to be the linear response profile in the longitudinal velocity, where (χε)ε>0 is an approximation to
the identity (that is a sequence of smooth compactly supported test functions which converge to the
Dirac delta function in the sense of distributions). In practice, ux can be estimated from numerical
trajectories by decomposing the domain D in a finite number of transverse slices, and measuring the
average longitudinal velocity in each of these slices. The shear viscosity σ is then defined by the differential
equation

− σu′′x(Y ) + γρux(Y ) = ρfy(Y ), (4.17)

where ρ = N/L3 is the particle density. In fact, the solutions to (4.17) are periodic, thus the magnitude
of the linear response can be estimated from its Fourier coefficients. Indeed, writing

ck(h) =
1

L

∫ L

0

h(s) exp

(
2ikπs

L

)
ds (4.18)

for the k-th Fourier coefficient of a L-periodic function h, applying ck to (4.17) gives

− σck(u′′x) + γρck(ux) = ρck(fy),

(σ (2kπ/L)
2

+ γρ)ck(ux) = ρck(fy),

σ = ρ

(
ck(fy)

ck(ux)
− γ
)(

L

2kπ

)2
(4.19)

using ck(h′′) = − (2kπ/L)
2
ck(h) in the second line. The Fourier coefficient ck(ux) can then be estimated

directly from trajectory averages. this has the advantage of giving an estimation of the linear response in
the general framework defined above, and avoiding the discretization error arising from the finite number
of transverse slices. To this effect, we define the response observables as empirical Fourier coefficients:

Rk(q, p) =
1

N

N∑
i=1

pi1
m

exp

(
2ikπqi2
L

)
, (4.20)

and the corresponding transport coefficients

ρF,k = lim
η→0

Eη[Rk(q, p)]

η
. (4.21)

It is easy to show that for the sinusoidal forcing, the response velocity profile, solution to (4.17), is still
sinusoidal, so that the Fourier response is a meaningful measure of the magnitude of the response in the
velocity profile. In practice, it is sufficient to consider k = 1.
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fy Sinusoidal Piecewise constant Piecewise linear
c1(fy) i/2 2i/π −4/π2

Figure 4.2: First Fourier coefficients for transverse forcing profiles.

Remark 15. To obtain better statistics, one may for the purpose of numerical simulations want to
consider a periodic domain whose unit cell is still a cuboid, but with a side length in the longitudinal
direction that is longer than in the transverse direction. In this case we simply replace L by Ly in the
response observables, where Ly is the length of the unit cell in the transverse direction.

The shear viscosity can then be computed from equation (4.19), through

σ = ρ

(
ck(fy)

ρF,k
− γ
)(

L

2kπ

)2

, (4.22)

again only considering k = 1 in practice. Numerically, ρF,k can be approximated by an estimator of the
form (4.10). In our numerical experiments, we consider the same three forcing profiles as in [20], namely:

(i) A sinusoidal forcing profile

fy(u) = sin

(
2πu

L

)
,

(ii) a piecewise constant forcing profile

fy(u) = 1u<L
2
− 1u>L

2
,

(iii) and a piecewise linear forcing profile

fy(u) =
4

L

(
u− L

4

)
1u<L

2
− 4

L

(
3L

4
− u
)
1u>L

2
.

These forcings have the advantage that the Fourier coefficients can be analytically computed. We record
in Figure 4.2 the value of the first Fourier coefficient c1 for each of these forcings. As in the case of
mobility, we fix a reference thermodynamic condition,

T = 0.8, ρ = 0.7, γ = 1.0, N = 1000. (4.23)

4.2 The Green–Kubo method

An alternative route to the perturbation method described above leverages a famous expression for the
transport coefficient in terms of an integrated correlation function, or, in less technical language, in terms
of the fluctuations at equilibrium of the response observable. This is the Green–Kubo method, which we
describe in this section. We consider the invariant measure for the non-equilibrium dynamics (4.1). By
Theorem 3, there exists a unique invariant measure with density ψη. For notational consistency, let us
write ψ0 for the density of the equilibrium measure µ. Then the following result holds.

Theorem 4 (Series expansion for the non-equilibrium steady state). There exists r > 0 such that for
all 0 < η < r,

ψη
ψ0

=
(

1 + η(L̃ΠL−1
γ Π)∗

)−1

1E =

(
1 +

∞∑
k=1

(−η)k
[
(L̃ΠL−1

γ Π)∗
]k)

1E , (4.24)

where L̃ is defined by (4.2), Π is the equilibrium centering projector defined in (2.34), and adjoints are
taken in L2(µ).
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Sketch of proof. The second equality identifies the Neumann series on the right as the resolvent of 1 +
(L̃ΠL−1

γ Π)∗, provided η is taken small enough. In fact, from the spectral theory of bounded operators,

r can be determined as the spectral radius of (L̃ΠL−1
γ Π)∗ in the space of bounded operators B(L2

0(µ)).
The core of the argument lies in making the ansatz

ψη = ψ0(1 + ηf1 + η2f2 + · · · ). (4.25)

The stationary Fokker-Planck equation (4.4) writes

(Lγ + ηL̃)†ψ0(1 + ηf1 + η2f2 + · · · ) = (Lγ + ηL̃)∗(1 + ηf1 + η2f2 + · · · ) = 0.

Indeed, for an arbitrary test function ϕ,∫ (
Lγ + ηL̃

)
ϕψη = 0

=

∫ [(
Lγ + ηL̃

)
ϕ
]

(1 + ηf1 + η2f2 + . . . ) dµ

=

∫
ϕ
[(
Lγ + ηL̃

)∗
(1 + ηf1 + η2f2 + . . . )

]
dµ.

By formally identifying terms of the same degree in η, we obtain

L∗γ1E = 0,

L̃∗1E + L∗γf1 = 0,

L̃∗f1 + L∗γf2 = 0,

and so on. Note that the first equality is the equilibrium Fokker-Planck equation. Thus, by induction,
again formally, we obtain.

f1 = (−L∗γ)−1L̃∗1E ,

f2 = (−L∗γ)−1L̃∗f1,

· · ·

fn =
[
(−L∗γ)−1L̃∗

]n
1E ,

whence the formal proof follows, by observing that we can write

(−L∗γ)−1L̃∗ = −(L̃ΠL−1
γ Π)∗.

For a rigorous proof, several points should be made precise:

(i) The convergence of the series (4.24) for sufficiently small η, which can be obtained by showing the

boundedness of the operator (L̃ΠL−1
γ Π)∗ on L0(µ).

(ii) The fact that ψ0

(
1 + η(L̃ΠL−1

γ Π)∗
)−1

1E is indeed a solution to the stationary Fokker-Planck

equation, and that it is indeed a probability density. This is done by showing that it is a positive
function.

One can then conclude by uniqueness of the steady-state probability measure.

The linear response can be read off directly from the first term of the series expansion.

Corollary 4 (Green–Kubo formula). Let R be any response observable such that Eµ[R] = 0, and R ∈ L∞Kn
for some n. Then we have the following formula for the linear response

lim
η→0

Eη[R]

η
=

∫ ∞
0

Eµ[R(qt, pt)S(q0, p0)]dt, (4.26)

where the expectation on the right hand side is with respect to all equilibrium dynamics trajectories with
canonical initial distribution, and S is defined by

S = L̃∗1E = βF (q) ·M−1p, (4.27)

and is called the conjugate response function.
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The latter expression follows from a simple integration by parts.

Proof. By Theorem 4, we can write

lim
η→0

Eη[R]

η
=

∫
E
R(q, p)

(
(−L∗γ)−1L̃∗1E

)
(q, p)ψ0(q, p) dq dp

=

∫
E

[
(−Lγ)−1R

]
(q, p)S(q, p)ψ0(q, p) dq dp

=

∫
E

∫ ∞
0

E(q,p)[R(qt, pt)S(q0, p0)]ψ0(q, p) dtdq dp

=

∫ ∞
0

Eµ[R(qt, pt)S(q0, p0)] dt,

where we rely on an expression like (2.37) for (−Lγ)−1.

The Green–Kubo formula has a great advantage, in that it allows us to estimate the transport
coefficients for as many different perturbations and response observables as we want from a single
equilibrium trajectory. Indeed, one only needs to compute the corresponding integrated correlation
functions (4.26).

4.2.1 Numerical implementation

We now describe a method to compute correlation functions necessary to the Green–Kubo method from
a single long numerical trajectory. This method is described by Tuckerman in [30, Section 13.4.2] for
Hamiltonian trajectories. In fact we consider a slight extension in which we let R and S to be vector-
valued observables. For notational simplicity, we assume that R and S are component-wise centered.
The quantities we want to estimate are

C(t) = Eµ[R(qt, pt)
ᵀS(q0, p0)]. (4.28)

We let (qn, pn)n>0 be a numerical trajectory, which we see as the random iterates of the Markov chain
associated with a numerical scheme, with a regular timestep ∆t > 0. We further assume that the
trajectory is stationary for this Markov chain, which is a realistic assumption if we equilibriate the
system using our numerical scheme before recording states. By stationarity, the equality in law

(qn, pn, q0, p0)
law
= (qn+k, pn+kqk, pk)

for all k > 0. Hence we define the following estimator for C(n∆t), for 0 6 n 6 Niter :

ĈNiter
(n∆t) =

1

Niter − n+ 1

Niter−n∑
k=0

R(qn+k, pn+k)ᵀS(qk, pk). (4.29)

Note the quality of the estimators degrades with n. Thus in practice, we fix Ncorr � Niter, and compute
these estimators for 0 6 n 6 Ncorr. Our implementation can be found in the Molly [15] source code as
the TimeCorrelationLogger object and associated methods. Using these estimators, we can estimate
the transport coefficient through the Green–Kubo formula (4.26). The simplest way is to use a naive
Riemann sum, or rectangle rule:

ρF ≈ ∆t

Ncorr∑
k=0

ĈNiter
(k∆t).

In fact, the analysis of [24, Corollary 2.3] shows that using a trapezoidal rule reduces the error to O(∆t2)
for integration schemes of weak order 2. However, these procedures introduce a truncation in time of
the integral in (4.26). Another approach consists in extrapolating the behavior of ĈNiter by fitting a
parametric model

Cθ(t) =

(
m∑
k=1

ake−λkt cos(fkt+ ωk)

)
, (4.30)

where
θ = (λk, ak, fk, ωk) ∈

(
R∗+ × R× R× R

)m
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is the parameter. The form of this model is justified empirically, although a formal argument based on
a diagonalisation of the evolution semigroup can be made, and using the conjugate symmetry property
Lγψ = Lγψ for ψ a complex-valued observable. Rigorously justifying and quantifying the accuracy of
this model requires fine knowledge of the spectrum of Lγ . At any rate, we can then fit the model in a
least-squares sense,

θ∗ = argmin
θ∈(R∗+×R×R×R)

m

Ncorr∑
n=0

∣∣∣Cθ(n∆t)− ĈNiter
(n∆t)

∣∣∣2 , (4.31)

using gradient descent, or the Gauss-Newton method, and deduce an estimator for the transport coefficient,

ρ̂GK
F,Niter

=

∫ ∞
0

Cθ∗(t) dt, (4.32)

Using the simple identity

a

∫ ∞
0

e−λt cos(ft+ ω) dt = a
λ cosω − f sinω

λ2 + f2
, (4.33)

we get a closed form for the estimator,

ρ̂GK
F,Niter

=

m∑
k=1

ak
λk cosωk − fk sinωk

λ2
k + f2

k

.

4.2.2 Mobility

The Green–Kubo formula asserts that

lim
η→0

Eη[F ·M−1p]

η
= β

∫ ∞
0

Eµ[
(
F ·M−1pt

) (
F ·M−1p0

)
] dt. (4.34)

Using this expression, in the case of a mass-homogeneous system where the potential V is of pair
interaction form (1.12), we can relate the transport coefficients for different forcings. As a useful example,
we compute an equation relating the transport coefficients for the single drift and color drift forcings.
The argument is taken from unpublished notes by Julien Roussel.

Example 5 (Relating linear responses). We assume M = mId. Let us define, for 1 6 i, j 6 N ,

cij =
β

m2

∫ ∞
0

Eµ[pi1,tpj1,0] dt.

By the form of the potential (Newton’s third law), for all q,

N∑
i=1

∂

∂qi1
V (q) = 0.

This implies upon summing over i the longitudinal p-components of the SDE (2.15) and integrating

N∑
i=1

pi1,t =

N∑
i=1

[
pi1,0 +

∫ t

0

(
− ∂

∂qi1
V (qs)−

γ

m
pi1,sds+

√
2γ

β
dWi1,s

)]

=

N∑
i=1

[
pi1,0 −

γ

m

∫ t

0

pi1,sds+

√
2γ

β
Wi1,t

]
.

Multiply by p11,0 and take the expectation with respect with the canonical initial distribution, the Brownian
terms vanish, and we get

Eµ

[(
N∑
i=1

pi1,t

)
p11,0

]
=

N∑
i=1

[
Eµ [pi1,0p11,0]− γ

m

∫ t

0

Eµ [pi1,sp11,0] ds

]
. (4.35)
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By the decay properties of the evolution semigroup, the left hand side converges to 0 as t→∞, while the
integral is well-defined. Since p0 has diagonal covariance with respect to µ, we get

N∑
i=1

γ

m

∫ ∞
0

Eµ [pi1,sp11,0] ds = Eµ[p2
11,0] =

m

β
. (4.36)

Equivalently,
N∑
i=1

ci1 =
1

γ
.

Using the indistinguishability property

cii = c11, cij = c12

for all i 6= j, we can rewrite this identity as

c12 =
1

N − 1

(
1

γ
− c11

)
. (4.37)

Using this computation, we can relate the linear responses of the single drift and the color drift. By the
Green–Kubo formula, the transport coefficient for the single drift is given by c11,

ρFS
= c11.

For the color drift, we expand, by the Green–Kubo formula,

ρFC =
β

m2

∫ ∞
0

Eµ[(FC · pt) (FC · p0)] dt =
1

N

 N∑
i=1

cii + 2
∑

16i<j6N

(−1)i+jcij


By indistinguishability, and using

2
∑

16i 6=j6N

(−1)i+j = −2

⌊
N

2

⌋
,

which is easily seen by induction, we get

ρFC
= c11 −

2bN/2c
N(N − 1)

(
1

γ
− c11

)
. (4.38)

Note that this analysis is consistent with what we observe numerically, although because of persisting
statistical uncertainty, much longer trajectories (or smaller systems) have to be considered to confirm
this relation numerically. Let us also mention that the discrepancy vanishes in the thermodynamic limit,
at rate O(N−1). Since the system we consider is isotropic, we also have

c11 =
β

m2

∫ ∞
0

Eµ[piα,spiα,0] ds

for any 1 6 i 6 N and 1 6 α 6 d. Thus, the mobility can be computed through an expression of the
form (4.28):

ρFS
= c11 =

β

m2dN

∫ ∞
0

Eµ[pᵀsp0] ds, (4.39)

which is the Green–Kubo relation we use in our numerical experiments. We expect that the expression is
much better in terms of asymptotic variance than the naive Green–Kubo estimator based on (4.34). We
confirm this fact empirically, in the sense that the estimator based on (4.2.2) converges much quicker,
although further work should be undertaken to study this effect systematically. In Figure 4.3, we plot
the velocity autocorrelation function used in the estimator (4.2.2), and its integral. We used the same
thermodynamics conditions as for the NEMD method (4.13). In Figure 4.4, we show the fitted non-
linear least squares model (4.30) for the autocorrelation function, using m = 4 modes, trained using
the Gauss–Newton algorithm. The estimated correlation function was obtained from a single numerical
trajectory with a physical reduced time of tfin = 1.628 × 105. The corresponding estimated values for
the mobility are 0.1218 based on a trapezoid quadrature of the truncated autocorrelation function, and
0.1217 for the analytic integral of the parametric model.

We conclude this section on mobility computations by the discussion of a final method, which yields
a nice physical interpretation for the mobility.
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Figure 4.3: Velocity autocorrelation function (top) and its integral (bottom) for the Lennard-Jones
system (4.13).
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Figure 4.4: Fitted parametric model (4.30) (in dotted line) superimposed on autocorrelation function
from Figure 4.3 (in black) for the Lennard-Jones system (4.13).

Remark 16 (Einstein relation for mobility). Recalling the computations in Section 2.2.5, we can write,
for R a centered response observable,

Eµ

( 1√
T

∫ T

0

R(qt, pt) dt

)2
 = 2

∫ T

0

Eµ [R(qt, pt)R(q0, p0)]

(
1− t

T

)
dt. (4.40)

Assuming an exponential decay of the evolution semigroup, we get

∫ ∞
0

Eµ [R(qt, pt)R(q0, p0)] dt = lim
T→∞

1

2T
Eµ

(∫ T

0

R(qt, pt) dt

)2
 . (4.41)

This is the Einstein formula. In the case of mobility R(q, p) = F ·M−1p, the right-hand side rewrites

lim
T→∞

1

2T
Eµ
[
(F · (QT −Q0))

2
]
, (4.42)

where

Qt = Q0 +

∫ t

0

M−1ps ds =

∫ t

0

dqs (4.43)

is the so called self-diffusion process, which formally satisfies the same SDE as q, but in the unperiodic
domain RdN . Its trajectories corresponds to the unwrapped or unperiodized trajectories of the coordinates,
which makes them particularly easy monitor during a numerical simulation. This terminology is justified
by a result, [28, Theorem 1], asserting that the diffusively rescaled self-diffusion process

√
ε(Qε−1t −Q0)

converges in law as ε→ 0 to a Brownian motion with diffusion matrix D characterized by

F ·DF = lim
T→∞

1

T
Eµ
[
(F · (QT −Q0))

2
]
. (4.44)

In the case of an isotropic system, the diffusion matrix is characterized by a single number, the diffusion
coefficient, which is given by the half normalized trace of the diffusion matrix.

D =
1

2dN
Tr(D) = lim

T→∞

1

2dNT
Eµ
[
|QT −Q0|2

]
(4.45)
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In view of the Einstein relation (4.42) and of the Green–Kubo relation (4.34), the mobility is related to
the diffusion coefficient as

ρFS
= βD. (4.46)

The formula (4.45) provides a new family of estimators for the mobility, based on a computation of the
self-diffusion coordinates expression (4.45). In Figure 4.5 we illustrate the strategy we used to compute
the mobility using the Einstein formula, which we proceed to explain. We define the mean-squared
deviation as the process

Mt =
|Qt −Q0|2

dN
. (4.47)

Fixing a number of independent realizationsNrun and a number of simulation iterationsNiter, we consider,
for each i = 1, . . . , Nrun, a numerical trajectory of regularly sampled points from the mean-squared
deviation, M i = (M i,k)06k6Niter . These correspond to points sampled at regular time intervals Tsamp =
Nsamp∆t, where ∆t is the simulation timestep, and computed from the numerical trajectory of the self-
diffusion coordinates. We then obtain Nrun estimators for D by a linear regression on the mean-squared
deviation trajectories,

D̂i
Niter

=
1

2|τ |2
τ ·M i, (4.48)

where
τ = (kTsamp)06k6Niter

is the vector of sampling times. An estimator for D, and thus for ρFS , is obtained by averaging over the
number of independent runs:

D̂Niter
=

1

Nrun

Nrun∑
i=1

D̂i
Niter

. (4.49)

Nearly independent runs can be computed over a single trajectory, using for all T, t > 0 the stationarity

(QT −Q0)T>0 ∼ (QT+t −Qt)T>0,

and the asymptotic independence, or decorrelation, between (QT+t − Qt)T>0 and (Qs)06s6t. This can
be very simply exploited in a simulation, by resetting the self-diffusion coordinates to zero following
each sample run. In practice, one has to take care to take Nsamp large enough so that the mean-
squared deviation behaves approximately linearly over the sample time range [0, Tsamp]. In Figure 4.5,
we illustrate the principle underlying this method. For our final computation, we used Nrun = 545,
Niter = 106, ∆t = 10−3, Nsamp = 1. The estimated mobility is

ρFS = 0.12157± 0.00011, (4.50)

with error bars obtained using the empirical variance.

4.2.3 Shear viscosity

We conclude by applying the Green–Kubo formula to shear viscosity computations. It asserts, with ρF,k
given by (4.21),

ρF,k = β

∫ ∞
0

Eµ
[
Rk(qt, pt)

(
F (q0) ·M−1p0

)]
, (4.51)

where Rk is given by (4.20). At this point, let us remark that we can, similar to the mobility case in
(4.2.2), exploit the isotropy of the equilibrium measure to our statistical advantage. To do this let us
define versions of the transverse forcing method for any pair of orthogonal canonical directions in Rd.
More precisely, we define, for any 1 6 α 6= β 6 d,

Rk,αβ(q, p) =
1

N

N∑
i=1

piα
m

exp

(
2ikπqiβ
L

)
,

Fαβ(q)iα = fy(qiβ), Fαβ(q)iδ = 0, ∀ 1 6 i 6 N, ∀ δ 6= β.

Then, by isotropy, we have

ρF,k =
β

d(d− 1)

∑
16α6=β6d

∫ ∞
0

Eµ
[
Rk,αβ(qt, pt)

(
Fαβ(q0) ·M−1p0

)]
. (4.52)
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Figure 4.5: Twenty independent realizations of the mean squared-deviation (in blue) superimposed with
their corresponding linear regression lines (in red dotted lines). The regression line corresponding to the
corresponding estimator (4.49) is plotted in bright green.

This can be rewritten as an expression of the form (4.28), with d(d−1)-dimensional observables. When
d = 3, the speedup in convergence is appreciable, though we made no attempt to quantitatively measure
it. We also take advantage of this opportunity to demonstrate the power of the Green–Kubo method
by computing transport coefficients for all three forcing profiles using a single numerical trajectory. In
Figure (4.6), we plot the correlation functions and corresponding integral for the three different forcing
profiles. We note that the results are roughly consistent with the analytic computations of Figure 4.2,
in the sense that the normalized transport coefficient

ρF,k
ck(fy)

should be real and positive. The persistance of an imaginary component in the estimation of this
normalized transport coefficient can be attributed to statistical error, and is useful as a direct empirical
non-convergence test for the Green–Kubo estimator. Computations were run under the reference thermodynamic
condition (4.23), for a physical simulation time of tfin = 2.46 × 104, with a timestep ∆t = 10−3 and a
number of decorrelation steps Ncorr = 104. The corresponding estimates for the normalized transport
coefficients are respectively 0.644, 0.645 and 0.655 for the sinusoidal, piecewise constant and piecewise
linear forcing profiles.
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Figure 4.6: Correlation functions (left) and corresponding integrated correlation functions (right) for the
shear viscosity dynamics. Top row: sinusoidal forcing, middle row: piecewise constant forcing, bottom
row: piecewise linear forcing. Real parts are plotted in red and imaginary parts are plotted in blue.
Integrals were obtained with a trapezoid rule.
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Chapter 5

Norton dynamics

We have considered so far two general methods for the computation of transport coefficients. The
Green-Kubo method, which relies on analysis of autocorrelations in the fluctuation of zero-average
equilibrium quantities, and the NEMD method, which relies in measuring the ratio in the average of
a given equilibrium-centered response observable under a driven steady-state and the magnitude of the
driving force. In the case of mobility, we apply a small constant force, and measure the resulting particle
flux in the direction of the perturbation. We can thus think of the mobility ρF as measuring how
responsive the flux is to the forcing on the system. A natural question to ask is whether it is possible
to measure the dual quantity, that is, how resistive the system is to a given flux. One possible strategy
to answer this question, in loose terms, would be to constrain the response to be constant, and measure
the average magnitude of the forcing needed to maintain it. In the limit of a small response, the linear
dependency between these quantities can be hoped to provide an equivalent and reciprocal measure of
the transport coefficient. By analogy with the Thévenin and Norton circuit theorems, we will from now
on refer to the standard, constant-forcing method as the Thévenin method, and the dual, constant-
response method as the Norton method. We will again be using the mobility and the shear viscosity as
our examples, so as to leverage our previous calculations as ways to validate our method.

5.1 General framework

We first express the method in full generality, before specializing to the non-equilibrium molecular
dynamics context. We consider the stochastic differential equation:{

dXt = b(Xt) dt+ σ(Xt) dWt + dΛtF (Xt)

R(Xt) = r,
(5.1)

where b, σ and F are respectively RD, RD×E and RD-valued functions, and W is a E-dimensional
Brownian motion. We interpret F as a perturbation direction for an equilibrium SDE, and Λ is the
perturbation intensity, which is determined in order to maintain the response observable R constant
equal to r > 0 along the dynamic’s trajectories. The Norton dynamics (5.1) should be thought of as the
constant-response counterpart to a corresponding Thévenin dynamics{

dXt = b(Xt) dt+ σ(Xt) dWt + ηF (Xt),

η > 0,
(5.2)

which is perturbed in the same direction, but with a constant forcing intensity η. Both these dynamics
have a corresponding reference dynamics, respectively for r = 0 and η = 0, with the reference Thévenin
dynamics to be thought of as the equilibrium dynamics. For notational simplicity, let us introduce the
following definitions:

bt = b(Xt), σt = σ(Xt), Ft = F (Xt), ∇Rt = ∇R(Xt), ∇2Rt = ∇2R(Xt). (5.3)

For A,B ∈ RD, such that A ·B 6= 0, we denote by PA,B the projector onto A orthogonally to B

PA,B =
A⊗B
A ·B

. (5.4)
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Finally, for any projector P , we denote by P the complementary projector

P = Id− P, (5.5)

We can now state the following result, which follows by a simple application of Itô calculus, and gives
an expression for the dynamics (5.1) without reference to Λ.

Proposition 7. Provided it is well-posed, the solution of the following SDE solves (5.1)

dXt = PFt,∇Rt [bt dt+ σt dWt]−
1

2

∇2Rt :
(
PFt,∇Rtσtσ

ᵀ
t P∇Rt,Ft

)
Ft · ∇Rt

Ft dt, (5.6)

with Λt taken to be an Itô process defined by

dΛt = −∇Rt · bt
Ft · ∇Rt

dt− ∇Rt · σt dWt

Ft · ∇Rt
− 1

2

∇2Rt :
(
PFt,∇Rtσtσ

ᵀ
t P∇Rt,Ft

)
Ft · ∇Rt

. (5.7)

Proof. The proof follows by analysis-synthesis. We first assume that Λ admits a decomposition as an Itô
process,

dΛt = λtdt+ dΛ̃t, (5.8)

where λ is a bounded variation process and Λ̃ is a martingale, and that R sufficiently regular (say C2

and bounded). We can apply Itô’s formula to the constant response condition, to get

∇Rt · dXt +
1

2
∇2Rt :

〈
σt dWt + dΛ̃tFt

〉
= 0, (5.9)

where the brackets denote the quadratic covariation of an Itô process. By identifying the martingale and
bounded variation parts of the above process with 0, we deduce an SDE for Λt:

∇Rt ·
(
σt dWt + Ft dΛ̃t

)
= 0

∇Rt · (bt + λtFt) +
1

2
∇2Rt :

〈
σt dWt + dΛ̃tFt

〉
= 0.

(5.10)

From the first equation, we deduce the expression of the martingale part of the forcing:

dΛ̃t = −∇Rt · σt dWt

∇Rt · Ft
, (5.11)

and as a consequence, we may compute the quadratic covariation bracket in (5.9),〈
σt dWt + dΛ̃tFt

〉
=

〈(
Id− Ft ⊗∇Rt

Ft · ∇Rt

)
σt dWt

〉
= PFt,∇Rtσtσ

ᵀ
t P∇Rt,Ft dt, (5.12)

where we use P ᵀ
A,B = PB,A. Inserting equation (5.12) into (5.10) yields the full SDE for the forcing Λt

(5.7) and the result follows by inserting the latter in (5.1).

As stated above, we propose the Norton dynamics as a possible and alternative means of computing
the linear response to a small perturbation of the equilibrium dynamics. We finish this general introduction
by evoking a few theoretical questions related to these dynamics.

(i) Existence of a unique steady-state for the dynamics (5.1) and (5.2). As mentioned in the previous
chapter, some results already exist in the Thévenin case.

(ii) As before, proving the convergence of trajectory averages.

(iii) With respect to the steady states, whose corresponding expectations we denote by Eη in the
Thévenin case, and Er in the Norton case, equality of the transport coefficients

lim
η→0

Eη[R]

η

and
lim
r→0

r

Er[λ]
.

This is the question of equivalence of the linear responses.
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(iv) Another natural question is that of the equivalence of the Norton and Thévenin equilibrium
ensembles. This question asks about the existence of an asymptotic regime, or thermodynamic
limit as D →∞, for which averages under the two equilibrium steady-states converge to a common
value, for a sufficiently rich class of observables.

(v) On a related note, investigating the equivalence of the non-linear responses, that is the existence
of a well-defined r(η) such that the graphs (η,Eη[R]) and (Er(η)[λ], r(η)) either agree or converge
to a common value in some asymptotic regime when D →∞.

(vi) Even more ambitiously, full equivalence of the non-equilibrium ensembles.

(vii) Finally, we mention the question of finding a relation between the Norton equilibrium fluctuations
of λ and the linear response, in an analogy with the Green-Kubo formula.

Let us mention that the question of the equivalence of of non-equilibrium ensembles has already been
investigated by Evans in [7], although the setting is purely deterministic, and the proof is formal. The
purpose of this chapter is to make somewhat rigorous a setting in which these questions are susceptible
to find an answer, albeit a probably a difficult one to obtain. Furthermore, the numerical results which
we present in the remainder of this report show that these questions do not have obviously negative
answers, and thus should be worthy of investigation.

5.2 Norton dynamics for transport coefficients

We now turn to specialising the setting to the Norton counterpart of the dynamics (4.1). It reads
dqt = m−1pt dt,

dpt = −∇V (qt) dt− γM−1pt dt+

√
2γ

β
dWt + dΛtF (qt),

R(qt, pt) = r,

(5.13)

where Λt is the magnitude of the perturbation, which is defined by the constraint R(qt, pt) = r > 0. We
may assume γ is a positive semi-definite diagonal matrix, as in the Thévenin case. R is the response
observable, which we take of the form

R(q, p) = G(q) · p,

with G a smooth vector field. Note in particular that ∇pR(q, p) = G(q), and ∇2
pR(q, p) = 0. Finally note

that the forcing acts solely on the momenta. A SDE for Λt can be obtained by applying Proposition 7.
It immediately implies

dqt = M−1pt dt

dpt = PFt,Gt

[
−∇V (qt)− dtγM−1pt dt+

√
2γ

β
dWt

]
− ∇qRt ·M

−1pt
Ft ·Gt

Ft dt,
(5.14)

with an expression for the forcing term

dΛt = λt dt+ dΛ̃t,

λt =
Gt ·

[
∇V (qt) + γM−1pt

]
−∇qRt ·M−1pt

Ft ·Gt
,

dΛ̃t = −
Gt ·

√
2γ
β dWt

Ft ·Gt
.

(5.15)

We use notations identical to (5.4), (5.5) and (5.3) in the expressions above. The bounded and

martingale parts of the forcing term can be identified in (5.15), and are given respectively by λt and Λ̃t.
We record the infinitesimal generator of the dynamics (5.14), which is given by

LNorton
γ ϕ = Aϕ−

[
PF,G

(
∇V + γM−1p

)]
· ∇pϕ−

∇qR ·M−1p

F ·G
F · ∇pϕ+

1

β
∇2
pϕ :

[
PF,GγPG,F

]
. (5.16)

Note PF,G is a function of the coordinate variable in the equation above, and A is as in (2.3).
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Remark 17. Note that the G(qt) ·F (qt) term in the denominator may pose a question of well-posedness
of the dynamics. Let us always suppose in our computations that G(qt) · F (qt) > 0, but this is by no
means automatic. Indeed, thinking of the extreme case when F and G are orthogonal everywhere and
V = 0 highlights the fact that this is an issue of controlability: in that case, by isotropy, the component
of the momentum in the direction G will diffuse according to an Ornstein-Uhlenbeck process independent
from any forcing applied in the direction F . In this case there is no way to control the response, and
thus the dynamics is ill-defined.

Writing the Norton dynamics under the form (5.14) is instructive, since its structure appears clearly:
its stochastic increments are comprised of the projected increments of an equilibrium Langevin dynamics,
with an additional term involving ∇qR, which can be interpreted as a correction term enforcing the
constant response constraint, in reaction to the configurational dynamics. This fact will become clearer
in the following section, where we describe splitting schemes for the Norton dynamics.

5.2.1 Splitting schemes for numerical integration

As in every case we considered so far, we will again rely on the fact that the Norton dynamics (5.14) can
be split into three simpler, structure-preserving dynamics, to construct a variety of numerical schemes.

Definition 3 (Splitting of the Norton dynamics). Consider the following dynamics
dqt = M−1pt dt

dpt = −∇qR(qt, pt) ·M−1pt
F (qt) ·G(qt)

F (qt) dt
, (5.17)

{
dqt = 0

dpt = −PFt,Gt∇V (qt) dt
, (5.18)

and finally 
dqt = 0

dpt = PFt,Gt

[
γM−1pt dt+

√
2γ

β
dWt

]
,

(5.19)

which additively combine to form the Norton dynamics (5.6). By analogy with the equilibrium setting,
we will respectively refer to (5.17), (5.18) and (5.19) as the (Norton) A,B and O dynamics. At the level
of the generator (5.16), this corresponds to a splitting into three operators,

LNorton
γ = LNorton

A + LNorton
B + LNorton

γ,O ,

with 
LNorton
A ϕ = Aϕ− ∇qR ·M

−1p

F ·G
F · ∇pϕ,

LNorton
B ϕ = −(PF,G∇V ) · ∇pϕ,

LNorton
γ,O ϕ = −(PF,GγM

−1p) · ∇p +
1

β

(
PF,GγPG,F

)
: ∇2

pϕ.

(5.20)

The claim that these dynamics are structure-preserving is summed up in the following straightforward
result.

Lemma 3. Let (qt, pt) refer to the solution of any of the Norton A,B or O dynamics. Then if R(q0, p0) =
r, R(qt, pt) = r for all t > 0.

Proof. The result can be proven by three thoughtless applications of the chain rule or Itô’s formula. A
quicker and more instructive proof follows from observing that for any X, q, p ∈ RdN ,

G(q) · PF (q),G(q)X = P
ᵀ
F (q),G(q)G(q) ·X

= PG(q),F (q)G(q) ·X
= 0,
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since PG(q),F (q) is a projector onto the one-dimensional subspace spanned by G(q) and PG(q),F (q) is its
complement. Hence any dynamics of the form

dqt = 0, dpt = PGt,Ft [b(qt, pt) dt+ σ(qt, pt) dWt]

preserves R(qt, pt) = G(qt) · pt, by applying the Itô formula, since ∇pR(q, p) = G(q) and ∇2
pR = 0.

This implies the result for the B and O dynamics. However, since the Norton dynamics also preserves
R(qt, pt) by construction, the preservation property for the A dynamics follows immediately, from the
response conservation property of the Norton dynamics in the case V = 0 and γ = 0. For the more
skeptical reader, we write, with (qt, pt) a solution to the A dynamics,

d

dt
R(qt, pt) = ∇qR(qt, pt) · (M−1pt)−∇pR(qt, pt) ·

(
∇qR(qt, pt) ·M−1pt

F (qt) ·G(qt)
F (qt)

)
= ∇qR(qt, pt) · (M−1pt)

(
1− G(qt) · F (qt)

F (qt) ·G(qt)

)
= 0

As before, this splitting allows us to define a variety of numerical schemes for the Norton dynamics,
following the same strategy as in Section 2.2.6. In order to do so, we must prescribe a way to integrate
each of the A,B and O steps individually. This is what we now turn to. In the following, let us fix a
timestep ∆t > 0, and a response intensity r > 0. Similar to the equilibrium setting, the B step can be
integrated analytically, since its trajectories are ballistic. Thus we have the following algorithm.

Algorithm 2 (Norton B step). {
p̃1 = p0 −∇V (q0)

p1 = p̃1 + ∆tλ1F (q0),
(5.21)

where λ1 is determined in order to conserve the response:

G(q0) · p1 = r ⇐⇒ ∆tλ1 =
r −G(q0) · p̃1

F (q0) ·G(q0)
. (5.22)

We next rely on the fact that the Norton O dynamics is in Ornstein–Uhlenbeck form to compute its
exact solution over one timestep, using the following result.

Proposition 8. We consider the following general form of the Norton Ornstein–Uhlenbeck process in
RdN .

dpt = −PγM−1pt dt+ P

√
2γ

β
dWt, (5.23)

where P 2 = P is a projector (not necessarily orthogonal), γ and M−1 are positive definite symmetric
matrices, and W is a standard Brownian motion. We denote by P the complementary projector P =
Id− P . Assume also that P and γM−1 commute. Then, the analytical solution of (5.23) writes

pt = Pp0 + Ppeq
t , (5.24)

where peq
t is the solution of the coupled equilibrium Ornstein–Uhlenbeck process,dpeq

t = −γM−1peq
t dt+

√
2γ

β
dWt,

peq
0 = p0.

(5.25)

Proof. The proof follows the standard strategy of applying Itô’s formula to the process rescaled by
etPγM

−1

. It yields

d
(

etPγM
−1

pt

)
= etPγM

−1

(
PγM−1pt dt− PγM−1pt dt+ P

√
2γ

β
dWt

)
, (5.26)

whence, integrating in t and multiplying both sides by e−tPγM
−1

,

pt = e−tPγM
−1

p0 +

∫ t

0

e−PγM
−1(t−s)P

√
2γ

β
dWs. (5.27)
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This yields an expression for the solution whatever the particular properties of γ, M−1 and P . However,
since P is a projector, we can make use of the following useful formula: if A and P are square matrices
with AP = PA,

ePA =

∞∑
k=0

(PA)k

k!
=

∞∑
k=0

P kAk

k!
= Id + P

∞∑
k=1

Ak

k!
= Id + P

(
eA − Id

)
= P + P eA. (5.28)

The second equality follows from the fact that A and P commute, while the third follows from a repeated
application of the projector identity P = P 2 = P 3 = . . . . This is sometimes referred to as Rodrigue’s
formula. Applying’s Rodrigue’s formula to our analytical form yields

pt = Pp0 + P e−tγM
−1

p0 +

∫ t

0

(
P + Pe−γM

−1(t−s)
)
P

√
2γ

β
dWs. (5.29)

expanding the product inside the integral, and using PP = 0, we get

pt = Pp0 + P e−tγM
−1

p0 +

∫ t

0

Pe−γM
−1(t−s)P

√
2γ

β
dWs. (5.30)

By our commutativity assumption, we can factor out the P s from the integral sign and obtain

pt = Pp0+P e−tγM
−1

p0+P 2

∫ t

0

e−γM
−1(t−s)

√
2γ

β
dWs = Pp0+P

(
e−tγM

−1

p0 +

∫ t

0

e−γM
−1(t−s)

√
2γ

β
dWs

)
,

(5.31)
regrouping the terms in P and using again P 2 = P . The result follows by simply recognizing the
parenthesized term as peq

t .

Remark 18. The commutativity assumption may seem overly restrictive, but in fact it is enough in the
cases we consider. For instance, in the case of shear viscosity computations with anisotropic friction, M
is a scalar multiple of the identity and γ is diagonal and constant with respect to longitudinal coordinates,
so that the commutativity condition is indeed verified.

As a consequence of this computation, we may define a numerical strategy to integrate the fluctuation-
dissipation part of the Norton dynamics.

Algorithm 3 (Norton O step). {
p̃1 = α∆tp

0 + σ∆tG1,

p1 = p̃1 + ∆tλ1F (q0),
(5.32)

where G1 is a standard dN -dimensional Gaussian, α∆t, σ∆t are given by (??), and λ1 is again determined
by equation (5.22) in order to conserve the response.

Unfortunately, the A dynamics (5.17) cannot be solved analytically. However, its general form is that
of an infinitesimal Hamiltonian increment on the position coordinate, with an additional correction term
in the direction F on the momentum coordinate. Furthermore, we know the response is conserved by
the A dynamics. This naturally suggests the following scheme.

Algorithm 4 (Norton A step). {
q1 = q0 + ∆tM−1p0,

p1 = p0 + ∆tλ1F (q1),
(5.33)

where λ1 is determined by

G(q1) · p1 = r ⇐⇒ ∆tλ1 =
r −G(q1) · p0

F (q1) ·G(q1)
(5.34)

to enforce the constant response constraint.

An advantage of schemes for the Norton dynamics formed by chaining and iterating steps of (5.33),
(5.21) and (5.32) is that they immediately yield a discretization of the forcing intensity dΛt, and thus
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an estimation of the average Er[λ], which is the quantity of prime interest to us. Indeed, observe from
equation (5.15) that we can write

dΛt = λA
t dt+ λB

t dt+ dΛO
t , (5.35)

with 

λA
t = −∇qR(qt, pt) ·G(qt)

F (qt) ·G(qt)
,

λB
t = −∇V (qt) ·G(qt)

F (qt) ·G(qt)
,

dΛO
t = −

[
−γM−1pt dt+

√
2γ
β dWt

]
·G(qt)

F (qt) ·G(qt)
.

(5.36)

These individual parts can be interpreted individually as the forcing intensities in the direction F (qt)
applied to each of the A,B and O dynamics, relative to the corresponding equilibrium dynamics. This
yields a natural interpretation of the λn terms along numerical trajectories, as discretizations of (5.36),
and thus one can use these ergodic averages for the average forcing. As a full example, we record the
BABO-like scheme we used in our simulations, as well as the corresponding estimator of Er[λ]. This
procedure can of course be generalized to other orderings of the operators in the splitting. The impact of
such a choice on the discretization error of the mean force should be the subject of future investigation.

Example 6 (Estimation of the mean force using a BABO scheme.). The numerical scheme is implemented,
for a fixed timestep ∆t > 0, by iterating

p̃n+ 1
4 = pn − ∆t

2
∇V (qn)

∆t

2
λn+ 1

4 =
r −G(qn) · p̃n+ 1

4

F (qn) ·G(qn)

pn+ 1
4 = p̃n+ 1

4 +
∆t

2
λn+ 1

4F (qn)

qn+1 = qn + ∆tM−1pn+ 1
4

∆tλn+ 1
2 =

r −G(qn+1) · pn+ 1
4

F (qn+1) ·G(qn+1)

pn+ 1
2 = pn+ 1

4 + ∆tλn+ 1
2F (qn+1)

p̃n+ 3
4 = pn − ∆t

2
∇V (qn+1)

∆t

2
λn+ 3

4 =
r −G(qn+1) · p̃n+ 3

4

F (qn+1) ·G(qn+1)

pn+ 3
4 = p̃n+ 3

4 +
∆t

2
λn+ 3

4F (qn+1)

p̃n+1 = α∆tp
n+ 3

4 + σ∆tGn+1

∆tλn+1 =
r −G(qn+1) · p̃n+1

F (qn+1) ·G(qn+1)

pn+1 = p̃n+1 + ∆tλn+1F (qn+1).

(5.37)

If the scheme is iterated Niter times, the mean force can be estimated by

λ̂′Niter
=

1

Niter

Niter−1∑
k=0

(
λk+ 1

4 + λk+ 3
4

2
+ λk+ 1

2 + λk+1

)
. (5.38)

Note that the λk+1 also account for the part of the correction due to the Gaussian increment Gk+1. In
practice, it may be possible to replace λk+1 with an estimation of the bounded variation part of dΛO,

λO
t =

γM−1pt ·G(qt)

F (qt) ·G(qt)
,
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to obtain an estimator with a lower variance. For example, in our simulations, we took M = mId and a
constant γ, so that using the constant-response condition,

λO
t =

γm−1

F (qt) ·G(qt)
,

so that the mean force estimator we considered in practice was

λ̂Niter
=

1

Niter

Niter−1∑
k=0

(
λk+ 1

4 + λk+ 3
4

2
+ λk+ 1

2 +
γm−1

F (qk) ·G(qk)

)
. (5.39)

5.2.2 Physical interpretation

We conclude this theoretical discussion by pointing out a property of the Norton dynamics (5.14) in the
deterministic case γ = 0, and when the forcing direction F is proportional to the response direction G.
Without loss of generality, we assume F = G, since changing the proportionality constant amounts to
changing the scale of the response. We also assume that the system is homogeneous, so that we may
take M = Id. In this case the projectors PGt,Ft and the like all become orthogonal projectors onto the
one-dimensional subspace spanned by Ft, or its orthogonal complement. We show that in this particular
case there is a physical interpretation for the dynamics

Proposition 9 (Gauss’s principle of least constraint). Consider the deterministic version of the Norton
dynamics, 

q̇ = p,

ṗ = −PF (q)∇V (q)− ∇F (q)p · p
|F (q)|2

,
(5.40)

where the constraint is given by
F (qt) · pt = F (q0) · p0 = r,

and where we write PF for PF,F . The rightmost term in the equation for ṗ comes from writing
∇qR(q, p) = ∇G(q)p. Then Gauss’s principle of least constraint is satisfied:

q̇ = p,

ṗ = argmin
f ·F (q)+∇F (q)p·p=0

| − ∇V (q)− f |2. (5.41)

In other words, the force applied to the system undergoing the Norton dynamics minimizes at each point in
time the Euclidean distance to the force applied to the same system undergoing the Hamiltonian dynamics
(1.11), subject to the constant response constraint.

Proof. Firstly, let us make clear that the constraint in the minimization problem actually expresses the
constant response constraint. Since

r = F (q) · p,

a differentiation in time yields

0 = ∇F (q)q̇ · p+ F (q) · ṗ = ∇F (q)p · p+ F (q) · ṗ. (5.42)

Since the force applied to the system is equal to ṗ, this effectively yields a constraint on the set of possible
forces applied to the Norton system. This is analogous to the case of a Hamiltonian system subject to
a set of holonomic constraints, which depend only on the position q. In this case, a so-called hidden or
shadow constraint on the set of admissible forces can be obtained by twice-differentiating the constraint
condition. For a pedagogical discussion of this case, we refer the reader to [23], section 4.3. In our
non-holonomic case (the constraint also depends on p), a single time-differentiation is enough. We can
then compute the minimizer

argmin
f ·F (q)+∇F (q)p·p=0

| − ∇V (q)− f |2. (5.43)

Since the constraint is affine in f , the unique solution, provided F (q) 6= 0, is given by an orthogonal
projection of −∇V (q) onto the hyperplane (in the variable f)

f · F (q) +∇F (q)p · p = 0,
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whose normal direction is given by F (q). Hence the minimizer f∗ can be written

f∗ = −∇V (q)− λF (q) (5.44)

for some Lagrange multiplier λ, which is determined by

f∗ · F (q) +∇F (q)p · p = 0.

Substituting our tentative expression for f∗, we get

(−∇V (q)− λF (q)) · F (q) +∇F (q)p · p = 0.

This gives

λ = −∇V (q) · F (q)

|F (q)|2
+
∇F (q)p · p
|F (q)|2

, (5.45)

and finally

f∗ = −PF (q)∇V (q)− ∇F (q)p · p
|F (q)|2

F (q),

which concludes the proof.

This result gives a nice physical interpretation of the deterministic Norton dynamics: it corresponds to
a physical trajectory of a Hamiltonian system subject to the constant-response non-holonomic constraint.
Indeed, Gauss’s principle of least constraint [13] is equivalent to the Legendre-d’Alembert principle, which
can be use to derive the equations of motion for constrained classical systems. The use of Gauss’s principle
of least constraint to enforce thermodynamic constraints for non-equilibrium molecular dynamics was
already discussed in [9]. It is not yet clear to us how to extend this result to the case where F and G
are non-colinear, and when the system is inhomogeneous, although it seems likely in this case Gauss’s
principle should have to be stated with respect to some modified scalar product. Another interesting
direction would be to extend the principle to the properly Langevin case γ > 0. At any rate, we now
turn to presenting our numerical results. As before, we will be using the two examples of mobility and
shear viscosity computations.

5.3 Numerical results

5.3.1 Mobility

The Norton dynamics for mobility is recovered by setting F to be constant

F ∈ {FC, FS},

and taking
G = M−1F

indeed, the response
R(q, p) = M−1F · p = F ·M−1p,

since M is symmetric, which corresponds to the response observable for the mobility. Since F is constant
in the q variable, the correction term in the A dynamics (5.17) is 0. Hence the A step (5.33) is analytically
correct, with a vanishing Lagrange multiplier. We thus estimate the mean force through the estimator
(5.39) with λk+ 1

2 = 0. An estimator of

lim
r→0

Er[λ]

r

can then be obtained in the same way as (4.10), by

ρ̂F = |λ̂|−2λ̂ · r = argmin
ρ∈R

∣∣∣ρλ̂− r∣∣∣2 , (5.46)

where λ̂ ∈ Rk is a vector of k ergodic averages of the form (5.39), and r is a vector containing
the corresponding response intensities. Assuming, for simplicity’s sake, that all ergodic averages are
computed with the same number Niter of time steps, and that λ̂ has a (diagonal) matrix of asymptotic

71



variances Σ2
λ, applying the delta-method to (5.46) yields the following estimator for the asymptotic

variance of ρ̂F
σ2
ρF = ∇g(λ̂)ᵀΣ2

λ∇g(λ̂),

where

g(y) = |y|−2y · r,

which yields, after computation,

σ2
ρF =

k∑
i=1

Σ2
λ,ii

(
ri|λ̂|2 − 2λ̂i(λ̂ · r)

|λ̂|4

)2

. (5.47)

In the case k = 1, this becomes

σ2
ρF = σ2

λr
2λ̂−4. (5.48)

In Figure 5.1, we plot the response-forcing diagram in the linear regime. The estimated transport
coefficient from the color drift is consistent with the results obtained from the Thévenin method. For the
single drift, we observe a discrepancy in the linear response. In Figure 5.2, we plot the response-forcing
curve in the non-linear regime, and superimpose the data obtained from the Thévenin method. For the
color drift, the two computed equations of state coincide perfectly. For the single drift, we again observe
a small discrepancy. This leads us to speculate that the equivalence of non-linear responses may only
hold in the thermodynamic limit, and for forcings which act on the bulk of the system, contrarily to the
single drift forcing. In Figure 5.3 , we show the computed asymptotic variance for estimators of ρF based
on the Thévenin methods and the Norton methods. Asymptotic variances for estimators of the response
and mean force were computed using block averages as in [12], and the corresponding asymptotic variance
for the Norton estimator of ρF was obtained using (5.48). It appears that the two methods are roughly
equivalent in terms of asymptotic variance, and that the variance for the finite-difference estimator scales
like the inverse square of the forcing intensity, consistent with the result expected in the Thévenin case,
as noted in Remark 13.

The final estimates for the transport coefficients using the Norton method are

ρFC
= 0.1211± 0.0006, ρFS

= 0.1089± 0.0005.

Estimates of the transport coefficients were obtained using (5.46), and statistical error was estimated
using (5.47)

5.3.2 Shear viscosity

The NEMD response observable (4.20) for shear viscosity can be recovered in the form

Rk(q, p) = G̃k(q) · p

by setting

∀ 1 6 i 6 N, ∀ 2 6 α 6 d, G̃k(q)i1 =
1

m
exp

(
2ikπqi2
L

)
, G̃k(q)iα = 0. (5.49)

Thus we can apply the Norton method. In practice, to avoid dealing with a complex exponential, we
rather define

∀ 1 6 i 6 N, ∀ 2 6 α 6 d, Gk(q)i1 =
1

m
sin

(
2kπqi2
L

)
, Gk(q)iα = 0. (5.50)

This can be achieved at no cost to generality by considering an appropriate translation of the forcing
profile with respect to the results of Figure 4.2. Estimators for the transport coefficient (4.21) and
estimates of the statistical error can be obtained identically to the mobility case. All simulations were
run in the reference thermodynamics condition (4.23) for a minimum length of 8× 107 timesteps.

In Figure 5.4, we plot the normalized response

R1

c1(fy)
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Figure 5.1: Mobility response versus average forcing intensity in the linear regime. Least squares linear
regression lines are plotted in dotted line, and the estimated transport coefficients are indicated in the
legend.

Figure 5.2: Comparison of the Thévenin and Norton mobility equations of state.
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Figure 5.3: Plot of the asymptotic variance as a function of the forcing intensity for the different
methods, on a log-log plot. Results corresponding to a Thévenin estimator are denoted with a T, and
those corresponding to the Norton estimator are denoted with a N.

against the estimated average forcing 〈λ〉 in the linear regime, for the different forcing profiles. The
estimated transport coefficients are consistent with one another, and agree with those obtained in the
Thévenin and Green–Kubo setting. In Figure 5.6, we compare the non-linear response profiles between
the Thévenin and Norton methods, for each of the forcing profiles. In every case, the responses coincide
perfectly throughout. In Figure 5.5 we compare asymptotic variances of the finite difference estimators of
the normalized response ρF,1/c1(fy) using the Thévenin and Norton method. The asymptotic variance
was estimated directly from the response time series in the Thévenin case, using a block averaging
procedure, and for the Norton method, a block averaging procedure on the forcing time series was
combined with a delta-method. We find that the Norton estimators consistently outperform their
Thévenin counterparts. Furthermore, it appears not all forcing profiles are equal in terms of asymptotic
variance.
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Figure 5.4: Normalized Fourier response versus forcing intensity for the three transverse forcing profiles.
The size of the linear response regime is roughly the same for every type of forcing. Least squares linear
regression lines on the 10 first values are plotted in dotted line, and estimated normalized transport
coefficients are indicated in the legend.

Figure 5.5: Scaling of the asymptotic variance for the finite difference estimator of the normalized
transport coefficient for shear viscosity
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Figure 5.6: Norton and Thévenin equations of state for the shear-viscosity Fourier response, for each
type of forcing profile.
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Appendix A

Implementation details

We conclude this report by a short appendix dedicated to providing some details about the concrete
implementation of the methods we discussed throughout this report. We start by giving some informal
ideas about where the computational cost of a molecular simulation is concentrated, before discussing
the process of choosing a software to implement various non-equilibrium methods. We finally give a
short summary of the implementations we made, pointing the reader to the relevant sources.

A.1 Scaling of the computational cost

Throughout this document, the reader will notice that little is said about ∇V , meaning the methods we
described simply invoked ∇V where it is needed, without getting into the specifics of how it is computed.
For a pair interaction potential of the form (1.12), the naive method of summing over all pairs of particles
incurs a cost of

N(N − 1)

2
= O(N2)

evaluations of the pair interaction function v. Another point we alluded to is that the statistical
error on the computation of averages usually dissipates at a rate O(1/

√
∆tNiter). Furthermore, for

averages to be physically meaningful, N must be taken large enough for the thermodynamic limit to be
considered reached. In practice, a quadratic scaling of the computational cost of computing ∇V may
render essentially impossible the computation of long numerical trajectories. Instead, one has to rely
on approximate evaluations of ∇V . For instance, in the case of a Lennard-Jones interaction, the pair
interaction potential decays quickly, in O(r−6) as a function of the interparticular distance r. In this
case, a reasonable approximation consists on imposing a fixed maximal interaction distance rc, called the
cutoff distance, and asserting that particles which are further apart that rc do not interact. This amounts
mathematically to replacing the pair interaction function v(r) by a cut-off version v(r)1r<rc , effectively
modifying the potential. There are various ways to alter this procedure in order to make the modified
potential continuous or C1, for instance using spline interpolation. Of course, this procedure alone does
not solve anything, since one still needs to determine which pairs of particles are neighbors, meaning
they are closer apart than rc, which still amounts to O(N2) computations of the (squared) Euclidean
norm. To make this viable, one has to store a list of neighbor pairs in an efficient data structure which
only needs to be updated once every few simulation iterations, since the set of neighboring pairs tend
not to drastically change over short time intervals. In practice, and depending on the timestep, the
meaning of the word few can sometimes be understood to be as large as 50. There are various strategies
to implement such a data structure, such as Verlet lists or cell lists, which are described in detail in [1,
Section 5.3]. At any rate, since the number of neighbors to a given particle should on average be close
to 4πρr3

c/3 = O(1), where ρ is the particle density, the cost of computing ∇V becomes (ideally) linear
in N , which makes long time simulations a practical possibility. We mention the issue of short-range
interactions since all our molecular simulations used V of the Lennard-Jones form, but other methods
exist in the case where V decays slowly like the Coulomb electrostatic potential, relying in this case on
a fast decay property in Fourier space. Of course, many more tricks exists, which collectively form the
whole craftsmanship of Molecular Dynamics (MD) simulations: finding efficient, approximate ways to
compute V and ∇V .
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A.2 Selecting a Molecular Dynamics package

The process of implementing from scratch these methods is time consuming, and unnecessary given
the number of freely available MD packages. However, some of these packages are quite ancient and
heavily optimized so that the process of implementing new methods comes with quite a heavy learning
overhead, as well as being harder to debug. Instead, we chose to make use of a Julia package for
MD simulation, thus taking this opportunity to learn the programming language Julia [2], which has
been gaining a lot of traction in the scientific computing user base, in part because it offers the shared
benefit of performance comparable to that of C or C++, as well as possessing a rich ecosystem of highly
intercompatible packages, powered by a strong community and a design philosophy centered around
generic, type-agnostic, interfaces.

The first step in the internship consisted in choosing a package between two contenders, NBodySimulator
[31], and Molly [15]. NBodySimulator, in summary, acts as a wrapper around the native differential
equations Julia framework, constructing a differential equation or stochastic differential equation from
the specification of a molecular system. As such, it aims to compute exact solutions to the dynamics,
or at least exact evaluations of V . On the other hand, Molly offers a number of neighbor-finding
strategies, such as the cell list method, a parallelized naive iteration over all pairs of neighbors, as well
as a tree-search based method. In Figure A.1, we show the results of a comparison of the scaling of the
simulation time as a function of the system size, for NBodySimulator and Molly’s various neighbor finding
strategies. We find that, if for very small systems, NBodySimulator outperforms Molly, the advantage
quickly disappears, for N > 750 approximately, in the case of the cell list method. Interestingly, even
the naive double loop for Molly overtakes NBodySimulator in performance. This is because by default,
Molly parallelizes the force computation, while there is no parallelization in NBodySimulator.

On this basis, we chose to implement our methods in Molly.

A.3 Summary of implementations

Along the way, some of our implementations were integrated in the Molly source, in large part during
a one-week stay in the MRC Laboratory of Molecular Biology in Cambridge, where the main author of
Molly’s source code, Joe Greener, works. These integrations include:

i) A cutoff strategy based on a cubic spline interpolation,

ii) A general Langevin integrators, which works for all splitting orderings (2.44) and in the (non)-
equilibrium setting,

iii) A logger to efficiently estimate time correlations functions of the form (4.28),

iv) A logger to track the self-diffusion coordinates (4.43) for Einstein mobility computations,

v) A refactoring of Molly’s general logging architecture, for more flexibility and extensibility,

vi) The addition of a parameter for Boltzmann’s constant, allowing for fully consistent sets of user-
defined custom systems of units,

vii) An online ergodic average and asymptotic variance estimator for a user-specified observable.

These were additionally documented, and non-regression tests were implemented for each of them. We
refer the reader to the Molly documentation and source code for more details. Other implementations
were too use-specific, not general or not mature enough to be integrated. These include

i) A pressure observable based on (1.2),

ii) The implementation of NEMD force fields for mobility and shear viscosity computations,

iii) The implementation of an integrator for the Norton method,

iv) Various logging and visualization utilities.

These implementations are available in the repository [4], although we apologize in advance to the
interested reader for the poorly organized, largely uncommented mess that lies within. We expect,
especially for the pressure observable, that a future integration in Molly will be possible, for instance once
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Figure A.1: Comparison of world clock time for the simulation of 10000 steps of a Lennard-Jones
system. The ”no nf” corresponds to the naive double loop. Top: full curve. Bottom: zoom on the small
system regime.
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long-range force contributions are implemented, as well as a more flexible interface for force computations.
This will be a necessary step in the implementation of barostats, which are important in the context of
biomolecular simulation, a use case Molly is particularly attuned to. On the other hand, non-equilibrium
methods are unlikely to have a place in a general-purpose MD package. Instead, we might consider
publishing in the future a standalone package that extends Molly for transport coefficient computations,
once our understanding of the Norton method has cohered.
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